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Chemokine receptors are the target of small peptide chemokines. They play various
important roles in physiological and pathological processes. CXCR7, later renamed
ACKR3, is a non-classical seven transmembrane-spanning receptor whose function
as a signaling or non-signaling scavenger/decoy receptor is currently under debate.
Even for cell signaling mechanisms, there has been inconsistency on whether CXCR7
couples to G-proteins or β-arrestins. Several reasons may contribute to this uncertainty
or controversy. In one hand, it has been neglected that CXCR7 has more than five natural
ligands and unfortunately, most of the prior research only studied SDF-1 (CXCL12)
and/or I-TAC (CXCL11); on the other hand, there are mounting evidence supporting
ligand and tissue bias for receptor signaling, but limited such information is available
for CXCR7. In this review we focus on summarizing the endogenous and exogenous
ligands of CXCR7, the main diseases related to CXCR7 and the biased signaling events
happening on CXCR7. These three aspects of CXCR7 pharmacologic properties may
explain why the contradicting opinions of whether CXCR7 is a signaling or non-signaling
receptor exist. Further, potential new direction and perspective for the study of CXCR7
biology and pharmacology are highlighted.
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INTRODUCTION

Chemokines, with molecular weights in the range of 8 to 12 kDa, consist of about 50 small
peptides in this superfamily (Rollins, 1997). These widely expressed chemoattractant cytokines
play an important role in regulating cell traffic processes (Bromley et al., 2008). Subsequently
their role is extended to other pathological and physiological conditions including angiogenesis,
hematopoiesis, atherosclerosis, and cancer (Romagnani et al., 2004). According to the conserved
cysteine residues from N-terminal, chemokine receptors can be classified into four subfamilies:
(CXC, CC, CX3C, and C). Furthermore, the conserved ELR-motif is shared by some members
of CXC-chemokines which exert angiogenic effects while those lacking ELR-motif are angiostatic
(Strieter et al., 2005). Chemokine receptors can also be classified based on their functions:
homeostatic and inflammatory, or both. The constitutively expressed homeostatic chemokines
play a key role not only in development but also in maintenance of immune systems, whereas
inflammatory chemokines are induced when the relevant cells are stimulated (Vandercappellen
et al., 2008).

CXCR7 is a seven transmembrane-spanning receptor. It has been re-named to ACKR3, implying
it belongs to the atypical chemokine receptors (ACKRs) family. Most ACKRs lack functional
domains for Gi protein coupling and signaling (Bachelerie et al., 2014). The gene sequence of
CXCR7 remains highly conserved among humans, dogs, mice, and rats (Libert et al., 1990).
Originally it was cloned from a dog thyroid and named RDC-1 (Libert et al., 1989). In 2005,
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considering the similarity of its structure to CXC receptors, it was
renamed CXCR7 according to chemokine receptor nomenclature
(Balabanian et al., 2005; Graham et al., 2012). The gene of
human CXCR7 is located on the region of 2q37.3 whereas in
mice it is at 55.6 cM in the chromosome (Heesen et al., 1998).
Although CXCR7 encodes two exons, only the last exon is the
solely translated coding region (Broberg et al., 2002). Originally
CXCR7 was considered as a receptor for calcitonin gene-related
peptide (CGRP1) and vasoactive intestinal peptide (VIP) but
studies have not been able to prove this (Cook et al., 1992;
McLatchie et al., 1998). Unlike typical GPCRs, CXCR7 was shown
not coupled with Gi proteins. Most chemokine receptors share
a conserved motif DRYLAIV at the N-terminus of the second
intracellular loop which is critical for calcium signaling and Gi
protein coupling. The CXCR7 sequence is altered to DRYLSIT (A
to S and V to T) and this structural difference was considered
the reason on why CXCR7 is unable to induce cell signaling
transduction through Gi proteins (Graham et al., 2012). At this
point, how CXCR7 mediates activation of intracellular pathways
remains controversial. Some studies have indicated that CXCR7
is a scavenger or decoy receptor which does not couple to Gi-
proteins (Betterman and Harvey, 2014; Klein et al., 2014). Other
evidence suggests that CXCR7 physically associated with CXCR4,
leading to a change of CXCR4 signaling and cellular functions
(Levoye et al., 2009; Décaillot et al., 2011). In addition, a few
studies demonstrate that CXCR7 can independently induce cell
signaling via β-arrestin in certain cell lines (Rajagopal et al., 2010;
Chen et al., 2015). Interestingly, as of now, only in astrocytes, it
was shown that CXCR7 was able to couple with Gi/o proteins and
induced cell signaling (Odemis et al., 2012). None of these studies
is conclusive, however. This is particular true, because CXCR7
often are co-expressed with CXCR4 in the same cells and full
deletion of either receptor in vitro or in vivo are not warranted.
Thus, many of the cellular functions including cell migration and
proliferation ascribed to CXCR7 need to be further rigorously
confirmed.

This review focuses on discoveries related to endogenous and
exogenous ligands for CXCR7. Some of them exclusively bind to
CXCR7 while others have additional target receptors apart from
CXCR7. Although all these ligands can bind to CXCR7, they
can trigger totally different functional outcomes, with additional
complexity of tissue-biased signaling as well. These aspects of
consideration may explain why the contradicting opinions of
CXCR7 exist. We will also emphasize the main disease relevance
of CXCR7 and the therapeutic prospects CXCR7 may offer.

