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Active exoskeletons are promising devices for improving rehabilitation procedures in
patients and preventing musculoskeletal disorders in workers. In particular,
exoskeletons implementing human limb’s weight support are interesting to restore
some mobility in patients with muscle weakness and help in occupational load carrying
tasks. The present study aims at improving weight support of the upper limb by providing a
weight model considering joint misalignments and a control law including feedforward
terms learned from a prior population-based analysis. Three experiments, for design and
validation purposes, are conducted on a total of 65 participants who performed posture
maintenance and elbow flexion/extension movements. The introduction of joint
misalignments in the weight support model significantly reduced the model errors, in
terms of weight estimation, and enhanced the estimation reliability. The introduced control
architecture reduced model tracking errors regardless of the condition. Weight support
significantly decreased the activity of antigravity muscles, as expected, but increased the
activity of elbow extensors because gravity is usually exploited by humans to accelerate a
limb downwards. These findings suggest that an adaptive weight support controller could
be envisioned to further minimize human effort in certain applications.

Keywords: weight support, rehabilitation robotics, joints misalignments, feed-forward control, human parameters
identification, human/exoskeleton interaction

1 INTRODUCTION

Active exoskeletons are promising devices in many areas and their potential benefits in various
applications have been extensively studied in the past decades. In particular, active exoskeletons have
been tested as a solution to improve rehabilitation processes in stroke patients (Frisoli et al., 2007;
Pons, 2010; Frisoli et al., 2012; Tan et al., 2020). They are expected to help patients to recover more
quickly andmore permanently their motor functions due to the advantage offered by robotics such as
reliability and repeatability (Huang and Krakauer, 2009). Because of their versatility, active
exoskeletons can even be used to help disabled people to perform daily living activities such as
walking (Benabid et al., 2012; Mooney et al., 2014; Huo et al., 2019). Furthermore, benefits in terms of
reducing fatigue (Mooney et al., 2014; Young et al., 2017) and preventing musculoskeletal disorders
at work are expected (Sylla et al., 2014; Bogue, 2015; de Looze et al., 2016). All these applications are
conditioned by several critical functionalities including transparency (Ajoudani et al., 2018) and the
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ability to compensate for the user’s weight (Just et al., 2020).
Transparency is the ability of an exoskeleton to influence human
movement as little as possible when worn (Proietti et al., 2016)
and has already been extensively studied (Jarrasse et al., 2008;
Jarrasse and Morel, 2012; Pirondini et al., 2016; Bastide et al.,
2018; Verdel et al., 2021b). It is for instance critical at the end of a
rehabilitation process to ensure that the robot will not lead the
user to adopt abnormal motor patterns. Furthermore,
transparency is a prerequisite for successful integration in a
workstation where the worker does not need permanent
assistance. Weight support (WS) has received less attention
but can be defined as the fact of compensating both the
exoskeleton dynamics (i.e., being transparent) and the weight
of the human body segments. Having a robot carrying the human
segments is useful to relieve the user from the strong constraints
and efforts imposed by gravity and to ease its movements. This
function can be very helpful for patients with muscle weakness
and critical to rehabilitation protocols as it can substantially
increase their motor repertoire (Prange et al., 2006; Frisoli
et al., 2007; Frisoli et al., 2012; Just et al., 2020). We note that
WS has also been used in lifting and carrying tasks in the
industrial context in order to decrease the occurrence of
musculoskeletal disorders in workers (Theurel et al., 2018;
Treussart et al., 2020). In any case, the goal is to reduce the
user’s muscular efforts related to gravity. Besides studies
restricted to the horizontal plane (Tyryshkin et al., 2014;
Otaka et al., 2015; Mochizuki et al., 2019), control strategies
for WS in general movements and their impact on the human
motion have been rarely studied for the upper limb, except in the
case of the hand (Carson et al., 2009; Oytam et al., 2010) (see
related works in Section 1.2 for details). Indeed, active WS
requires building a weight compensation model that includes
the estimation of various parameters such as segment mass and
location of its center of gravity, which is a long-standing
anthropometric issue (Hatze, 2005) (see related works in
Section 1.1 for details). Therefore, designing accurate models
and protocols for the in situ identification of human masses is the
first step towards achieving generic WS. Designing efficient
control laws is the second step to track the identified weight
model during dynamic movements. These two steps are crucial
towards an easier integration of exoskeletons with effective WS
functionality.

1.1 Human Segments Identification
In the seminal work of Chandler et al, the inertial properties of
human body segments was estimated from six male cadavers
(mean age 54). These data led to the creation of anthropometric
tables such as De Leva tables (de Leva, 1996a; de Leva, 1996b) and
Winter tables (Winter, 1990). Nevertheless, these tables are
notoriously inaccurate and are not adapted to design a
personalized compensation. Other methods such as X-rays and
tomography analysis have led to better results (Hatze, 2005) but
are not satisfying in terms of material as they require heavy
devices irradiating the participants. Non-invasive approaches
based on motion capture analysis emerged with this
technology, allowing precise identification of body geometry
(Todorov, 2007). Motion capture-based identification

techniques were developed to provide results on inertial
parameters (Venture et al., 2008; Jovic et al., 2016), viscoelastic
parameters (Venture et al., 2007) and can be applied in real-time
(Venture et al., 2009; Ayusawa et al., 2011) during optimal
movements in the identification sense (Bonnet et al., 2016).
Most of these experiments were conducted on relaxed
(i.e., passive) participants, which was verified by means of
electromyographic (EMG) measures. All these techniques still
present the major disadvantage of requiring a special room
equipped with motion capture technology, which few hospitals
and companies can afford. An alternative way to identify human
parameters would be an in situ identification using exoskeleton
data (such as kinematic or force/torque (FT) measures) and,
therefore, avoiding the use of external measurement tools. Fewer
studies have been conducted in this perspective. The upper-limb
masses identification was carried out with different methods (Just
et al., 2017; Just et al., 2020) suggesting that the most efficient
method is to identify the vertical force generated by the segment
when the human is completely relaxed, as during certain
experiments based on motion capture techniques. This idea of
in situ identification was also developed for lower limbs (Hwang
and Jeon, 2015). The force measurement is, in these experiments,
either obtained from FT sensors placed at the level of the
connection between the human and the robot or from torque
sensors placed at the joints of the robot. The main limitation of
these studies was the fact that joint misalignments (JM) between
the user and the exoskeleton were not considered. Indeed, these
misalignments have an impact on the interaction efforts between
the user and the exoskeleton (Jarrasse and Morel, 2012).
Therefore, they can lead to under or over compensation of
weight because of an erroneous identification of the human
segment mass. As a consequence, the present paper focuses on
introducing a general model of weight taking into account JM for
a limb with the objective to generate more accurate
compensations.

