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Congenital hyperinsulinism (CHI) is a heterogenous and complex disorder in which

the unregulated insulin secretion from pancreatic beta-cells leads to hyperinsulinaemic

hypoglycaemia. The severity of hypoglycaemia varies depending on the underlying

molecular mechanism and genetic defects. The genetic and molecular causes of CHI

include defects in pivotal pathways regulating the secretion of insulin from the beta-cell.

Broadly these genetic defects leading to unregulated insulin secretion can be grouped

into four main categories. The first group consists of defects in the pancreatic KATP

channel genes (ABCC8 and KCNJ11). The second and third categories of conditions

are enzymatic defects (such as GDH, GCK, HADH) and defects in transcription factors

(for example HNF1α, HNF4α) leading to changes in nutrient flux into metabolic pathways

which converge on insulin secretion. Lastly, a large number of genetic syndromes are

now linked to hyperinsulinaemic hypoglycaemia. As the molecular and genetic basis of

CHI has expanded over the last few years, this review aims to provide an up-to-date

knowledge on the genetic causes of CHI.
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INTRODUCTION

Congenital hyperinsulinism (CHI) is a heterogeneous and complex biochemical disorder which
is characterized by the dysregulated release of insulin from pancreatic β-cell (1). In normal
physiological state, the secretion of insulin is tightly coupled to glucose metabolism within
the β-cell so that the insulin release is regulated to keep the plasma glucose concentration
around 3.5–5.5 mmol/L. However, in CHI the secretion of insulin becomes unrelated to glucose
metabolism, so that there is inappropriate insulin release for the plasma glucose level (2).

The genetic and molecular cause of CHI includes defects in key genes regulating insulin
secretion from the pancreatic β-cell. Molecular defects in previously described genes (ABCC8,
KCNJ11, GLUD1, GCK, HADH, SLC16A1, UCP2, HNF4A, HNF1A, HK1, PGM1, and PMM2) have
been reported (3). However, recent studies have linked the role of other genes (CACNA1D, FOXA2)
to hyperinsulinaemic hypoglycaemia (HH) but in some of these cases the underlying molecular
mechanisms are still not fully elucidated (Table 1). Understanding the molecular mechanisms of
CHI due to these genetic abnormalities has provided unique insight into the normal physiological
mechanisms which regulate the insulin release.
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Broadly, these genetic defects leading to unregulated insulin
secretion can be grouped into four main categories. The first
group consists of defects in genes encoding the pancreatic KATP

channels (ABCC8 and KCNJ11) and other channel/transporter
proteins (KCNQ1, CACNA1D, SLC16A1) (Figure 1). Pancreatic
KATP channels have a critical role in the regulation of insulin
release and defects in their encoding genes cause the most
prevalent and severe forms of CHI (4). The second and third
categories of conditions are enzymatic gene defects (GLUD1,
GCK, HADH, UCP2, HK1, PMM2, PGM1) and defects in genes
encoding the transcription factors (HNF1A, HNF4A, FOXA2)
leading to changes in nutrient flux into metabolic pathways
which converge on insulin secretion (5) (Figure 2). The β-
cell insulin release is coupled to the metabolic signals and so
any perturbation in these pathways will ultimately result in
inappropriate insulin secretion. Lastly, there are a large number
of syndromic conditions (like Beckwith-Weidemann syndrome)
which feature HH as a part of the syndrome while the underlying
molecular mechanism leading to unregulated insulin secretion
has yet to be clarified in most of the syndromes (6).

In this article, we review the state of the art knowledge on the
genetic and molecular basis of all the different types of CHI and
discuss a possible new classification of themolecular basis of CHI.

β-Cell Glucose Sensing and the Role of
KATP Channels in Insulin Release
The rise of plasma glucose levels after feeding triggers insulin
release from the β-cells. The glucose enters the β-cells via the
facilitated diffusion driven by the glucose transporter 2 (GLUT2),
where it undergoes glycolytic phosphorylation mediated by
the enzyme glucokinase (GCK, a hexokinase) and converts to
glucose-6-phosphate (G6P). Recently, it has been shown that
other hexokinases, particularly HK1, are also expressed in the
neonatal β-cells but the gene expression is downregulated after
birth during the maturation of the β-cells (7, 8).

GCK is a glucose sensor linking the extracellular
concentration of glucose and its metabolism in the β-cells
(9, 10). The rise of the plasma glucose leads to an enhanced
GCK activity producing energy rich compounds (ATP) and
results in an increase in the cytoplasmic ATP:ADP ratio. The
β-cell insulin release is mostly regulated by the ATP-sensitive
potassium (KATP) channel located in the membrane of the
pancreatic β-cells (11). These channels have a crucial role in the
glucose homeostasis as they link its metabolism to the membrane
electrical excitability with a consequent β-cells secretion of
insulin (12, 13).

The β-cell KATP channel is a large hetero-octamer with a 4:4
stoichiometry, composed of 4 pore-forming inwardly-rectifying
K+ channel subunits (Kir6.2) and 4 high-affinity regulatory
SUR1 subunits. The Kir6.2 subunit, a “weak” inward rectifier
(14), contains two putative transmembrane domains (TMD1 and
TMD2), bound by an extracellular loop (H5), and cytosolic -NH2
and -COOH terminal domains containing∼70 and∼220 amino
acid residues, respectively.