PHARMACOLOGICAL LIGANDS OF
CXCR7

Endogenous Ligands for CXCR7
SDF-1(CXCL12)
Stromal-cell derived factor (SDF-1), also known as CXCL12, is a
pleiotropic chemokine (Lataillade et al., 2004) widely expressed
among different organs including bone marrow, liver, heart,
kidney, thymus, stomach, lymph nodes, pituitary gland, and

brain (Juarez et al., 2004). Beyond these, CXCL12 may be
highly induced under certain pathological conditions including
ischemia, inflammation, hypoxia, cancer, and autoimmune
diseases (Li and Ransohoff, 2009; Karin, 2010). At first, CXCL12
was regarded as a soluble pre-B-cell growth stimulating factor
(PBSF) which facilitates progenitor proliferation of bone marrow
B cells (Nagasawa et al., 1996), and later on its interaction
with CXCR4 was discovered (Bleul et al., 1996). More recently,
research found that CXCL12 can take part in homing of
progenitor leukocytes into the bone marrow microenvironment
and adaptive immune processes (Ishii et al., 1999; Nanki and
Lipsky, 2000).

Initially, CXCR4 was thought to be the exclusive receptor
for CXCL12. Later on, CXCR7 was found to be a second
receptor for CXCL12 at a 10-fold higher binding affinity
compared to CXCR4 (Balabanian et al., 2005). The signaling
activity of CXCL12 is crucial in neural, vascular, and cardiac
development and craniofacial organogenesis. When binding to
CXCR4, CXCL12 changes its three-dimensional conformation
and initiates exchanging from GTP to GDP and dissociates
into α- and βγ-subunits, then activates several cell signaling
pathways (Bajetto et al., 2001). Through modulating adenylyl
cyclase activity, the αi subunits inhibit cAMP formation; and
the βγ subunits can activate PLC-β, which in turn hydrolyzes
PIP2 (phosphatidylinositol 4, 5-bisphosphate) facilitating the
production of DAG (diacylglycerol) and IP3 (inositol) 1, 4,
5 triphosphate. These secondary messengers lead to release
of Ca2+ from ER and activate protein kinase C. CXCL12
can activate PI3K (phosphoinositide 3-kinase)/Akt, IP3, and
MAPK (mitogen activated protein kinase) through CXCR4 to
regulate cell survival, chemotaxis, and proliferation. In addition,
CXCL12 also activates JNK and p38 to control cell survival
(Pan et al., 2013; Lin et al., 2014; Teng et al., 2016). In
our lab we found that CXCR7 was expressed in macrophage-
positive area of aortic atheroma of ApoE-null mice, but not
in healthy arteries. Consistent with this, we found that during
monocyte-to-macrophage differentiation process, CXCR7 was
dramatically induced both at mRNA and protein levels. This
CXCR7 induction prompted a CXCL12 signaling switch from
pro-survival pathways (AKT and ERK1/2) to pro-inflammatory
pathways (p38 and JNK), leading to increased macrophage
phagocytosis (Wanshu et al., 2013).

At one point CXCR7 was regarded as a scavenger or decoy
receptor for CXCL12. The original in vivo findings in zebrafish
indicate that CXCR7 functions primarily by sequestering
CXCL12, leading to a CXCL12 gradient formation (Boldajipour
et al., 2008). It was also shown in mice that CXCR7 appears
to function as a scavenger receptor for CXCL12 to limit B cells
in the splenic marginal zone (Wang et al., 2012). Consistent
with this, although binding with CXCR7, CXCL12 is not able
to mediate calcium mobilization (Zabel et al., 2009). Besides,
β-arrestin is more likely to be activated by CXCL12 (Rajagopal
et al., 2010). Sometimes CXCR4 and CXCR7 form heterodimers,
in which case the conformation of CXCR4/G-protein complexes
are changed by CXCR7 and thus its signaling capacity will be
blocked (Levoye et al., 2009). It should be noted, however, that
such a negative impact of CXCR7 on CXCR4 was only observed
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on cell lines with ectopically over-expressed receptors and it
remains to be determined whether the same is true on the native
CXCR4 and CXCR7 receptors. The formation of CXCR4-CXCR7
heterodimers can also enhance CXCL12-induced intracellular
Ca2+ mobilization and ERK1/2 activation (Sierro et al., 2007).
Through activation by CXCL12, the CXCR4–CXCR7 complex
increases cell signaling by recruiting β-arrestin, including the
ERK1/2 and p-38 pathways (Décaillot et al., 2011; Heinrich
et al., 2012). Apart from these, other studies found that CXCR7
can independently mediate CXCL12-induced AKT and ERK
activation via G-protein (Odemis et al., 2012) or by β-arrestin
(Gravel et al., 2010; Rajagopal et al., 2010).