1.2 Weight Model Tracking
The second step to achieve an accurate WS is to carefully follow
the identified weight model. As previously introduced, WS is a
necessary step in many functional rehabilitation processes
(Prange et al., 2006; Frisoli et al., 2007; Frisoli et al., 2012).
Therefore, its effect have been studied on disabled patients
and healthy participants often using passive systems (Prange
et al., 2009b; Perry et al., 2017; Puchinger et al., 2018; Hull
et al., 2020; Perry et al., 2021). These investigations were oriented
towards the analysis of muscle activities and workspace in
different configurations. In the horizontal plane (F. Beer et al.,
2007), in the sagittal plane (Prange et al., 2009a; Prange et al.,
2009b; Perry et al., 2021) and during three-dimensional
movements (Coscia et al., 2014; Puchinger et al., 2018;
Runnalls et al., 2019; Hull et al., 2020), a global decrease of
electromyographic (EMG) activities and an increase in the
number of muscular synergies were observed. Moreover, an
increase in the workspace of disabled patient was also
reported. Nevertheless, these findings did not address the
problem of compensating weight with an active device in the
vertical plane. In fact, few studies considered this problem. As
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previously mentioned, it was discussed for rhythmic hand
movements (Carson et al., 2009; Oytam et al., 2010) using box
Jenkins models for motors in order to analyze the stability of
human movements under different conditions. Some studies
about upper-limb WS with active exoskeletons such as (Just
et al., 2017; Just et al., 2020) described different compensation
methods but did not focus on the associated design of an accurate
control law. Furthermore, these studies either considered
lightweight limbs as hands or dealt with movements
performed in horizontal plane that induce a constant weight
torque. WS could even be obtained natively in the horizontal
plane without dedicated control with the KinArm exoskeleton
(Tyryshkin et al., 2014; Otaka et al., 2015; Mochizuki et al., 2019).
In these cases, only a partial movement set generating few
variations in weight torque is considered, which does not
induce the problems that occur in more general settings. As a
consequence, the present paper will focus on problem of WS for
an arm moving in the sagittal plane as this will generate
substantial variations in gravitational torques. The objectives

are thus to 1) build an accurate weight compensation model
in situ for each participant considering JM and 2) design a WS
control law that follows this model despite variations of
gravitational torques during motion in the vertical plane.

Considering these two main objectives, the general
methodology applied in the present study is presented in
Figure 1, and the rest of this paper is organized as follows. In
Section 2.1 a weight model and its identification procedure are
presented. Then, in Section 2.2, the construction of the weight
compensation control law is described and some successive
solutions are proposed. In Section 2.3 a validation task
allowing to compare the different solutions and validate the
control law’s design methodology is described. All the
experimental results are presented in Section 3 and discussed
in Section 4.

2 MATERIALS AND METHODS

2.1 Weight Model With Joint Misalignments
and Identification
2.1.1 General Case
The first step to build a WS control is to identify precisely the
mass of the limb used in the movement. Given the fact that JM
between the exoskeleton and the user are inevitable (Jarrasse and
Morel, 2012), these misalignments must be identified to build a
homogeneous weight compensation. This has not yet been
explored in previous weight compensation studies as the
assumption of perfect alignment between the user and the
exoskeleton is often implicitly made. In the general case,
misalignments between a human segment and an exoskeleton
link can be described by three rotations and three translations as
presented in Figure 2A.

In the case of spatial motions, the first step of the proposed
model is to define a set of vertical planes containing the robot
segments according to ϕr (the joint coordinate vector of the
robot). The successive projections of the human limb in these
different planes make it possible to define a vector ϕh(ϕr)
containing the different JM to be identified. Then, if the robot
is composed of revolute joints, which is commonly the case in
upper-limb exoskeletons, e.g., see (Frisoli et al., 2007; Garrec et al.,
2008; Gopura et al., 2016; Brygo et al., 2017; Ercolini et al., 2018),
a last transformation Rrh,i(xri, ϕr) (i.e., a rotation depending on ϕr
around the axis xri which supports the ith segment) must be
applied to compute the component of the human weight torque
that is kinematically compatible with the ith joint. The detailed
description of the proposed model is available in Supplementary
Appendix A1.1 for one human and one robot limb. It should be
noted that the identification process also requires appropriate FT
sensors.

As this reduction of the problem to planar problems is always
possible by projecting xh (i.e., the vector supporting the human
limb as described in Figure 2A) in the defined vertical planes, the
rest of the present study will focus on planar human movements
in the sagittal plane. More precisely, we will focus on accurately
identifying and compensating the weight of a human forearm and
hand in the sagittal plane during goal-directed movements.

FIGURE 1 | Applied methodology.
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2.1.2 Sagittal Plane Case Study
In the present study, a modified ABLE exoskeleton is used (see
Section 2.3.1 for detailed presentation). This exoskeleton is
modified to be as compliant as possible in terms of connection
to the user. More specifically, residual torques and forces due to
position and orientation errors between the exoskeleton and the
user are removed by a ball joint coupled to a prismatic joint (i.e., a
slider on a rail), which aims at improving the quality of the
interaction in terms of comfort. These modifications imply that
measures of the FT sensor along xr are not exploitable. Therefore,
our WS control can only rely on the local normal measure of the
sensor along yr in this case studywhich is a slight difference with the
method proposed in (Just et al., 2020). In this situation, the rotation
previously defined by ϕr is directly equal to the rotation induced by
a robot motor, therefore we have ϕr � q, where q is the angular
position of the robot elbow. The weight model (i.e., the evolution of
the weight torque τh with regard to q, the angular position of the
robot with a horizontal reference) that should be identified is a
particular case of Eq. 18 and is described in Equation 1,