The Kir6.2 subunit of KATP channel affects the biophysical
characteristics of the channel complex such as K+ selectivity,

rectification, activation by acyl-CoAs and inhibition by ATP (11,
15). The SUR1 subunit provides the channels with a susceptibility
to the stimulatory effects of MgADP and confers on the channels
a responsiveness to pharmacological activators (diazoxide) and
inhibitiors (sulfonylureas) (16). It promotes ATP hydrolysis
without directly transporting the substrates and regulates the
Kir6.2 activity in the KATP channel complex.

Only fully-assembled channel complexes which are properly
transported to the surface of the cell membrane (trafficking)
can operate correctly (17). Hence, only octameric KATP channels
can be expressed on the plasma membrane surface due to the
masking of the endoplasmic reticulum (ER) retention signals
(RKR) exposed in partially-assembled channels (18).

The key regulators of KATP channels are the changing
concentrations of intracellular nucleotides. Adenine nucleotides
are capable of stimulatory interacting with Mg2+. However,
the non-hydrolytic ATP binding takes advantage over KATP

channels in the lack of Mg2+. The increased cytosolic ATP:ADP
ratio inhibits the KATP channel activity and reduces the
potassium ions efflux across the plasma membrane adjusting
its potential. Thus, the basal activity of the channels produce
a slow depolarization until a threshold membrane potential is
reached that increases the open probability of calcium channels.
This process changes the physiological conformation of the
potassium channels, which results in their closure, followed
by chronic plasma membrane depolarization and Ca2+ influx
due to the voltage-gated calcium channels activation (19). The
increased intracellular Ca2+ activates specific pathways, such as
protein kinases A and C, leading to impaired glucose sensing,
insulin release from the storage granules and its subsequent
secretion into the bloodstream (20, 21). In a similar way, when
glucose concentrations are low, the KATP channels open, causing
membrane hyperpolarization and subsequently inhibited release
of insulin (22).

CHI DUE TO DEFECTS IN CHANNEL AND
TRANSPORTER PROTEINS

Pancreatic β-Cell KATP Channel Defects
(ABCC8 and KCNJ11 Gene Mutations)
and CHI
Mutations in ABCC8 and KCNJ11 genes account for the main
genetic causes of CHI, characterized by defective pancreatic β-cell
KATP channel subunits (SUR1 and Kir6.2, respectively). Both
genes are mapped on the same chromosome (11p15.1), being
divided by a small part of DNA (4.5 kb) (16, 20, 23). The ABCC8
gene is a large gene spanning more than 100 kb of DNA, divided
in 39 exons (20). The KCNJ11 gene consists only 1 exon encoding
a protein (Kir6.2) with a molecular weight of about 43kDa (17).

ABCC8 or KCNJ11 gene mutations have been found
in ∼50% of CHI patients (24). Based on the mutation
data from the Human Gene Mutation Database (HGMD)
(www.hgmd.org, accessed February 2018), 448 homozygous,
compound heterozygous and heterozygous inactivating ABCC8
mutations (25–28) and around 66 KCNJ11 (26, 29) mutations
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TABLE 1 | Monogenic causes of CHI.

Gene Protein Function ChromosomeDiazoxide

responsive

Focal vs.

diffuse

Mode of inheritance Pathogenicity

CHI DUE TO DEFECTS IN CHANNEL AND TRANSPORTER PROTEINS

ABCC8

KCNJ11

SUR1

Kir6.2

KATP channel; regulation of channel gating 11p15.1 ±

No

No

Diffuse

Focal

Diffuse

Monoallelic dominant

Monoallelic recessive (Paternally

inherited)

Biallelic recessive

Yes

CACNA1D CACNA1D Encodes L-type voltage-gated calcium channels

that play a pivotal role in the regulation of insulin

secretion

3p21.1 Yes Diffuse Sporadic ±

SLC16A1 MCT1 Mediates the transport of lactate and pyruvate

across cell membranes

1p13.2 ± Diffuse Monoallelic dominant Yes

CHI DUE TO ABNORMALITIES IN METABOLIC PATHWAYS

GLUD 1 GDH Central role in nitrogen metabolism, catalyses the

oxidative deamination of 1-glutamate to

2-oxoglutarate

10q23.3 Yes Diffuse Monoallelic dominant Yes

GCK GCK Important regulatory role in glucose metabolism 7p15-p13 ± Diffuse Monoallelic dominant Yes

HADH HADH Catalyzes the reversible dehydrogenation of

3-hydroxyacyl-CoAs

4q22-q26 Yes Diffuse Biallelic recessive Yes

UCP2 UCP2 Control of pathway involved in dissipation of the

proton electrochemical gradient across the inner

mitochondrial membrane

11q13.4 Yes Diffuse Monoallelic dominant ±

HK1 HKI Catalyzes the first step in glucose metabolism,

using ATP for the phosphorylation of glucose to

glucose-6-phosphate

10q22.1 Yes Diffuse Monoallelic (somatic) dominant Yes

PGM1 PGM1 Catalyzes the transfer of phosphate between the 1

and 6 positions of glucose

1p31.3 No Diffuse Biallelic recessive Yes

PMM2 PMM2 Encodes phosphomannomutase, an enzyme

essential for the synthesis of GDP-mannose

16p13.2 Yes Diffuse Biallelic recessive Yes

CHI DUE TO DEFECTS IN TRANSCRIPTION FACTORS

HNF4A HNF4α Regulates genes largely involved in the hepatic

gluconeogenic program and lipid metabolism

20q13.12 Yes Diffuse Monoallelic dominant Yes

HNF1A HNF1α Binds to a sequence required for

hepatocyte-specific transcription of the genes for

the alpha and beta chains of fibrinogen and

alpha-1-antitrypsin

12q24.31 Yes Diffuse Monoallelic dominant Yes

FOXA2 HNF 3β Transcription factor required for notochord

formation during embryonic development involved in

endoderm-derived organ system

20p11.21 Yes Diffuse Sporadic Yes

SUR1, sulfonylurea receptor 1; Kir6.2, inwardly rectifying potassium channel 6.2; GDH, glutamate dehydrogenase; GCK, glucokinase; HADH, 3-hydroxyacyl-CoA dehydrogenase;