I-TAC (CXCL11)
IFN-inducible T cell α-chemoattractant (I-TAC), also termed
CXCL11, is mainly expressed in the pancreas, peripheral blood
leukocytes, thymus, liver, spleen, and lung. To a lesser degree,
it is expressed in the prostate, placenta, and intestine (Cole
et al., 1998). Just like CXCL12, CXCL11, binds to two chemokine
receptors CXCR3 and CXCR7. Interferons have the ability to
induce CXCL11 production among several cell lines including
leukocytes, endothelial cells, and fibroblasts. The level of CXCL11
is up-regulated during an infection or cancer process. There
are two variants of CXCR3: CXCR3-A and CXCR3-B. When
binding with CXCR3-A or CXCR7, CXCL11 was found to
promote cell proliferative signaling. In contrast, it inhibits
the effect on cell growth while binding to CXCR3-B (Lasagni
et al., 2003). The role of CXCR3 in metastasis seems far more
complex because of the two isoforms CXCR3-A and CXCR3-B.
Similar to CXCR4, CXCR3-A activates Gi protein and regulates
its metastatic effects (Wu et al., 2012). In contrast, CXCR3-
B recruits Gs instead of Gi and inhibits metastatic signals.
Both high expression of CXCR3-A and downregulation of
inhibitory signals via CXCR3-B contribute to prostate cancer
cell migration and invasion. This implies that CXCL11 may
bind to CXCR3-A and activate its downstream cascades and
also suppress the expression level of CXCR3-B. Although no
papers clearly mentioned interactions between CXCR3-A/B and
CXCR7, such a possibility of a crosstalk between CXCR3-
A/B and CXCR7 in tumor migration and invasion process
remains to be determined. Similar to CXCL12, when binding
with CXCR7, CXCL11 is not able to induce calcium signaling
or activate ERK1/2 or AKT (Proost et al., 2007). However,
some studies have demonstrated that CXCL11 can promote
ERK and AKT phosphorylations in CXCR4+CXCR7+CXCR3−
cell lines (Tarnowski et al., 2010b). The contradictory results
may have been because of the different cell lines used (tissue
specific biased signaling). Furthermore, binding of CXCL11
to CXCR7 also recruits β-arrestin-2 which indicates that
subsequent signaling is regulated by β-arrestin. Further studies
of CXCL11 and CXCR7 interactions are needed to clarify these
issues.

MIF (Macrophage Inhibitory Factor)
Macrophage inhibitory factor acts as a pro-inflammatory
cytokine with chemokine-like functions which regulate innate
immunity. Originally, it was regarded as a T-cell derived factor

which plays a role in inhibiting macrophage migration (David,
1966). It is widely expressed by several cells including eosinophils
(Rossi et al., 1998), endothelial cells (Nishihira et al., 1998),
epithelial cells (Imamura et al., 1996), lymphocytes (Bacher
et al., 1996), and macrophages (Calandra, 1994). Under the
dysregulated conditions, MIF participates in a series of diseases
including rheumatoid arthritis, systemic lupus erythematosus,
sepsis, glomerulonephritis, atherosclerosis, and cancer (Morand
et al., 2006; Lang et al., 2015; Zwiech, 2015; Xiao et al., 2016).

Several receptors have been shown to mediate MIF functions.
The first is CD (cluster of differentiation) 74. CD74 is a single-
pass type II transmembrane protein which is also known as
the plasma membrane form of the major histocompatibility
class II invariant chain (Ii) (Leng et al., 2003). Binding to
CD74 mainly mediates survival and proliferative functions of
MIF on immune and tumor cells. With the help of co-receptor
CD44, MIF can induce signaling through CD74 to activate
tyrosine kinases and the PI3K/AKT pathway (Shi et al., 2006;
Lue et al., 2007). There is also evidence that MIF interacts
with CD74 and subsequently activates ERK1/2 pathways (Shi
et al., 2006). Apart from CD74, MIF is also identified as a
non-cognate ligand for two chemokine receptors, CXCR2 and
CXCR4, which regulate cell signaling through their cognate
ligands CXCL1/CXCL8 and CXCL12, respectively. CXCR2 and
CD74 can form heterodimers which is very important in MIF-
regulated atherogenic leukocyte recruitment (Bernhagen et al.,
2007). Besides, CXCR4/CD74 complexes are able to activate the
AKT pathway through interaction with MIF (Schwartz et al.,
2009). Interestingly, signaling pathways and pathogenic effects
which are regulated by MIF have been found recently to be
linked with CXCR7. Both MIF-CXCR4 and MIF-CXCR7 axis play
an important role in Rhabdomyosarcoma tumor cell migration.
Furthermore, in platelets, MIF is able to activate AKT signaling
pathway through CXCR7 to limit apoptosis (Tarnowski et al.,
2010a; Chatterjee et al., 2014). In addition to these, MIF is
also found to promote CXCR7 internalization, induce B-cell
chemotaxis, and ERK1/2 activation (Alampour-Rajabi et al.,
2015). These discoveries indicate that CXCR7 is a new receptor
for MIF.

ADM (Adrenomedullin)
As a peptide, ADM was first identified as a potent vasodilator
(Kitamura et al., 1993). ADM is a mitogenic hormone with 52
amino acids which plays a crucial role in lymphatic vascular and
cardiac development (Caron and Smithies, 2001; Dunworth et al.,
2008; Fritz-Six et al., 2008). It can activate cognate receptors
consisting of CLR (calcitonin receptor-like receptor) and RAMP
(receptor activity-modifying protein). There is also evidence that
CXCR7 is able to bind to ADM with a Kd of 1.9 × 10−7 M
(Kapas and Clark, 1995). A recent study proved that the
genetically overexpressed ADM ligand caused hypertrophic
heart development during embryogenesis in Admhi/hi mice
(Wetzel-Strong et al., 2014). In keeping with the crucial role
of ADM in promoting lymph-angiogenesis, it was discovered
that CXCR7−/− presented lymphatic vascular defects. Based on
their findings, the investigators suggested that CXCR7 acts as a
decoy receptor for ADM in controlling cardiac and lymphatic
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development (Klein et al., 2014), a new mechanism that may
explain the earlier findings by others in the field (Dunworth
et al., 2008; Fritz-Six et al., 2008; Karpinich et al., 2011; Hoopes
et al., 2012). Whether or not ADM can induce any signaling
transduction through CXCR7 needs to be determined by further
studies.