τh � xgxh ×Wh( ) · z0
� −mf,hgxg cos q + ϕh q( )( ) (1)

where τh is computed under the assumption that the center of
mass of the human segment is on the axis (Oh, xh) (as in (Just
et al., 2020)),mf,h is the addition of the masses of the forearm, the
hand of the user and the connection to the robot that must be
identified, xg is the center of mass position in the human frame, q
is the angular position of the robot elbow (measured by
incremental encoders) and ϕh(q) is the misalignment between
the robot and the user forearm segments that must be identified.
The resulting force interaction model that must be applied by the
robot to compensate for the weight is obtained through
equilibrium of torques and described in Eq. 2 by

F � mf,h
xg

li
g
cos q + ϕh q( )( )
cos ϕh q( )( ) (2)

where F is the opposite of the normal interaction force measured
by the FT sensor and li is the distance between the human elbow
and the interaction point along xh. As the physical interface with
the robot completely envelopes the human forearm, the
interaction point is modeled as a point belonging to the axis
(Oh, xh). Note that this interaction force model is only valid for
static situations where inertial and viscous terms and human
muscles activation does not exist or is negligible. As a
consequence, this model can only be identified on static
positions of the robot and with a relaxed user as it is often the
case when trying to compensate for weight (Hwang and Jeon,
2015; Just et al., 2017; Just et al., 2020). It is interesting to note that
using a force equilibrium seems to be inappropriate in this
situation. Indeed, it would require to neglect the interactions
at the level of the human joint to solve the problem, which
amounts to use a classical weight model without JM.

By design, the torque at the robot elbow joint resulting from
this weight compensation model is equal to the interaction force
of Eq. 2multiplied by the lever arm between the robot elbow joint
centerOr and the direction of this force, which corresponds to the

distance between Or and the slider (see Figure 2B). This is
described by Equation 3,

τi � lF

� lmf,h
xg

li
g
cos q + ϕh q( )( )
cos ϕh q( )( ) (3)

where τi is the resulting interaction torque to apply for weight
compensation and l is the distance between Or and the slider.

2.1.3 Model Without JM
For comparison purposes, the model without JM is defined below.
As JM are described by ϕh in our framework, the case ϕh ≜ 0
corresponds to a model without JM and is described by
Equation 4,

τi,wjm � lmf,h
xg

li
g cos q( ) (4)

where τi,wjm is the torque to apply to compensate for weight
without JM.

2.1.4 Optimization Problem
The one degree of freedom weight model presented in Eq. 2 can
be adapted to formulate an optimization problem in the least
squares sense. In the rest of the present study, only a zero-order
approximation of ϕh(q) (i.e., ϕh(q) ≈ ϕh) is considered as
experiments tends to show that this approximation is
reasonable on our tested movement ranges (see Section 3.1).
This approximation might not hold for movements of large
amplitude (typically for ϕh + q > 40° and ϕh + q < −60° in our
case). This is not a problem for the future generalization as a more
complex model of ϕh(q) could be identified through experiment.
The resulting optimization problem is presented in Equation 5,

m̂eq,h

ϕ̂h

( ) � argmin
meq,h,ϕh

F −meq,hg
cos q + ϕh( )
cos ϕh( )( )

2

(5)

where m̂eq,h and ϕ̂h are the estimated values of meq,h and ϕh,
respectively, and meq,h � mf,hxg/li. In order to accurately estimate
these two values, as many measures of F and q as possible must be
collected for each participant during a static and passive
experiment. Therefore, the identification procedure detailed
below is carried out.

2.1.5 Participants
The evaluation of the present approach was performed with 17
healthy right-handed participants. Basic anthropometric
characteristics of the participants were as follows: 7 females,
10 males, mean weight 70.7 ± 9.7 kg, mean height 176 ±
7.8 cm, mean age 24 ± 4.9 years old, mean forearm length
25.5 ± 1.4 cm and mean hand length 18.6 ± 1.3 cm. It should
be noted that limb lengths were measured approximately with a
measuring tape. Therefore, results in terms of limb length are not
exploitable as relevant anthropometric data but still allow us to
have a first approximation of the population on which the control
laws have been tested. A written informed consent was given by
each participant as required by Helsinki declaration (World
Medical Association, 2001). The experimental protocol was
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approved by the ethical committee for research (Université Paris-
Saclay, 2017-34). The written consent and the approval of the
protocol were also obtained for all the experiments presented in
the rest of the present paper.

2.1.6 Identification Protocol
As stated previously, the identification of the human arm’s
parameters is performed under static conditions and with the
participant being as passive as possible. Participants were placed
with their shoulder at the intersection of the first three joints of
ABLE. They were connected to ABLE at the level of their forearm
and arm (see Section 2.3 for details). Participants were asked to
relax while the elbow joint of the robot moved slowly between 20
positions equally spread across its whole work-space:
[−85.94°, 39.53°]. Each position was statically maintained
during 5 s. Measures from electromyographic (EMG) sensors
were used to check in real-time that the participant was relaxed.
Angular positions of the robot and interaction forces were
measured at 1 kHz. The resolution of the optimization problem
presented in Eq. 5 was then carried out using the “lsqnonlin”
function from the “Optimization Toolbox” of Matlab©. For
comparison purposes, the same optimization was carried out
with ϕh ≜ 0 (only the observed mass was identified in this case).

After identification of the model, the mean absolute error (MAE)
between predictions and measures was computed for each subject
and both models (with and without JM) as expressed in Equation 6

MAE � 1
N

∑ | F̂ q, ϕh( ) − F | (6)

where N is the number of samples, F̂(q, ϕh) is the predicted force
resulting from model identification and F is the measured force.

A pairwise t-test comparison was then conducted between the
two sets of errors using the Pingouin package (Vallat, 2018). The
significance level was fixed at p < 0.05.

2.1.7 Adjustable Compensation
The WS level can be adjusted easily by adjusting the model
presented in Eq. 3. Indeed, adding a real coefficient to the weight

model allows to choose directly the level of the desired
compensation. The modified model is expressed in Equation 7,

τi � αlmeq,hg
cos q + ϕh( )
cos ϕh( ) (7)

where α is the introduced coefficient. For example, during the
course of rehabilitation, α can be varied between 1 (for a complete
WS) and 0 (for a transparent behavior at the end of a therapy). It
should be noted that the human parameters must be identified
before changing the compensation level.