MCT1, monocarboxylate transporter 1; UCP2, uncoupling protein 2; HNF1A, hepatocyte nuclear factor 1A; HNF3β, hepatic nuclear factor 3β; HNF4A, hepatocyte nuclear factor 4A;

HK1, hexokinase 1; PGM1, phosphoglucomutase 1; PMM2, phosphomannomutase 2; CACNA1D, Calcium voltage-gated channel subunit α1 D; FOXA2, forkhead box protein A2.

have been reported, associated with differentially expressed
clinical symptoms.

Recessive and dominant ABCC8/KCNJ11 mutations may
influence the proper function of the KATP channels either
by disrupting their cell surface expression or by affecting the

MgADP stimulation of their activity. As a result, in both cases,
the pancreatic β-cell membrane will be continuously depolarized

with uncontrolled release of insulin despite severe hypoglycaemia

(15, 30). The first type of ABCC8/KCNJ11 mutations affecting
the channel membrane expression impairs the SUR 1 synthesis
or maturation, leading to proteins which do not reach the
plasma membrane. These mutations can also cause impaired
SUR1 trafficking. Since the Kir6.2 expression depends on the
surface co-expression of SUR1, in these cases the Kir6.2 surface
expression is also disturbed and it is missing from the membrane

(4). The second type of mutations produce non-functional KATP

channel complexes which are insensitive to the changingMgADP
concentrations and stay closed even when the glucose level drops
too low (4).

Recessive Inactivating Mutations (Homozygous or

Compound Heterozygous)
In ABCC8 and KCNJ11 genes generally cause the most severe
cases of CHI, which usually do not respond to diazoxide therapy
and often require a resection of the pancreas (31). However,
some compound heterozygous mutations may cause milder
hyperinsulinism which is responsive to diazoxide (32). The
molecular basis of these recessive mutations comprises of defects
in the biogenesis and turnover of KATP channels (33), their
abnormal exit from the ER and trafficking to the cytoplasmic
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FIGURE 1 | Channel and transporter proteins involved in the process of insulin secretion from pancreatic β-cells. ADP, adenosine diphosphate; ATP, adenosine

triphosphate; Ca2+, calcium ions; cAMP, cyclic adenosine monophosphate; G6P, glucose 6-phosphate; GLP1, glucagon like peptide 1; GLUT 2, glucose transporter

2; K+, potassium; Kir6.2, inward rectifier potassium channel 6.2; MCT1, monocarboxylate transporter 1; Pyr, pyruvate; SUR1, sulfonylurea receptor 1; TCA,

tricarboxylic acid.

membrane (34), and channel changes as a result of nucleotide
regulation and frequency of open-state (35).

Recessive ABCC8/KCNJ11 Mutations With Defects

in Channel Biogenesis and Turnover
A pulse labeling study has shown that both channel subunits
have long-lived species with a half-life of about 24 h, which is
in accordance with the idea for a slow assembling of the KATP

channel (33). The Kir6.2 turnover is biphasic when the subunit is
expressed individually, as about 60% having a half-life of 36min,
while the rest changes to species with a half-life of 26 h. Expressed
alone SUR1 is long-lived in the ER with a half-life of more than
25 h. Being co-expressed, both channel subunits associate rapidly
with an elimination of the rapid degradation of Kir6.2 (33).
After the termination of their assembly, the channels pass to the
Golgi apparatus and SURs change into the mature, completely
glycosylated form.

For example, the F1388del and W91R mutations in ABCC8
and KCNJ11 genes, respectively, which are related to the
development of a critical form of CHI in patients, change the

subunit turnover rate (33). The mutant subunits connect with
their relevant subunits but then dissociate and undergo a rapid
degradation, affecting the KATP channel biogenesis and turnover.
Homozygous patients have no functional KATP channels on the
pancreatic β-cell surface, while heterozygous carriers possess a
reduced complement of normal channels.

Recessive ABCC8/KCNJ11 Mutations With Defects

in Channel Trafficking
Channel trafficking requires the RKR signals, present in both
channel subunits, to be masked during their assembly. ABCC8
mutations (F1388del, L1544P) result in a defective trafficking as
they influence the exit of the subunits from the ER (36, 37).
Several KCNJ11 mutations (Y12X, H259R, E282K) have also
been described as causing a trafficking defect and truncated
non-functional proteins (33, 38, 39).