BAM22 (Bovine Adrenal Medulla 22)
As one of the cleaved products of proenkephalin A, BAM22
was initially isolated from the bovine adrenal medulla (Mizuno
et al., 1980; Dores et al., 1990). In mammals, BAM22 is widely
distributed in the central nervous system (Khachaturian and
Lewis, 1983; Pittius et al., 1984). BAM22 has the classical opioid
YGGFM motif and exerts both opioid and non-opioid actions
(Boersma et al., 1994). Through activating three major opioid
receptors, µ-, δ-, and κ- (Garzon et al., 1983; Quirion and Weiss,
1983; Lembo et al., 2002), BAM22 not only inhibits contractions
of ileum (Davis et al., 1990), vas deferens (Sánchez-Blázquez and
Garzón, 1985), and bladder (Dray et al., 1985), but also induces
nociceptive response (Höllt et al., 1982), which is sensitive to
naloxone, a medication used to block the effects of opioids.
It is quite important that as a unique endogenous peptide,
BAM22 exhibits a high affinity when binding to the human Mas
oncogene-related gene (Mrg) receptors, which are restricted to
small-diameter DRG neurons in humans and rodents (Dong
et al., 2001; Lembo et al., 2002). Research has proven that altered
BAM22 expression in DRG or spinal dorsal horn in complete
Freund’s adjuvant (CFA)-induced chronic pain and morphine
tolerance which suggested that BAM22 participates in the
nociceptive process (Cai et al., 2007; Chen et al., 2008). Recently
it was found that CXCR7 is a high-affinity receptor for BAM22
which promoted glucocorticoid secretion. BAM22 can recruit
both β-arrestin1 and β-arrestin2 at nanomolar concentrations
after binding with CXCR7. Consistent with previous studies
of CXCR7, BAM22 elicited neither a cyclic AMP (cAMP) nor
a calcium response in H295R cells and human 293T cells,
both of which express high levels of CXCR7. Intriguingly, the
interaction between BAM22 and CXCR7 is also insensitive to
naloxone (Ikeda et al., 2013). Further studies on possible cell
signaling transduction between BAM22 and CXCR7 need to be
explored.

vCCL2/vMIP-II
Viruses are grouped into different families such as herpesviruses,
retroviruses, and poxviruses. These pathogens encode
chemokine-binding proteins, chemokine receptors, and
chemokine analogs that hijack cellular chemokine receptors
(Alcami, 2003; Vischer et al., 2014). Human herpesvirus 8 (HHV-
8), also called Kaposi’s sarcoma-associated herpesvirus (KSHV),
is a good example. HHV-8 can lead to Kaposi’s sarcoma (KS)
which is closely related to immunodeficiency. It can also cause
two rare proliferative disorders-primary effusion lymphoma
(PEL) and multicentric Castleman disease (MCD).

vCCL2, also known as vMIP-II, is a viral CC chemokine
encoded by HHV-8. This chemokine was first discovered from
the HHV-8 genome which was isolated from a KS biopsy
(Nicholas et al., 1997). Three of the ORFs in HHV-8 were

predicted to encode the chemokine homologs including vCCL1
(vMIP-I), vCCL2 (vMIP-II), and vCCL3 (vMIP-III), respectively,
plus one CXC chemokine receptor homolog ORF74 (Moore et al.,
1996). vCCL2 yields in a mature format as a 70-aa chemokine
(7.9 kDa), and its 94-aa precursor endows a 23-aa N-terminal
signal peptide and a C-terminal arginine (Moore et al., 1996;
Kledal et al., 1997).

As an active chemokine, vCCL2 is able to bind with four
classes of receptors. They include CC family: CCR1, CCR2,
CCR3, CCR5, CCR8, CCR10; XC family: XCR1; CX3C family:
CX3CR1; and CXC family: CXCR4 (Lüttichau et al., 2007; Qin
et al., 2015; Szpakowska and Chevigné, 2015). In addition, it
has the ability to downregulate the activity of ORF74 (Geras-
Raaka et al., 1998). In most cases, vCCL2 is regarded as an
antagonist chemokine whereas it can also act as agonist toward
CCR3 and CCR8 (Szpakowska and Chevigné, 2015). One thing
noteworthy is that recently vCCL2 was found to act as a partial
agonist of CXCR7 which can induce β-arrestin recruitment to the
receptor. vCCL2 triggers MAP kinase and PI3K/AKT signaling
through other chemokine receptors which can be reduced by
CXCR7 expression (Szpakowska et al., 2016). This study provided
new insights into the interaction between viral chemokines and
ACKRs like CXCR7.

Exogenous/Synthetic Ligands for CXCR7
VUF11207 and VUF11403
From a styrene-amide scaffold, 24 derivatives were synthesized.
These CXCR7 ligands were evaluated with pKi values ranging
from 5.3 to 8.1. With the help of SAR studies, two key
compounds, VUF11207 and VUF11403, were found to have high
affinity with CXCR7. These two CXCR7 agonists are able to
recruit β-arrestin2 and reduce CXCR7 surface expression. Taken
together, these two ligands have great value in CXCR7 study
(Wijtmans et al., 2012).