Achieving an effective WS requires the ability to accurately
track the model defined in Eq. 3, which will be the main focus of
the rest of Section 2.

2.2 Weight Support Control Laws
This section describes the off-line construction of a general WS
control law based on compensation errors observed during
experiments. In other terms, the underlying learning process
necessary to design the control laws is described in the current section.

2.2.1 Initial Force Feedback Control Law
All the control laws used in the present study are based on an
accurate compensation of the robot dynamics. This compensation
is based on the methods described in (Verdel et al., 2021b). Over
this dynamic compensation of the robot, the FT sensor is used to
build a feedback control based on the normal interaction forces
with the user (Verdel et al., 2021a). In classical approaches, the
control is often assured by a partial or complete Proportional
Integral Derivative (PID) corrector. The parameters of this type of
corrector are system-dependent and task-dependent. In our case a
PI corrector was implemented as the derivative coefficient
generated instabilities. The control law resulting from the
classical PI approach is described by Equation 8,

τctrl � Kp τ̂i q, ϕh( ) − τi( ) +Ki ∫
t

0

τ̂i q, ϕh( ) − τi( )dt + τ̂comp €q, _q, q( )
(8)

FIGURE 2 | Misalignments between human and exoskeleton. (A) General situation. (B) Sagittal plane case study.
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where τctrl is the control torque to apply at the elbow joint of the
robot, τ̂i(q,ϕh) is the estimatedWS control torque resulting from
Eq. 3, τi is the measured interaction torque resulting from FT
sensor measurements and τ̂comp(€q, _q, q) is the estimated
compensation of the robot dynamics based on the model
presented in (Verdel et al., 2021b) and in Eq. 9. This model is
dependent on €q (respectively _q and q) the angular acceleration
(respectively angular velocity and position) of the elbow joint.
The angular velocity and acceleration are estimated by numerical
differentiation of the angular positions of the robot. The angular
acceleration thereby estimated is too noisy to be used in the
exoskeleton control, therefore, inertial terms are not taken into
consideration in the dynamic compensation. The control scheme
describing this behavior is presented in Figure 4 in black. This
law will be called BC (for Basic Compensation) in the rest of the
present paper. The compensation of robot dynamics is described
by Equation 9,

τ̂comp €q, _q, q( ) � M̂ q( )€q + Ĉ q, _q( ) + Ĝ q( ) + sign _q( )τ̂C + ]̂ _q (9)

where M̂(q) is the estimated inertia of the segment, Ĉ(q, _q) is
the estimated Coriolis/centrifugal efforts, Ĝ(q) is the estimated
gravitational torque induced by the robot weight, τ̂C is the
estimated Coulomb dry friction torque, ]̂ is the estimated
viscous friction coefficient and τ̂comp is the estimated motor
torque of the robot used to compensate for the robot
dynamics.

2.2.2 Feedforward Term Dependent on Theoretical
Interaction Force
As it will be seen in the results, the initial force-feedback control
law was insufficient to ensure an efficient tracking of the
theoretical model during vertical arm movements (see Section
3.2 for details). The analysis of measured interaction forces
during experiments with this classical approach allowed us to
uncover that model tracking errors depended on the magnitude
of the theoretical force with an affine trend (see Figure 3A).

This trend revealed by the experiments allows to add a
feedforward term to the previous control law, based on a
linear model extracted from errors analysis. This term is
defined by Eq. 10 as follows:

τFF,τ � KFF,τ τ̂i q,ϕh( ) + τFF,τ0 (10)

where τFF,τ is the feedforward torque added to the control law
presented in Eq. 8, KFF,τ is the slope of the identified linear model
of Figure 3A, τ̂i(q, ϕh) is the theoretical torque resulting from Eq.
1 and τFF,τ0 is the Y-intercept of the identified linear model of
Figure 3A multiplied by l. The approach consists in learning the
error behavior across trials and participants to improve the
overall WS quality, by adding this linear model as a
feedforward torque. This learned model is represented in blue
in Figure 4 and in Eq. 12. The law taking into account this model
will be called FFTF (for Feedforward Force based on Theoretical
Force) in the rest of the present paper.

2.2.3 Feedforward Term Dependent on the Robot
Angular Position
Despite significant improvements in terms of tracking error, it
will be seen that the previous feedforward approach still
generated too much tracking errors and was still inadequate to
ensure an efficient tracking of the theoretical model (see Section
3.2 for details). The analysis of measured interaction forces
during experiments on the previous approach allowed us to
exhibit another mean behavior of the compensation errors
presented in Figure 3B, following the learning approach
introduced previously.

The behavior exhibited by the experiments allows to complete
our feedforward approach by adding another linear
compensation depending on the angular position of the robot.
This model is described by Equation 11,

τFF,q � KFF,qq + τFF,q0 (11)

where τFF,q is the second feedforward torque added to the control
law presented in Eq. 8, KFF,q is the slope of the identified linear
model of Figure 3B, q is the angular position of the robot and
τFF,q 0 is the Y-intercept of the identified linear model illustrated
in Figure 3B. The measures given in Figure 3B do not suggest the
use of a linear model at first sight. Nevertheless, for point-to-point
movements between various targets, their pseudo-sinusoidal
form is mainly due to delay and lack of inertia compensation
in the control laws. These errors could be compensated with

FIGURE 3 | Mean linear models extracted from experiments. (A) Interaction force versus theoretical force and mean linear behavior. (B) Interaction force versus
angular position and mean linear behavior.
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intention detection, but this is not the focus of the present study.
The learned model is represented in red in Figure 4 and in
Equation 12). This law will be called FFCM (for Feedforward
Force Complete Model) in the rest of the present paper. The
complete WS control law thereby constructed is described by
Equation 12,

τctrl � Kp τ̂i q,ϕh( ) − τi( )
+Ki ∫

t

0

τ̂i q, ϕh( ) − τi( )dt + τ̂comp _q, q( )
+ τFF,τ + τFF,q

(12)

2.2.4 Individualized Compensation
It should be noted here that in a rehabilitation or industrial
context, it would be possible to learn the FFTF and FFCM control
laws for only one individual and, therefore, build a fully
personalized control. Indeed, the process of learning errors
requires an amount of data that can be obtained on only one
individual. As different levels of theoretical forces are needed,
changing the level of applied WS (by modifying α from Eq. 7, in
Section 2.1) is a solution to identify the parameters of the FFTF
law. The identification of the parameters of a personalized FFCM
would also be possible as it would only require to perform a small
number of upward and downward movements on a large
amplitude (such as 60°). Personalized learning could also be

performed on-line contrary to our general learning that
requires to gather data from different participants.