Recessive ABCC8/KCNJ11 Mutations With Defects

in Channel Regulation
Since the SUR1 protein operates as a conductance regulator
of Kir6.2, both channel subunits are susceptible to alterations
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FIGURE 2 | Metabolic pathways and transcription factors related to the development of CHI. ADP, adenosine diphosphate; ATP, adenosine triphosphate; αKG, alpha

ketoglutarate; Ca2+, calcium ions; ER, endoplasmic reticulum; G1P, gluscose-1-phosphate; G6P, glucose 6-phosphate; GABA, γ-aminobutyric acid; GAD, glutamate

decarboxylase enzyme; GDH, glutamate dehydrogenase; GLUT, glucose transporter; HADH, hydroxyacyl-CoA dehydrogenase; HNF1α, hepatocyte nuclear factor 1α;

HNF4α, hepatocyte nuclear factor 4α; K+, potassium; NH3, ammonia; PGM1, phosphoglucomutase 1; PMM2, phosphomannomutase 2; Pyr, pyruvate; TCA,

tricarboxylic acid; UCP2, mitochondrial uncoupling protein 2.

in adenosine and guanosine nucleotides. The KATP channel
regulation involves interactions of nucleotides at the subunits
with an ATP-provoked Kir6.2 inhibition, which is opposed
by the ADP-activation at SUR1. Some mutations in ABCC8
(T1139M, R1215Q) have been reported to affect the channel
conductance and lead to a loss of ADP-dependent gating, causing
the ATP-induced channel inhibition (40). The R1420C mutation
in ABCC8 gene, located in NBD2 of SUR1 subunit, also reduces
the channel affinity for ATP and ADP (41).

Dominant Inactivating ABCC8/KCNJ11 Mutations
Show normal KATP channel assembly and trafficking to the
plasma membrane (42). They are uncommon and typically lead

to a milder form of CHI presented at a later age, although the
phenotype may vary from asymptomatic to persistent HH (43).

Interestingly, in adult carriers dominant mutations can cause
dominantly inherited diabetes (44, 45). The possible mechanisms
for that have been imputed to the apoptosis of the β-cell (46)
mediated by the increased cell depolarization and subsequent
Ca2+ flow into the β-cell. However, the predisposition to diabetes
later in life related to dominant mutations is controversial.
Huopio et al. (45) have reported a development of impaired
glucose tolerance in 75% of the mothers during pregnancy while
Pinney et al. (42) have not seen such a positive trend toward
diabetes inmutation carriers. More recently, we reported a family
carrying a novel missense c.511C>T (p.L171F) variant in exon
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4 of ABCC8 which lead to adult onset diabetes in heterozygous
carriers, while a homozygous carrier developed HH at neonatal
period and diabetes later in life (47).

An important feature of the dominant inactivating
ABCC8/KCNJ11 mutations is the responsiveness of the
patients to diazoxide treatment compared to those with a
recessive condition (42, 44, 45, 48). However, dominant forms
unresponsive to medications have also been described (49).
For example, MacMullen et al. have reported patients with
medically unresponsive diffuse CHI caused by dominant ABCC8
mutations, where 15 of all 17 patients have need a near-total
pancreatectomy (50). These patients are born large for their
gestational age having a similar age at clinical presentation to
that of individuals with recessive mutations. The functional
analyses have shown severely impaired channel responses to
diazoxide and MgADP-activation; however, the channels have
normal trafficking to the membrane like mutations which result
in a dominant disease responsive to diazoxide therapy (50). It
has been hypothesized that the mutations change the nucleotide
hydrolysis rates affecting the diazoxide activity or they alter the
coupling of MgATP-hydrolysis to the activation of the channel.
It is believed that the MgATP-hydrolysis lead to desensitization
to the ATP inhibition, so diazoxide and MgADP stabilize the
desensitized condition of the KATP channel (51).

Most of the reported dominant medically-unresponsive
variants have been located in the NBDs of the SUR1 subunit,
including the same gene regions as many of the dominant
medically-responsive SUR1 mutations (50) as well as the regions
of many of the known recessive mutations (49). It has been
shown that the involvement of Walker A and B motifs of NBD1
seems to be restricted to dominant mutations unresponsive to
diazoxide treatment, whereas, the mutations affecting NBD2
are associated with both diazoxide-responsive and unresponsive
hyperinsulinism (51).

A dominant Kir6.2 missense mutation (F55L) causing CHI
has been reported to decrease KATP channels open probability
without having an influence on the channel expression (35).
The reduced channel activity is related to its low response
to membrane phosphoinositides/long-chain acyl-CoAs (41).
Recently, a novel phenomenon has been described in a transient
CHI patient, reporting the co-existance of heterozygous ABCC8
and KCNJ11 gene mutations (52).

The detection of a paternally inherited monoallelic KATP

channel mutation with a post-zygotic loss of the corresponding
maternal region on chromosome 11 usually cause focal
adenomatous hyperplasia accounting for 30–40% of the cases
with CHI (15, 25, 53, 54). The loss of heterozygosity leading
to paternal isodisomy makes the β-cells channel defects biallelic
in the abnormal foci, changing the channels and causing
abnormal secretion of insulin into the lesion (53). The subsequent
disproportion in the expression of several imprinted genes
involved in cell proliferation within the 11p15 region (decreased
expression of the maternal tumor suppressor genes CDKN1C
and H19 and expression of the paternal IGF2) results in focal
hyperplasia of the islet cells (55, 56).

Focal CHI due to paternally inherited monoallelic
ABCC8/KCNJ11 mutations is usually unresponsive to medical

treatment (57), although a diazoxide-responsive focal form
has recently been reported (58). In the medically unresponsive
children, genetic testing should be followed by 18F-DOPA
PET/CT scanning in order to determine the focal or diffuse
subtypes of hyperinsulinism prior to initiating the appropriate
treatment to cure the patient—targeted lesionectomy in focal
forms or near-total pancreatectomy in diffuse CHI (59). Figure 3
outlines the genetic causes and treatment approaches to different
histological subtypes of CHI.