AMD3100
AMD3100 is a small molecule which belongs to the bicyclam
family. Initially AMD3100 was found to have antiretroviral effects
and later on was shown to bind with CXCR4. Through interaction
with CXCR4, AMD3100 shows strong and selective inhibitory
effects of X4-tropic HIV replication in vitro (De Clercq, 2005).
In vivo, the anti-HIV effect of AMD3100 was proved in the
immunodeficiency (SCID)-Hu Thy/Liv mouse model (Datema
et al., 1996). Based on these properties, AMD3100 is widely used
as a tool for demonstrating the interaction between CXCL12
and CXCR4. As CXCR4 plays an important role during the
hematopoietic stem cell homing process, singly administrated
high doses of AMD3100 caused a huge release of these cells
into peripheral blood. Thus, AMD3100 and its derivatives
are undergoing testing for treatment of cancer (De Clercq,
2005).

Using a homodimeric receptor BRET sensor, researchers also
found AMD3100 to be a ligand for CXCR7. Different from
the antagonism effect on CXCR4, AMD3100 enhances CXCL12
binding with CXCR7. In addition, AMD3100 alone is able to
recruit β-arrestin to CXCR7 but inhibits recruiting to CXCR4.
Thus, AMD3100 is regarded as an agonist for CXCR7, albeit
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at relatively high concentrations (≥10 µM) (Kalatskaya et al.,
2009).

TC14012
TC14012 was modified from the parental entity TC140 which
is a peptidomimetic derived from horseshoe crab polyphemusin
and described as an inverse agonist of CXCR4 (Tamamura et al.,
1998; Trent et al., 2003). TC14012, as a serum-stable compound,
is able to recruit β-arrestin 2 to CXCR7 (Tamamura et al., 2001).
Compared to AMD3100, TC14012 showed much higher potency
with CXCR7 (EC50 of 350 nM for TC14012 vs. 140 µM for
AMD3100) and only one log unit weaker than the natural ligand
CXCL12 (35 nM) (Gravel et al., 2010). Significant similarities
were evident between the binding mode of TC14012 to CXCR7
and CVX15 to CXCR4 (Wu et al., 2010), which provided new
insight into the interaction between TC14012 and CXCR7. Thus,
TC14012 can be a helpful tool for studying the biology and
pharmacology of CXCR7; however, it should be noted that
TC14012 has antagonistic activity on CXCR4 as well, which
complicates data interpretation when it is used for mechanistic
study.

CCX771
CCX771 is a selective small molecule agonist and binds to
human CXCR7 with an IC50 of 4.1 nM. It was patented by
ChemoCentryx and has not been commercially available (Zabel
et al., 2009). It has been reported that CCX771 is highly selective
for CXCR7 and had no effect on CXCL12 binding to CXCR4
in NC-37 tumor cells (Zabel et al., 2009). At present, CCX771
is often used in researches for studying the role of CXCR7 in
different cell lines and animal models. For instance, CCX771
was able to inhibit tumor growth, lung metastasis, and tumor
angiogenesis in vivo. This helped researchers unveiling that
CXCL12-CXCR7 autocrine loop affects tumor endothelial cells
proangiogenic properties (Yamada et al., 2015). However, it
remains uncertain whether many of the observed effects of
CCX771 treatment is due to its agonistic activity on CXCR7
or its antagonistic effect on endogenous agonists such as
CXCL12.

Other Synthetic Ligands for CXCR7
Although no specific name was offered, Boehm et al recently
reported a macrocyclic peptide-peptoid hybrid molecule, which
binds to CXCR7 with high affinity (K i < 100 nM) and
measurable passive permeability (Papp > 5 × 10−6 cm/s). The
bioactive peptide 25 (K i = 9 nM) achieved oral bioavailability
of 18% in rats, which was commensurate with the observed
plasma clearance values upon intravenous administration
(Boehm et al., 2017). In addition, FC313, a cyclic pentapeptide
ligand for CXCR7, which is modified at the I-Pro position
with a bulky hydrophobic side chain, exhibited an improved
bioactivity toward CXCR7 (Sekiguchi et al., 2018). Most
recently, Ameti et al. (2018) reported a chimeric chemokine,
which selectively binds to CXCR7. This chimera is composed
of the N-terminus of CXCL11 and the main body and
C-terminus of CXCL12 and selectively interacts with CXCR7
with high affinity, while not interfering with binding of

CXCL11 and CXCL12 to their cognate receptors (Ameti
et al., 2018). We believe that all these newly generated
ligands will be valuable pharmacologic tools for the study of
CXCR7.