2.2.5 Control Modes
Two control modes are used in our experiments, the first one is a
“transparent” control. In this mode, the control is designed to
minimize the normal interaction force (i.e., minimize F). This
“transparent” control mode is used as a baseline condition to
quantify alterations in the human movement when submitted to
different WS controls.

The second control mode corresponds to a classical WS where
the robot should compensate its own dynamics and the weight of
the forearm/hand of the user during movements in the sagittal
plane. Therefore, the robot is controlled to maintain a normal
interaction force that follows the model presented in Eq. 1. The
three previous control laws (i.e., BC, FFTF and FFCM) are tested
on this control mode and their respective capacities in terms of
model tracking are tested and compared in Section 3.2.

2.3 Design of the Experimental Validation of
the Control Laws
2.3.1 Materials and Task
Participants
As described in Section 2.2, three control laws are tested
sequentially. The second control law (FFTF) was constructed

FIGURE 4 | Control schemes used during the present study. Black: basic PI control loop and weight torque estimation. Blue: FFTF term. Red: FFCM term.

TABLE 1 | Data relative to the participants: N is the number of participants, FL is the forearm length and HL is the hand length.

Session N Sex Age (years) Weight (kg) Height (cm) FL (cm) HL (cm)

1 29 10 F; 19 M 23.2 ± 3.0 67.1 ± 11.8 174.7 ± 7.6 25.5 ± 1.6 18.8 ± 1.0
2 17 7 F; 10 M 24 ± 4.9 70.7 ± 9.7 176 ± 7.8 25.5 ± 1.4 18.6 ± 1.3
3 19 6 F; 13 M 24.3 ± 2.2 70.7 ± 9.8 176 ± 8.4 26.4 ± 2.0 19.5 ± 1.2
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from data recorded with the first law (BC) and the third control
law (FFCM) was constructed with data recorded when using the
second control law (FFTF). Therefore, three sessions were
necessary to build and test our three control laws. Data
relative to the participants of each session are reported in
Tables 1, 2.

Certain participants were involved in the three sessions (N � 8
participants). Participants were all naive about the purpose of the
experiment. As our goal is to build a control law that can be used
by different individuals, most participants from the first two
sessions were not the same.

ABLE Exoskeleton
The present study is achieved with an ABLE upper-limb
exoskeleton (see Figure 5A) which has four actuated joints and
one free slider whose position and velocity cannot be directly
monitored.

The first three actuated joints of ABLE correspond to the three
degrees of freedom of the human gleno-humeral joint
(abduction/adduction, internal/external rotation and flexion/
extension) and the last actuated joint correspond to the
flexion/extension of the human elbow. The slider is moving on
a rail, which forms a prismatic joint, and has been added to
prevent the occurrence of hyperstatic forces at the level of the
connection between ABLE and the user. Furthermore, a ball joint
was added between the slider and the connection to the user with
the same purpose and, therefore, provide a more ergonomic
interaction (Jarrasse and Morel, 2012). For the same purpose,
connections are made of a deformable material to adapt to the

shape of the participant’s limb. The forearm connection is also
made to impeach wrist movements in order to ensure that
movements are only performed by elbow flexion/extension.
This robot was designed to be highly backdriveable and
compliant in order to maximize the human/exoskeleton
symbiosis (Garrec et al., 2008; Garrec, 2010). In addition to
classical measures of motor positions obtained in real-time by
incremental encoders, a FT sensor (1010 Digital FT, ATI©,
sample rate: 7 kHz) was added at the level of the connection
between ABLE and the user to measure the interaction forces and
provide the feedback for WS control laws.

Other Materials
Kinematic characteristics of movements were extracted from the
robot position data. Participant’s muscular activities were
measured with four EMG sensors (Wave Plus wireless EMG
system, Cometa). These EMGs were placed on two elbow flexor
muscles (brachio-radialis and biceps brachii) and two elbow
extensor muscles (triceps brachii long head and lateral head).
The EMG sensors are placed according to SENIAM
recommendations (Hermens et al., 1999) (see Figure 5B).

Motor Task
As previously motivated (see Section 1 and Section 2.1), the task
involved only elbow flexions and extensions. Movements
consisted in point-to-point reaching in the sagittal plane.
Targets are described in Figure 2B as Tup, Tbot and Tmid. For
the participants, these targets are represented by 3 LEDs. The
middle LED is the initial target. The two other LEDs are
successively illuminated so as to generate movements of an
amplitude of 60° centered around a horizontal axis.
Participants are asked to move toward the illuminated LED.
The LED are illuminated during 1 s to induce a movement
duration that stays around 600 ms. Movements are performed
under two different conditions, in “transparent”mode and inWS
mode (α � 1). Between each single point-to-point movement,
participants maintained their position during approximately 2 s.

TABLE 2 | Identified masses and JMs for each session.

Session meq,h (kg) ϕh (rad)

1 2.13 ± 0.56 0.27 ± 0.12
2 1.93 ± 0.26 0.21 ± 0.07
3 1.90 ± 0.36 0.23 ± 0.07

FIGURE 5 | Material and experimental set-up. (A) ABLE exoskeleton used in the present study. (B) Disposition of EMG sensors (back on left, front on right).
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Participants are placed with their shoulder at the intersection
of the first three joints of ABLE’s shoulder. They are connected to
ABLE at the level of their forearm and arm with large splints to
maximize the interaction quality (Jarrasse and Morel, 2012) (see
Figure 5A).

In the first session, each participant was asked to perform 7
blocks of 30 movements (15 upward and 15 downward), thereby
giving a total of 210 movements per participant. The first block
was performed in “transparent” (TR) mode to help the
participant to learn the task, then 6 blocks were performed
under WS with the BC control law. In the second session,
each participant performed the 6 WS blocks with the FFTF
control law.