There are studies showing that some individuals with
paternally inherited KATP mutations may respond to diazoxide
or resolve spontaneously (57, 60). They are likely to have
dominant acting CHI, exerting the effect of the heterozygous
ABCC8/KCNJ11 mutations by a dominant-negative mechanism
leading to diffuse CHI (27, 36, 60, 61). Possible mechanisms of
how heterozygous mutations can cause a diffuse disease could be
a post-zygotic mutation affecting the other allele (“second hit” in
the pancreas) or inability to identify a channel mutation inherited
from the mother due to localization in a non-coding region of the
genes (62).

A novel genetic mechanism of some atypical diffuse forms
of CHI has been described in an individual with a nonsense
heterozygous ABCC8mutation (Q54X) due to mosaic segmental
paternal isodisomy (63). The absence of focal disease in this case
has been explicated by the absence of uniparental disomy at the
11p15.5 region.

Mutations in KCNQ1 and HH
It has been reported that the pore-forming region of the α-
subunit of a voltage-gated potassium channel (Kv7.1) is encoded
by the KCNQ1 gene. The channel, located in the heart, inner
ear, stomach, colon and pancreatic β-cells, is crucial for ion
homeostasis in the tissues. The gene mutations are associated
with cardiac arrhythmias (i.e., the hereditary long QT syndrome
(LQTS), deafness and defects of the gastrointestinal system
(64). Recently, it has been reported the presence of HH in
individuals with LQTS caused by KCNQ1 mutations (65). These
patients experience increased release of insulin during an oral
glucose tolerance test with hypoglycaemic episodes following
the prolonged test. Although the Kv7.1 role in the glucose
metabolism is not fully ellucidated, data suggest that this channel
may regulate insulin secretion by controlling the process of
repolarization of plasma membrane.

Mutations in CACNA1D and HH
Calcium Voltage-Gated Channel Subunit Alpha1 D (CACNA1D)
encodes an L-type voltage-sensitive Ca2+ channel that affects the
regulation of insulin release from the β-cells (66, 67). Activating
germline mutations in CACNA1D gene have previously
been found in patients with primary hyperaldosteronism,
neuromuscular abnormalities, and transient diazoxide-
responsive hypoglycaemia (68). In a recent study the same
CACNA1D gene mutation has been shown in a patient with HH,
cardiac defects and severe hypotonia (69). This mutation causes
an activation of the L-type Ca2+ channel and leading the channel
remain open at a lower membrane potential, thereby results in
dysregulated insulin secretion (67, 68). Taking into consideration
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FIGURE 3 | Schematic presentation of the histological subtypes of CHI. In the diffuse CHI, there is a global hyperchromatic β-cell enlargement and hyperplasia. In the

focal subtype, β-cell hyperplasia is limited to a certain region of the pancreas with a superficial or deep localization. (A) Mode of inheritance and the genetic causes of

CHI in the diffuse and focal subtype, respectively; (B) Schematic illustration of diffuse, atypical and focal subtypes; (C) Management approaches to different forms

of CHI.

the role of these channels in the process of β-cell insulin release,
the heterozygous c.1208G>A (p.G403D) mutation detected in
present and previously published cases, suggested CACNA1D as
one of the candidate genes for the underlying molecular genetic
etiology of CHI. In addition, although the reported patient
was diazoxide-responsive, considering the insulin secretion
physiology from the β-cells and the role of Ca2+ influx from
the voltage gated Ca2+ channels, it was suggested that calcium
channel blockers would be a more effective option for the
medical management of these patients (69). However, the
underlying molecular mechanism leading to CHI is still not clear
and requires further investigations and more experiences on HH
patients with mutations of this gene.

Mutations in SLC16A1 Gene and CHI
The monocarboxylate transporter 1 (MCT1) catalyses the rapid
transport of monocarboxylates (pyruvate and lactate) into the
cells. It is encoded by the SLC16A1 genemapped on chromosome
1p13.2-p12. This gene consists of 5 exons and 4 introns,

spanning approximately 44 kb (70). Under normal physiological
conditions, there is a low MCT1 expression in the pancreatic
β-cells, with minimized intracellular concentrations of pyruvate
and lactate which do not increase the insulin release (67).
However, dominant activating mutations in the SLC16A1 gene
promoter cause an enhanced MCT1 expression in the pancreatic
islets, followed by an increased uptake of pyruvate and its
metabolism in the Krebs cycle, with a subsequently increased
production of ATP and insulin exocytosis (71).

The activating SLC16A1 mutations cause CHI known as
exercise-induced hyperinsulinism. The condition is characterized
by hypoglycaemic episodes which usually occur within 30–
45min. after strenuous activity, in response to the accumulation
of pyruvate and lactate, acting as insulin secretagogues.
Sometimes diazoxide therapymay not prevent hypoglycaemia, so
avoiding intense physical activity and carbohydrate intake during
or after the exercise may require as a part of the treatment (72).

Although previously reported mutations have been limited
to the SLC16A1 promoter region, recently the first intragenic
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heterozygous mutation (c.556C>G, p.L186V) has been described
in a child with CHI (73). This mutation has been found to be
“probably damaging” leading to gene overexpression or baseline
low expression of a mutant transport protein, followed by its
enhanced transport into the pancreatic cells with subsequent
increase in insulin release (73).

CHI DUE TO ABNORMALITIES IN
METABOLIC PATHWAYS

Other known genetic causes of CHI involved in β-cell
dysregulation and abnormal insulin secretion have been
identified. These involve defects in metabolic pathways
converging on insulin secretory mechanisms.