MAJOR DISEASE RELEVANCE FOR
CXCR7

Cancers
The expression levels of CXCL12 and its receptors were described
in several types of solid tumors and tumor cells, including
lung, prostate, breast, and pancreatic cancers (Koshiba et al.,
2000; Wang et al., 2008; Wu W. et al., 2015; Wu Y.-C. et al.,
2015). The particular microenvironment of tumors controls
CXCR7 expression. For instance, under hypoxic conditions,
the transcription level of CXCR7 in human microvascular
endothelial cells and the translation level of CXCR7 in glioma
cell lines were increased (Schutyser et al., 2007; Esencay
et al., 2013). Consistently, results showed that hypoxia-inducible
factor 1 alpha leads to up-regulated CXCR7 transcript in
mesenchymal stem cells (Liu et al., 2010). Tumor suppressor
genes are silenced when DNA is methylated, thus there is
evidence that the transcriptional level of CXCR7 is regulated
by a cancer 1 (HIC1) tumor suppressor (Van Rechem et al.,
2009). For example, in prostate cancer cells, HIC1 negatively
regulated the CXCR7 promoter (Zheng et al., 2013). The
expression level of CXCR7 is controlled by miRNA-430 in
zebrafish which suggests that the overexpression of CXCR7
is caused by a lack of miRNA-mediated regulation (Staton
et al., 2011). Consistent with this, downregulation of miRNA-
430 induced a high expression level of CXCR7 in a bladder
cancer cell line (Liu et al., 2013). In addition, the restoration
of an important tumor-suppressive miRNA named miRNA-
101, inhibited CXCR7 protein synthesis in normal hepatocyte-
derived cell lines, different hepatocellular carcinoma cell lines,
primary hepatocytes and xenograft mice models (Wang et al.,
2014). Furthermore, Liu et al. (2017) recently reported that
in oral tongue squamous cell carcinoma, CXC chemokine-7
produced an inhibitory effect in cell growth and migration,
which is mediated by epithelial to mesenchymal transition
(EMT) signaling pathway. This implicates CXCR7 as a promising
biomarker for chemokine receptor-based drug development (Liu
et al., 2017).

Many tumor cells have the ability to produce CXCL12, whose
extracellular bioavailability can be modulated by the cell-surface
expressed CXCR4 and CXCR7. This was proved in in vivo
imaging which showed that tumor cells expressing CXCR7
decreased the concentration of CXCL12 in the primary tumor
microenvironment (Luker et al., 2012). Monomeric or dimeric
forms of CXCL12 can make significant differences. Among
different types of cancers, the dimeric form of CXCL12 can
produce opposite effects. For instance, the dimeric CXCL12 is
more potent than monomeric CXCL12 in promoting β-arrestin
2 recruitment and chemoattractive activity in a model of
human breast cancer (Ray et al., 2012). In contrast, when
it moved to a human colon carcinoma cell line, CXCL12
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induced calcium mobilization, β-arrestin 2 recruitment, and
cell migration from monomeric form whereas it only weakly
induced chemotaxis and β-arrestin 2 recruitment (Drury
et al., 2011). The differences between monomeric and dimeric
CXCL12 forms are still not clear enough for unquestionable
conclusions.

Depending on different tumor types, CXCR7 may or may not
co-express with CXCR4. These two receptors can be distinctively
expressed in glioma and breast cancer (Hattermann et al., 2010;
Luker et al., 2012). In contrast, CXCR7 and CXCR4 often co-
express in human pancreatic cancer tissues (Heinrich et al.,
2012). The single expression of these two receptors on certain
cell populations restricts their ability for paracrine regulation.
By comparison, co-expression of these two receptors on the
same cell population made the direct interaction between CXCR4
and CXCR7 and controlled signaling pathways reciprocally
possible.

The CXCL12-mediated chemotactic function was changed
when both CXCR4 and CXCR7 expressed on the same
cell line. For instance, when CXCR7 was transfected into
breast cancer cell line MDA-MB-231, the CXCL12-induced
chemotactic function was increased (Décaillot et al., 2011).
Also, under the condition of upregulated CXCR4 expression,
CXCR7 enhanced cell chemotaxis in response to CXCL12 in
rat mammary adenocarcinoma cell line MTLn3 (Hernandez
et al., 2011). However, it was also shown that CXCR7 limited
chemotaxis effects through the interaction of CXCR4 and
CXCL12 in human neuroblastoma cell lines (Liberman et al.,
2012).

The key element for promoting angiogenesis and malignant
cell migration is the distribution of endothelial progenitor cells
(EPCs), which is controlled by trans-endothelial migration. Since
CXCR7 is highly expressed on EPCs, it determines the survival
effect of CXCL12 on EPCs. In addition, CXCR7 also influences
these CXCL12-regulated processes including trans-endothelial
migration, proliferation, adhesion, and tube formation of EPCs
(Dai et al., 2011). The increased expression of CXCR7 is
beneficial for angiogenesis in cancers which indicates the key
role of CXCR7 in controlling the angiogenic process. Under
hypoxic conditions, CXCL8 and VEGF were highly increased
in the tumor microenvironment, which amplifies CXCR7
expression through the positive feedback mechanism (Singh and
Lokeshwar, 2011). In breast cancer, CXCR7 activation promotes
primary tumor growth through increasing VEGF production and
microvessel density (Hernandez et al., 2011). When applied to
osteosarcoma and associated lung metastasis, the evidence that
CXCR7 is significantly expressed on tumor-associated vessels
confirmed its critical role in the metastatic process (Goguet-
Surmenian et al., 2013). In hepatocellular carcinoma, CXCR7
is able to enhance endothelial cell proliferation, migration,
and VEGF production which mediate angiogenesis and tumor
growth (Zheng et al., 2010). In a nut shell, CXCR7 seems
very important for angiogenesis and metastasis in tumor
cells.