In the final validation experiment, 4 blocks of 30 movements
are carried out (15 upward and 15 downward), which yielded a
total of 120 movements per participant. The first block was also in
“transparent” mode for familiarization and then each block was
performed with the BC, FFTF or FFCM control law respectively.
These three control laws were randomly assigned to one block. At
the end of each block, each participant was asked to point towards
each target (Tup, Tbot and Tmid) and maintain position for five
seconds in order to obtain static measurements.

In order to prevent fatigue effects, 3 min pauses were taken
between blocks. Note that the performed movements were not
particularly demanding due to the presence of a WS (although
imperfect) in most conditions.

2.3.2 Data Processing
Electromyography
EMG signals were filtered using a band-pass filter (fourth-order
Butterworth [20, 450]Hz cut-off frequency), centered and
rectified. Signals were normalized by the maximal activity
found during the experiment for each subject and each
muscle. The envelope of the EMG signal was obtained by
applying a low-pass filter (10 Hz cut-off frequency, fifth-order
Butterworth) (Potvin and Brown, 2004). The Root mean square
(RMS) of the signal was finally computed to measure an amount
of activation during one movement and peak activation was
computed as the maximum value of the signal for each

movement. Possible outliers on peak activation were removed
with a threshold at 3 standard deviations. The activity of flexors is
computed as the average activity of the brachio-radialis and
biceps brachii and the activity of extensors is computed as the
average activity of the triceps brachii long head and lateral head.

Robot Data
Angular positions of the fourth axis of the robot were recorded by
means of internal encoders and angular velocity was estimated by
numerical derivation of these positions. The movements were
first grossly segmented in the middle of the 2 s waiting time
between the lighting of the diodes (as described in Section 2.3.1).
The start and end of the movement were then defined using a
threshold fixed at 5% of the peak of velocity of the considered
movement. Interaction forces were recorded by means of the FT
sensor to assess the validity of our compensation. A low-pass filter
(5 Hz cut-off frequency, Butter-worth) was applied on robot
angular velocity. Acceleration of the fourth axis was then
obtained by numerical differentiation of the filtered velocity
for offline computations. The “real” interaction torque at the
participants’ elbow τi was computed as presented in Equation 13,

τi � lF (13)

where l is the distance between the robot elbow and the slider
estimated manually at the beginning of the experiment, F is the
interaction force measured on the z-axis (i.e., the normal) of the
FT sensor. The distance l varies during the experiment but these
variations are neglected as they are of small magnitude when
compared with the initial distance and have little impact on the
weight compensation torque. Theoretical F and τi were also
computed using the model presented in Eq. 7. In all our
experiments we fully compensated weight (α � 1), therefore
the condition τi > 0 Nm should be respected.

Statistical Analysis
The inter-individuals data were first compared via repeated
measures ANOVA with a correction of Greenhouse-Geisser. If
statistical differences are observed, data sets are compared using
pairwise t − test comparisons with a Bonferroni correction as

FIGURE 6 | Effects of JM onmodel behavior andMAEs. (A) Example of differences inmodel identification for a representative participant. (B)Boxplots representing
MAEs repartition with and without JM.
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post-hoc tests. All statistical analyses are conducted with the
Pingouin package (Vallat, 2018). All significance levels are
fixed at p < 0.05.

3 RESULTS

3.1 Impact of JM Consideration and
Identified Human Arm Parameters
In this subsection, we compare the identification errors for the
models with and without JM and report the identified human arm
parameters in each case to validate our approach.

The results of identification errors are given in Figure 6. The
obtained error values are 1.9 ± 0.68 N for the condition without JM
(i.e., ϕh ≜ 0) and 0.62 ± 0.28 N for the condition introducing JM.

An example of the differences between the two identified
models is given in Figure 6A. This example clearly shows that
considering JM corrects a substantial amount of error. The arm
parameters identified in this example were meq,h ≈ 2.45 kg; ϕ ≈
0.217 rad with JM andmeq,h ≈ 2.14 kg without. The identification
MAEs across participants are displayed for both approaches in
Figure 6B, showing the distribution of identification errors both
with and without JM through boxplots. The pairwise t-test
returned a significant difference between the two sets (T-value:
−7.18, p � 3.91 × 10–7). Mean and standard deviation of theMAEs
show a net decrease in mean error and in error variability. Indeed,
the mean error is approximately divided by a factor 3 and the
standard deviation is approximately divided by a factor 2.4.

Themean identifiedmeq,h and ϕh and their standard deviations
for all participants are meq,h � 1.93 ± 0.26 kg and ϕh � 0.21 ±
0.07 rad.

These results demonstrate the prominent role of JM in
achieving a correct human segment mass identification, which
is a necessary prerequisite towards an accurate WS. Furthermore,
the estimation of the position of the user in the exoskeleton is a
data that could be used in other situations such as tasks based on
assistive control laws.

As theWSmodel has now been defined and validated, the next
step is the validation of the WS control law designed in Section
2.3.1. This validation is presented in Section 3.2.

3.2 Comparison of the Performance of
Control Laws
3.2.1 Comparison of Control Laws Static
Performances
An important feature of WS control laws is the ability to remain
static when the user is relaxed. Therefore the measurement of
errors between the identified model and the measured efforts in
static conditions is necessary to quantify the overall quality of
these control laws. In the present study, these errors were
measured on 5-s pointing on each of the three targets (Tup,
Tbot and Tmid). The obtained results are given in Figure 7.

The results depicted in Figure 7 show a net decrease of the
torque-level MAEs by using the FFTF and FFCM control laws.
The FFCM control law seems to induce a second reduction of the
static MAEs overall. It also seems that this control law induces a
reduction inMAE variability for Tmid and Tup. Both the FFTF and
FFCM control laws induce a net decrease in MAE variability
when compared with the BC control law.

The repeated measures ANOVA on control laws and targets
returns significant differences between conditions (F2,36 � 36.7,
p � 0.3 × 10–5, η2 � 0.67). No statistical differences are observed
between targets. The interaction between targets and control
laws is not significant either. Post-hoc treatments show that
FFTF and FFCM are significantly better than BC overall (p � 1.1
× 10–4 and p � 0.7 × 10–5 respectively). Furthermore, post-hoc
treatments show that FFCM offers a significantly better
performance than FFTF (p � 2.5 × 10–3) in terms of MAE on
the three targets.