Mutations in GLUD1 Gene and CHI
(Hyperinsulinism/Hyperammonaemia
Syndrome)
The GLUD1 gene is mapped on chromosome 10q23.3. The
gene consists of 13 exons and encodes the homohexameric
enzyme glutamate dehydrogenase (GDH) (74), present in the
mitochondrial matrix and mainly expressed in the liver, kidneys,
brain and pancreas (75). GDH catalyses the reversible oxidation
of the amino acid L-glutamate to α-ketoglutarate (αKG) and
ammonia in the liver and kidney requiring NAD+ or NADP+

as a co-enzyme. In the pancreatic β-cell GDH catalyses the
synthesis of αKG, a substrate for the citric acid cycle and
causes an increased intracellular ATP:ADP ratio, activating the
KATP channel with subsequent cell depolarization and insulin
exocytosis (76, 77). GDH activity can be influenced by allosteric
effectors working as activators (ADP and leucine) or inhibitors
(GTP and ATP) (78).

Activating “de novo” or dominant missenseGLUD1mutations
decrease the enzyme sensitivity to the GTP allosteric inhibition
and upregulate its activity in the presence of amino acid leucine,
followed by increased insulin secretion (76). Interestingly, in a
mutant GDH mouse model carrying the H454Y mutation, in
addition to the loss of GTP inhibition on GDH activity, there is
also an inhibition of glucagon secretion which contributes to the
hypoglycaemic phenotype (79).

Activating GLUD1 mutations are the second most common
cause of CHI. They are identified mainly in the GTP allosteric
binding site (exons 11 and 12) (80). Mutations have also
been found in the catalytic site (exons 6 and 7), leading to a
regular enzyme activity but reduced sensitivity to GTP (81).
The exon 10 in the antenna-like region is the third domain
whereGLUD1mutations have been reported (82). The mutations
cause a hyperinsulinism/hyperammonaemia syndrome (HI/HA),
which is a protein/leucine-sensitive form of CHI (83, 84). It
is characterized by dysregulated insulin release and persistent
elevated production of ammonia (mainly in the kidney) (85).

The HI/HA syndrome, a milder form of CHI, usually presents
in late infancy and early childhood. It is characterized by
a normal birth-size, fasting or postprandial protein/leucine-
stimulated hypoglycaemia, with persistent but asymptomatic
hyperammonaemia (86, 87). The latter biochemical characteristic

(hyperammonaemia) is typical for the syndrome. The ammonia
levels are usually 3–5 times above the normal values but the
hyperammonaemia does not appear to cause symptoms of
ammonia toxicity such as lethargy, headache, vomiting, coma,
etc. However, some patients (mainly those with mutations
in exons 6 and 7) have episodes of epilepsy, suggesting
that the condition may have a direct effect on the brain
(86, 88). The suspected mechanisms for the pathogenesis
of generalized epilepsy, learning disorders and developmental
delay in HI/HA syndrome involve the influence of the
persistent hyperammonaemia, hypoglycaemic injury of the
brain and shift in the glutamate metabolism leading to
decreased synthesis of inhibitory neurotransmitter γ-amino-
butyric acid (GABA) in the brain due to GDH hyperactivity
(88). However, there is no confirmative data for the association
between ammonia levels and the risk for epilepsy or other
neurological sequelae in these patients. Furthermore, there are
individuals with GLUD1 mutations who have normal ammonia
concentrations, probably as a result of the mosaicism for the
GDH activity(86).

Recently, a study has reported the first homozygous activating
mutation of GLUD1 in a neonate who has presented with severe
hypoglycaemia, hyperammonaemia, and seizures soon after birth
(89). The mutation analysis has shown a novel frameshift
mutation (c.37delC) inherited from the asymptomatic mother
and a de novo activating mutation (p.S445L) near the GTP
binding site, leading to a more severe loss of the GTP inhibiting
effects on GDH (89).

Mutations in Glucokinase (GCK) Gene
and CHI
The glucokinase (GCK) gene is mapped on chromosome 7 and
contains 12 exons encoding for a monomeric protein with
a molecular weight of about 52 kDa. The gene has tissue
specific promoters, responsible for the transcription initiation
in a mutually exclusive manner in distinct tissues such as the
pancreas, liver, and the brain (90).

The GCK is a hexokinase isoenzyme, that has a substantial role
in the carbohydrate metabolism by acting as a glucosensor for the
β-cells, regulating glucose-induced insulin release. It mediates the
phosphorylation of glucose molecules on carbon 6 to produce
G6P, which is the first step in glycolysis (91). GCK activity
has a crucial role in coupling plasma glucose levels to insulin
release due to its biochemical characteristics such as a low affinity
for glucose, lacking inhibition by G6P and a cooperativity with
respect to glucose (92).

Heterozygous GCK activating mutations cause an increased
glucose affinity of the enzyme leading to hyperinsulinism. So
far, 15 activating mutations associated with HH have been
reported, the majority of which group at the allosteric activator
domain of the enzyme (91, 93, 94). The latter is the site
where small-molecule activators bind, converting the GCK
enzyme from its closed (active) to an open inactive state,
including three intermediate stages (95). Natural ligands and
activating mutations delay the changes in the shape of the GCK
macromolecule when passing through the intermediate stages,
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suggesting the pivotal role of the allosteric domain in regulating
the enzyme activity (96, 97).

Patients presenting with GCK-CHI have a wide spectrum of
clinical presentations with a varying severity of the symptoms.
Children usually have a family history of hypoglycaemia and
age at clinical diagnosis ranging from birth to adulthood (98–
101). Although most of the reported GCK mutations lead to
CHI responsive to diazoxide therapy (98, 99), some patients may
needmore aggressive treatment to control hypoglycaemia such as
octreotide administration or surgery (100, 102). For example, the
Y214C mutation in the putative allosteric activator site has been
found in a patient with medically-unresponsive CHI (103).