Despite the accumulating evidence, whether the binding
of CXCL12 to CXCR7 can directly induce cell migration is
still in debate, so in non-small lung cancer cells, CXCR7

has not been conclusively implicated in CXCL12-regulated
behavior (Choi et al., 2014). However, the CXCL12 effects
regulated through CXCR4 for promoting metastasis can be
affected by CXCR7. Under certain conditions, CXCR7 has the
ability to impair CXCR4-regulated effects. In breast cancer
derived from an immune-deficient mouse model, CXCR7
prevented tumor cell invasion and spontaneous lung metastasis
formation (Hernandez et al., 2011). Also, the interaction between
CXCL12 and CXCR7 did influence CXCR4-mediated trans-
endothelial migration of human tumor cells (Zabel et al., 2009,
2011). On the contrary, the activation of CXCR7 was able to
promote metastasis in the breast cancer model (Miao et al.,
2007). The role of CXCR7 in tumor migration is still not
conclusive and further studies on its role with CXCR4 are
needed.

The discovery of CXCR7 has provided human beings a
viable target for anti-tumor and anti-metastatic drugs. Using the
model of mice engrafted with breast and lung cancer cell lines,
inhibiting CXCR7 with believed antagonists showed that CXCR7
is able to promote tumor growth (Miao et al., 2007). The main
purpose for developing CXCR7 antagonists is to decrease the
spreading of tumor cells, their metastasis, and angiogenesis. As an
example, CCX771, a synthetic CXCR7 antagonist, showed high
potential of inhibiting trans-endothelial migration as compared
to AMD3100, a CXCR4 antagonist. However, in a lymphoblastic
leukemia model, CCX771 also recruited β-arrestin to CXCR7
(Zabel et al., 2009). Thus, whether CCX771 should be considered
as an antagonist or agonist, needs to be further explored. This
is an important question when considering CXCR7 as a target
for cancer treatment. On the other hand, it was shown that
both CXCR4 and CXCR7 responded to CXCL12 to greatly
increase human lymphoma cells’ migration, indicating that
CXCR7 might be an efficient target for cancer treatment (Zabel
et al., 2011).

Since the expression of CXCR7 may be able to direct
hematopoietic stem cells (HSCs) to the niches which sustain
their migration capacity, CXCR7 is a potential regulatory target
for HSCs mobilization-inducing agent development. This is
supported by an in vitro study indicating that although CXCR7
is not an intrinsic signaling receptor for CXCL12 on CD34+
HSCs, its blocking can be useful for therapeutic interference
with CXCR4-mediated activation of integrins and cell adhesion
(Hartmann et al., 2008). In addition, a recent in vivo study
provided further evidence indicating that CXCR7 contributes
to homing of acute myeloid leukemia and normal CD34+
progenitor cells to the bone marrow and spleen of NOD/SCID
mice (Melo et al., 2018); however, further mechanistic study is
needed to fully understand the role of CXCR7 in HSCs. Although
the ability of CXCR7 to regulate the BMSC niche is still in
debate, studying CXCR7 antagonists is a hot spot among HSCs
mobilizers because this may provide patients with an alternative
treatment when other mobilization protocols fail (To et al.,
2011).

The structural model for CXCR7 is very helpful for elucidating
the pharmacology and potential therapeutic utility of CXCR7
antagonists. Unfortunately, there are no detailed structures
available at present and only a limited number of ligands for
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CXCR7 have been reported (Kalatskaya et al., 2009; Wijtmans
et al., 2012; Montpas et al., 2015). Therefore, approaches such
as virtual screening and GPCR homology modeling which
have been used in the previous studies of CXCR4 can be
promising tools for new CXCR7 ligand identification (Yoshikawa
et al., 2013). A number of pharmacological studies focus on
the small molecules of CXCR7 antagonists. These antagonists
endow reasonable affinities but researchers lack structural
information (Burns, 2006; Zabel et al., 2009; Hattermann et al.,
2010; Cruz-Orengo et al., 2011). The synthetic, modeling,
and pharmacological effect on small molecules targeting
CXCR7 was described in a recent report (Wijtmans et al.,
2012).

The molecules which can block CXCR4 and CXCR7
simultaneously, represent an ideal pharmacological approach
because both receptors are involved in cancer malignancy
and GBM angiogenesis (Duda et al., 2011). However, the
current available data governing the binding of these two
receptors seems rather complex. Some antagonists did not
bind to CXCR4 or CXCR7 exclusively, but bound to the
other one, too. And even when they didn’t act as antagonist,
partial agonist activity did show up. This happened on
AMD3100, a CXCR4 antagonist which may also act as a
CXCR7 partial agonist (Kalatskaya et al., 2009). In addition,
the expression levels of CXCR4 were down-regulated through
CXCR7 agonists which selectively activated β-arrestin (Uto-
Konomi et al., 2013). These complex biological responses may
be due to cell type specific biased signaling. For GBM, CXCR4
was mainly expressed in CSCs whereas CXCR7 is mainly
distributed in differentiated cells and endothelia (Hattermann
et al., 2010; Gatti et al., 2013). In other situations these two
receptors are often co-expressed and could potentially form
heterodimers. Thus the study of ligands which can interact
with both CXCR4 and CXCR7 must be evaluated in specific
cell type while considering agonist/antagonist properties of
the molecule. Blocking both CXCR4 and CXCR7 through
influencing their shared ligands will help researchers better
understand the interaction mode between the ligands and
the CXCR4/CXCR7 receptors. Synthetic compounds derived
from the family of chalcones, have high affinity binding
with CXCL12 and can prevent CXCL12 from interacting
with CXCR4 and CXCR7. Such a process is able to inhibit
inflammatory responses in eosinophils (Hachet-Haas et al.,
2008). In addition, there is an RNA oligonucleotide named
NOX-A12 which can bind and neutralize CXCL12 with
high affinity (Liang et al., 2007). Because of the antitumor
activity, NOX-A12 is now clinically available for treatment of
leukemia and multiple myeloma. It is also noteworthy that,
in an in vivo model of GBM, NOX-A12 was effective in
inhibiting or delaying recurrences following irradiation (Liu
et al., 2014).