3.2.2 Tracking Performance
One objective of the present study was to design an accurate WS
control law in terms of weight model tracking. Therefore, the best

FIGURE 7 | Comparison of the control laws’ performances under static
conditions.

FIGURE 8 | Comparison of the tracking performance each control law in
terms of MAE on τi for each experimental session.
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control law must minimize the differences between the predicted
interaction force described in Section 2.1 and the measured
interaction force F. The mean results in terms of model
tracking for each control law are visible in Figure 8 and in the
third row of Figure 9. Movement traces averaged for one
participant are reported for upward movements in Figure 9.

The quantification of the performance of each control law in
terms of weight model tracking (i.e., MAE repartition during
the whole blocks) is presented in Figure 8. Overall, the FFCM
control law performs better (lower average value and with a
smaller standard deviation than other laws). This figure reveals
a substantial reduction of the MAEs with the addition of each
feedforward term. A decrease of approximately 27% of the
mean MAE when adding the feedforward term based on the
error relative to the theoretical force. The addition of the term
based on the error relative to the angular position results in a
decrease of approximately 24% of the mean error when
comparing FFTF and FFCM and of approximately 44% when
comparing BC and FFCM. The variability of the mean MAE

also shows a substantial decrease when adding the feedforward
terms. These results are promising considering that the aim of
the present study is to build a law suitable for the entire
population.

The ANOVA analysis returns a significant difference between
the different laws (p � 2.49 × 10–11, F � 54.5). The paired t − tests
conducted on these MAEs all reveal significant improvements in
terms of tracking performances: BC vs. FFTF returns p � 9.3 ×

FIGURE 9 | Trajectories, torques, and muscular activation averaged for one participant for upward movements. EMG normalized peak activations are reduced
when compared to Figure 11 because of the averaging on multiple movements.

TABLE 3 | Means and standard deviations of standard descriptors of human
movement.

PV (rad/s) PA (rad/s2) D (s)

TR 29.1 ± 6.8 157.4 ± 56.2 0.64 ± 0.14
BC 28.8 ± 6.5 155.8 ± 52.3 0.64 ± 0.17
FFTF 30.9 ± 6.9 169.7 ± 60.8 0.61 ± 0.15
FFCM 29.8 ± 6.4 165.3 ± 56.5 0.61 ± 0.12

PV stands for peak velocity, PA stands for peak acceleration and D stands for duration.
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10–5, T � 5.61, BC vs. FFCM returns p � 5.54 × 10–8, T � 9.88 and
FFTF vs. FFCM returns p � 2.85 × 10–4, T � 5.07.

Eventually, the performance in terms of MAE under dynamic
and static conditions is proven to increase with both the FFTF
and FFCM control laws, which supports their validity and shows
the relevance of their design method a posteriori. Nevertheless,
the question of the effects of these control laws on human
movement and physiological behavior is still unanswered. This
is why these effects are the main focus of Section 3.3.

3.3 Effects on Human Trajectories and
Muscle Activity
3.3.1 Trajectories
The movement profiles obtained with the three WS control laws
were all globally similar to the transparent condition with bell-
shaped velocity profiles (see Figure 9 for details on upward
movements). Furthermore, Figure 9 does not seem to suggest
that there is more overshoot with WS control laws than in
transparent mode. This is confirmed by a repeated measures
ANOVA on the first sub-movement amplitude that showed no
significant difference between the conditions (F3,54 � 0.446, p �
0.721, η2 � 0.0242) This suggests that participants successfully
adapted their motor planning and correction to WS
control laws.

Regarding the basic kinematic features of the movements, we
report above the movement duration, peak velocity and peak
acceleration in each condition. These averaged values are
reported in Table 3. These values were computed on all the
movements (pooling both upward and downward movements).

Mean values do not show any clear difference between the
control laws on these parameters. Peak velocities, peak
accelerations and movement duration were similar for all
control laws. This was confirmed by repeated measures
ANOVA which showed no significant difference between all
the control laws for these parameters.

3.3.2 Muscle Activity
As for the analysis of the performance of control laws in Section
3.2, data of EMG sensors were analyzed under two situations:
during static positions maintained at the end of the blocks and
during dynamic movements. For the latter situation, we focused
on the muscular activity during the acceleration phase, which
reflects the effort provided by the user to launch the movement
and is related to the obtained peak acceleration.

The mean results in terms of RMS of EMG signals at the three
targets during the static part of the blocks are illustrated by
Figure 10.

These results suggest that there is a significant reduction in
flexor muscle activity while maintaining static positions. This is
confirmed by the repeated measures ANOVA conducted on
these data that reports significant differences between
conditions (F3,54 � 553.14, p � 2.82 × 10–28, η2 � 0.97). Post-
hoc analyses show that the threeWS laws (BC, FFTF and FFCM)
induce significantly reduced flexors activity by the participant
when compared to the TR condition (p � 2.2 × 10–5, p � 2.1 ×
10–5 and p � 9.5 × 10–5 respectively). No statistical differences

are observed for extensors activity during post-hoc treatments
even though the ANOVA reported a slightly significant main
effect (F3,54 � 3.73, p � 0.046, η2 � 0.17. This result suggests that
differences might exist. Nevertheless, these differences might be
due to intra-individual differences during the experimentation
as the “transparent” block was always the first block. As
expected, WS reduces flexors activity while maintaining static
positions across the whole movement range and mostly leaves
extensors activity unchanged (in agreement with the fact that
these muscles are not critical to counteract gravitational loads in
this posture).

The second step of the analysis was to quantify the dynamic
effects of the three WS laws in the sagittal plane. Therefore, the
normalized peak of muscular activity of the initial burst of the
agonist muscle is a relevant index as it is linked to the effort
planned by the participants. The results obtained for upward and
downward movements are illustrated in Figure 11.