Mutations in HADH Gene and CHI
The oxidation of fatty acids is an essential process that generates
ketone bodies serving as alternative metabolic substrates, used
in the state of prolonged fasting. The enzyme L-3-hydroxyacyl-
CoA-dehydrogenase (HADH) is a mitochondrial oxidoreductase
that catalyses the third step of fatty acid β-oxidation, converting
the 3-hydroxyacyl–CoA to 3-ketoacyl-CoA. The coding HADH
gene is mapped on chromosome 4q22-26 and comprises 8 exons
spanning approximately 49 kb (104). Its expression in the β-cells
is controlled by different transcription factors, pivotal for the
correct cellular differentiation and function (105).

Recessive inactivating HADH gene mutations have been
described in CHI patients leading to a reduction in the enzyme
levels (106–108). The HADH deficiency results in a loss of
its inhibitory effect on GDH, causing a GDH overstimulation,
followed by an increased intracellular ATP and enhanced
secretion of insulin (109). This GDH activation is restricted
mainly to the pancreatic islets and does not lead to elevated
ammonia levels compared to the cases with HI/HA syndrome.
Therefore, HADH mutations cause a protein/leucine-sensitive
CHI due to the close link between the oxidation of fatty acids,
amino acid metabolism and insulin release (110).

Patients may have heterogeneous clinical presentations which
vary between mild late-onset fasting or protein/leucine-sensitive
hypoglycaemia and severe hypoglycaemia soon after birth
(106, 108, 111). Some affected individuals may also have
abnormally raised metabolites of acylcarnitine such as plasma
3-hydroxybutyrylcarnitine and urinary 3-hydroxyglutaric acid,
with no signs of liver or cardiac dysfunction (107, 110). Most
children respond to diazoxide therapy, and genetic testing is
suggested when patients are from consanguineous families and
negative for KATP channel mutations (112).

Mutations in the Mitochondrial UCP2 Gene
and CHI
The uncoupling protein 2 (UCP2) belongs to an inner
mitochondrial anion-carrier family and is encoded by the UCP2
gene. It is widely expressed in many tissues, including the
pancreas (113, 114). UCP2 facilitates the transfer of protons
across the inner membrane of mitochondria, thereby separates
the mitochondrial oxidative phosphorylation from the synthesis
of ATP. Since the increased intracellular ATP synthesis is the
key stimulator for sensing glucose and insulin release from the
pancreatic islets, the expression of UCP2 decreases the ATP

synthesis and negatively regulates the glucose-induced release of
insulin (114–116). Furthermore, it has been reported that the
UCP2 overexpression in isolated rat β-cells downregulates the
ATP synthesis and inhibits the glucose-mediatied secretion of
insulin, while in UCP2 knockdown models glucose mediated
insulin secretion has shown to be enhanced (117–119). Therefore,
inactivating heterozygous mutations of this gene would enhance
the glucose oxidation and increase intracellular ATP synthesis
leading to inappropriate insulin secretion (114, 118).

CHI due to UCP2 mutations can present with a variable
clinical phenotype ranging from transient CHI to prolonged
diazoxide-responsive HH (114, 120, 121). In one study UCP2
variants were found in 2.4% of 211 diazoxide-responsive CHI
patients (121). However, in a more recent study, no protein
truncated variants have been detected in the UCP2 gene
among 206 diazoxide-responsive CHI patients (122). The only
variant detected was considered to be a common polymorphism
suggesting the necessity of further investigations of theUCP2 role
in CHI.

Somatic Overexpression of Hexokinase 1
(HK1) and CHI
Hexokinases are a group of enzymes that catalyse the initial
step in the glucose utilization, phosphorylating the hexoses
(including glucose) due to the enzyme ability to transfer a
phosphate group fromATP to the substrates. The phosphorylated
glucose (G6P) is the most important product which serves
as an intermediate substrate for glycolysis, glycogen synthesis
and pentose phosphate pathway. There are four hexokinase
isoenzymes (HKI-IV) encoded by different genes, which are
expressed at a different rate in various tissues (123). Of those, the
HK-IV or GCK, has a much lower affinity for glucose and it is
expressed only when an excessive amount of glucose is present.
However, HK-I has about 50-fold higher affinity for glucose
and at the low glucose levels, HK-I is the dominant isoenzyme
catalyzing the glucose phosphorylation. The HK1 gene, mapped
on chromosome 10q22.1, encodes the enzymeHK-I. This enzyme
predominatly serves G6P to the glycolytic pathway for energy
production. Its enzymatic activity is allosterically inhibited by the
end-product, G6P. The elevated G6P plays a signal transducing
role indicating the lack of requirement of G6P for energy
production, thus suppressing the expression of HK1. On the
other hand, the HK1 expression at low glucose levels is silenced
in the pancreatic β-cells preventing from inappropriate insulin
release (8).

Recently, in a large family with dominant CHI, the
responsible region has been mapped on chromosome 10,
containing 48 genes (124). The first cases from this family had
been reported by McQuarrie in 1954 as “idiopathic infantile
hypoglycaemia” (120). Pinney et al. have investigated this
large four-generation Northern European family with multiplex
members with diazoxide-responsive hypoglycaemia and detected
three novel variants in the HK1 non-coding regions, suggesting
the possibility of an inhibition of the HK1 suppression in the β-
cells as a result of amutation (124). In an in-vitro study evaluating
the pancreatic specimens of five CHI patients the role of the
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HK1 overexpression has been shown in a group of β-cells (125).
In these patients, although the KATP channels were functional,
there was an inappropriate insulin release in the presence of
hypoglycaemia (125).