Cardiovascular Diseases
CXCR7 is expressed in the developing heart and associated
with defects in the cardiovascular system. Knocking out CXCR7
gene can lead to a phenotype of hypertrophy including
thickened pulmonary, aortic valves, and partially overridden

aortas (Sierro et al., 2007; Gerrits et al., 2008; Yu et al.,
2011). These abnormalities may have a relationship with
disturbed endothelial cell migration because those hypertrophic
defects were reproduced in endothelial cell specific CXCR7
knockout mice (Sierro et al., 2007). CXCR7 was regarded as a
scavenger receptor for CXCL12 in heart valves, so one proposed
hypothesis is that CXCR7 prevents the over-interaction between
CXCL12 and CXCR4 through sequestering CXCL12 during
heart development, which could lead to hyperplasia (Naumann
et al., 2010). However, at this point, we could not rule out
the possibility that CXCR7 may independently transduce cell
signaling in some vascular cells. On this aspect, CXCL12-CXCR4
axis is credited with controlling the migration and proliferation
of EPCs whereas CXCL12-CXCR7 mainly maintains the survival
of EPCs and promotes these cells adhering to endothelial cells
(Yan et al., 2012). It is also important to note that, CXCR7
can transduce cell signaling through β-arrestin to promote the
migration of vascular smooth muscle cells (Rajagopal et al.,
2010), strengthening the viewpoint of the importance of possible
biased signaling on CXCR7. The formation of a CXCR4–
CXCR7 heterodimer indicates that these two receptors may
have mutual functions during angiogenesis. Either deletion of
CXCR4 or CXCR7 leads to ventricular septum defects, showing
that these two receptors are potential new intervention targets
for studying certain cardiovascular diseases (Zou et al., 1998;
Sierro et al., 2007). Again, it should be noted that whether
the natural CXCR4 and CXCR7 receptors form heterodimers
needs to be further investigated, since such heterodimers having
enhanced responses to CXCL12 was observed only in HEK293
cells with overexpressed CXCR4 and CXCR7 (Sierro et al.,
2007).

The pivotal role of CXCL12 in the cardiovascular system
makes itself and its receptors a hotspot of cardiovascular disease
research. During the past few years, scientists focused on
the CXCL12-CXCR4 axis in myocardial infarction and heart
ischemia whereas very few studies mentioned the function of
CXCR7. Of the few studies available, one study discovered that
CXCL12-β protects cardiac cells via CXCR7 (Zhao et al., 2013)
and evidence implied that CXCR7 signaling is able to take part
in the regeneration process after myocardial infarction (Sierro
et al., 2007; Yan et al., 2012). In addition, it was found that
lack of endothelial CXCR7 impairs vascular homeostasis and
cardiac remodeling after myocardial infarction. This indicated
that CXCR7 might be a potential therapeutic target for certain
cardiovascular diseases, such as restenosis (Hao et al., 2017).
CXCR7 also produces beneficial effects on angiogenic function
of EPCs, which are mediated predominantly by a protein
kinase B/glycogen synthase kinase-3β/Fyn pathway via increased
activity of Nrf2 (Dai et al., 2017). Further, it seems that
CXCR7 expression is also critical for limiting endothelial-to-
mesenchymal transition and pulmonary fibrosis (Guan and
Zhou, 2017). Since we recently reported that during monocyte-
to-macrophage differentiation, CXCR7 is dramatically induced
and mediates CXCL12 signaling independent of CXCR4, which
leads to increased macrophage phagocytosis (Ma et al., 2013).
Furthermore, we reported that CXCR7 induction is suppressed
by atorvastatin treatment, leading to decreased macrophage
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migration in response to CXCL12 (Ma et al., 2014). Collectively,
these findings highlight that CXCR7 may be a new therapeutic
target for cardiovascular diseases, such as atherosclerosis.

CONCLUSION AND PERSPECTIVES

The axis of CXCL12-CXCR4 plays a very important role in
physiology and pathology, and the discovery of CXCR7 as a
new high affinity receptor for CXCL12 made this interaction
system much more sophisticated. Previous studies mainly
focused on the triangle relationship of CXCL12, CXCR4, and
CXCR7, while other ligands for CXCR7 have been ignored.
CXCR7 itself can play multiple roles with its endogenous and
exogenous ligands. It may just act as a rheostat for certain
ligands through scavenging them and not transducing any cell
signaling pathways. It may also act as a co-factor to dimerize
with other receptors in cell signaling transduction. In addition,
CXCR7 may independently induce cell signaling transduction,
either through G protein or β-arrestin, or other unknown
transducer, depending on the cell types or different stages
of cell differentiation. We are just discovering the tip of the
iceberg of the biased signaling network system for CXCR7 and

its ligands in various cell types. More interesting and vital
connections are emerging from study of the massive iceberg that
is CXCR7.
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