These mean results demonstrate a decrease in flexors activity
to initiate upward movements with the WS control laws, which is
coherent with the expected impact of WS control laws. The
results also demonstrate an increase in extensor activity to
initiate downward movements (which is also coherent with the
theoretical effect of WS which prevents participants from taking
advantage of weight to move downward). These findings are
confirmed by the results of a repeated measures ANOVA that
shows a significant difference in flexor activity between

FIGURE 10 | RMS of EMG signals during static position maintenance at
the three targets.
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conditions (F3 � 39.82, p � 3.52 × 10–8, η2 � 0.69). Post-hoc
analyses report significant differences between the TR and WS
conditions for flexors during upwardmovements (p � 1.01 × 10–7,
p � 4.49 × 10–5 and p � 4.99 × 10–8 for BC, FFTF and FFCM
respectively). Another repeated measures ANOVA confirms a
significant difference in extensors activity between conditions (F3
� 41.52, p � 4.73 × 10–14, η2 � 0.70). Post-hoc analyses report
significant differences between the TR and WS conditions for
extensors during downwards movements (p � 5.44 × 10–7, p �
3.25 × 10–9 and p � 1.46 × 10–5 for BC, FFTF and FFCM
respectively). No statistical differences are observed between
the WS control laws in terms of peak activity for both flexors
during upward movements, and extensors during downward
movements. As expected WS reduces significantly the activity
of flexors during upward movements but increases the activity of
extensors activity during downward movements.

4 DISCUSSION

4.1 Weight Model
The present study introduced a new weight model for WS
considering JM between the participant and the exoskeleton.
These misalignments have proven to be an important factor to
correctly describe the weight of a human segment from the
robot’s viewpoint. Even though certain exoskeletons can be
adjusted to the user to minimize JM (Kong and Jeon, 2006;
Hwang and Jeon, 2015), they cannot be completely canceled
(Jarrasse and Morel, 2012) and, therefore, should not be ignored.

4.2 Control Laws
The present study tested different control strategies to implement
an accurate active WS while moving into the sagittal plane where
gravitational torques vary. Our results showed the effectiveness of
WS both in static and dynamic situations, although we noticed
opposite effects on flexors and extensors at movement initiation,
as expected (Gaveau et al., 2019). Other studies have focused on

the influence of WS on EMG activity and showed an increase in
the number of muscular synergies by looking at ensemble EMG
patterns (F. Beer et al., 2007; Prange et al., 2009a; Prange et al.,
2009b). Here we obtained clear improvements in the quality of
WS in terms of tracking performance for laws including a
feedforward term, although the impact on human muscle
activity was only visible in statics in our data. Other studies
had already described a weight compensation strategy based on a
feedforward model-based control (Just et al., 2017; Just et al.,
2020). Nevertheless, the performance of this control was not
quantified in those works, and the present study suggests that
classical approaches might not be sufficient to achieve an accurate
WS. As a consequence, feedforward terms learned from error
measurements during experiments can improve the accuracy of
the impedance controller. These feedforward terms are currently
limited to linear models as they are simple to implement and to
track for the controller.

The main conclusion that can be drawn is that the use of
simple feedforward models based on error measurement is a
viable solution for the design of effectiveWS control laws. Indeed,
it has been shown that, even for control laws designed from
population-based data (and not personalized), the tracking errors
can be significantly reduced compared to classic PI control
methods. Furthermore, this design method can be
individualised easily if needed, which should lead to even
better performance. As it can be seen in Figures 3B, 9, the
defined linear models cannot capture, and therefore compensate,
errors due to inertial effects and time delay in the feedback
control law. The compensation of these errors could provide
an important improvement towards more homogeneous
active WS.

4.3 Effects on Human Movement
Previous studies provided evidence for an increase in work-
space size and overall motor performance in stroke patients with
WS (Prange et al., 2006; Ellis et al., 2009; Just et al., 2020) but
also for comparable movement performances in terms of
velocity and trajectory (Prange et al., 2009b,a). In the present
study, basic kinematic parameters were also comparable
between the TR condition and all the WS control laws,
thereby supporting a relative stability of the overall motion
kinematics. Therefore, although WS was quantitatively
improved using feedforward terms, its impact on human
movement data was not obvious. More accurate analyses
focusing on the adaptation process or on finer movement
parameters could allow to find more subtle effects. For
instance, the adaptation of specific movement characteristics
such as velocity profile asymmetries, which are well known to be
influenced by the ambient gravity field in the motor control
literature (Gentili et al., 2007; Gaveau et al., 2016; Bastide et al.,
2018), could vary for different control laws. Also, more
advanced analyses of ensemble muscle patterns could be
applied to detect more complex changes in muscle activities
(Chiovetto et al., 2013). The findings of the present study in
terms of EMG adaptation are coherent with previous studies
that described a decrease in elbow flexors activity when wearing
an exoskeleton in WS mode or using a passive device to

FIGURE 11 | Mean normalized peak of muscular activity of the agonist
muscles estimated during the movement acceleration phase. Flexors are
agonist for upward movements (depicted with positive values) and extensors
are agonist for downward movements (depicted with negative values).
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compensate for weight (F. Beer et al., 2007; Prange et al., 2009a;
Prange et al., 2009b; Coscia et al., 2014). The present study also
provides data on the increase in elbow extensor activity during
movements in a vertical plane when using WS. Future control
laws could implement a WS control that activates and
deactivates so that patients and workers could exploit gravity
to start a downward movement or to brake an upward
movement (Gaveau et al., 2019). The present results also
suggest that, reducing tracking errors had no significant
impact on static and dynamic EMG signals even though
variations are observed on average. This is probably due to
the variability and noise of EMG sensors that do not allow to
observe any clear difference with light interaction force
differences. Indeed, if interaction force measures are different
(which is the case) but kinematic measures are equivalent
(which is also the case), then the differences can only be
compensated by muscles activation.

5 CONCLUSION

In the present study, the importance of JM to accurately
compensate for the weight of human segments by means of an
active exoskeleton was demonstrated and a general model with an
associated identification procedure was given. Then, three WS
control laws, designed on the basis of experiments, were
introduced and tested. The adopted methodology led to
significant improvements in model tracking performances and
to a control law suitable for the whole tested population. This
methodology may thus be suitable to design a fully personalized
WS control law for certain rehabilitation or industrial
applications. The effects on human movements are
comparable to those obtained in previous studies.
Furthermore, the measurements of muscular activities suggest
that an adaptive WS, which activates only when it helps to reduce
muscular effort of antigravity muscles, could be more suitable for
certain applications than a complete WS control mode.
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