Mutations in Phosphoglucomutase 1
(PGM1) Gene and CHI
Phosphoglucomutases (PGM) are a group of enzymes that
catalyse the interconversion of G6P and G1P (126). There are
five different isoenzymes of PGM encoded by different genes.
The enzyme phosphoglucomutase-1 is encoded by the PGM1
gene, mapped on chromosome 1p31. It is a phosphotransferase
that catalyses the reversible phosphate transfer between positions
1- and 6- of the glucose molecule, thus being involved in
the glycogen synthesis, glycogen degradation and glycoprotein
synthesis (126). Mutations in PGM1 typically show a broad
range of clinical manifestations resembling glycogenosis (Type
XIV) as well as mixed-type congenital disorders of glycosylation
(CDG type1t) (127–130). Recently, Tegtmeyer et al. have
shown 19 patients from 16 families with a variety of clinical
features suggesting CDG and atypical isoelectric focusing
findings (128). Interestingly, the first clinical finding at birth
(in 16 of 19 patients) was a bifid uvvula, but later the
patients developed various manifestations including malignant
hyperthermia, hepatopathy, secondary hypogonadism, short
stature, hypoglycaemia, dilated cardiomyopathy and cardiac
arrest. These patients were found to have recessive inactivating
PGM1 mutations, which has previously demonstrated to be
related to the development of hypoglycaemia, similar to
glycogenoses (127, 128). The PGM1 mutations normally cause
fasting hyperketotic hypoglycaemia, but in some cases a
postprandial hypoketotic HH has been reported (131). It is
proposed that the PGM1 mutations cause HH due to the
decreased threshold for glucose-mediated insulin release from
the pancreatic cells (131). A later report (132) on two of the
patients from the publication by Tegtmeyer (128) has shown
more pronounced hypoglycosylation in childhood than in adults
with a total PGM1-mRNA level reduced to 0.25% of that of
normal controls. The study has also reported that hypoglycaemia
might occur in PGM1 deficient patients by starving and would be
exaggerated by strong exercise (132).

Mutations in Phosphomannomutase 2
(PMM2) Gene and CHI
The enzyme phosphomannomutase 2 (PMM2) is involved in the
N-glycosylation of proteins leading to glycopreotein synthesis.
In the process of N-glycosylation large carbohydrate molecules
(glycans) are covalently-attached to the N-terminal of the
proteins (133). Although, the N-glycosylation does not change
the conformation of protein structures, it reduces their dynamic
fluctuation, leading to an enhanced protein stability (133).
The PMM 2 enzyme is encoded by the PMM2 gene, mapped
on chromosome 16p13.2. The enzyme is a phosphotransferase
catalyzing the interconversion of mannose-6-phosphate to
mannose-1-phosphate which constitutes one of the early steps
of the glycosylation process. Homozygous recessive mutations

of PMM2 are responsible for a variety of symptoms related to
many organ systems, which include CDG type 1a (134, 135). The
severity of the disease is closely associated with the remaining
enzymatic activity, therefore, it is extremely variable ranging
from a lethal embryopathy to amild subclinical disease diagnosed
in adulthood (136, 137). HH has previously been reported as
a part of the wide-range manifestations of CDG type Ia (138).
Recently, in 17 children from 11 unrelated families, a recessively
inherited mutation (c.-167G>T) found in the PMM2 gene
promoter has been shown to result in a medically-responsive
form of hyperinsulinism, associated with congenital polycystic
kidney disease (139). This mutation changes the formation of
the tissue-specific chromatin loop with an organ-specific gene
expression which could explain the selective organ involvement
in this condition. The functional analysis of the mutation has
revealed dysregulated insulin secretion. Therefore, the PMM2
gene might take a part in regulating insulin release from the
pancreatic islets.

CHI DUE TO DEFECTS IN
TRANSCRIPTION FACTORS

Muations in HNF1A&4A and CHI
Transcription factors for nuclear hormone receptors (hepatocyte
nuclear factors 1α and 4α (HNF1α and HNF4α) are expressed
in the β-cells regulating the glucose-induced secretion of insulin
(140–142). These factors are encoded by theHNF1A andHNF4A
genes, respectively. Heterozygous inactivating variants of the
genes cause two distinct conditions—CHI in newborns and
maturity onset-diabetes (MODY type 1 and 3) in later life (143–
146). This type of CHI due to HNF1A/HNF4A gene mutations
is characterized with macrosomia and a clinical severity varying
form mild transient hypoglycaemia to severe HH responsive to
diazoxide therapy (25, 143, 147–149). In addition, a glycogenosis-
like phenotype, characterized with glycogen accumulation in
red blood cells, elevated liver enzymes and increased hepatic
echogenicity on ultrasound examination, has been reported in
CHI due to HNF4A gene mutations (150, 151). Although CHI
due to HNF1A and HNF4A mutations is rare, in some series of
diazoxide-responsive HH, these mutations have been shown as
one of the most common genetic etiology (149, 152). The exact
mechanisms by which the mutations in HNF4A and HNF1A
could cause CHI are yet to be elucidated.

Mutations in FOXA2 and CHI
The forkhead box A2 transcription factor (FOXA2), also
known as hepatocyte nuclear factor 3β (HNF3β), is encoded
by FOXA2 gene, localized on chromosome 20p11.21. It
is required for the embryogenesis and organogenesis of
endoderm-derived tissues including pancreas and forebrain
structures including pitutary gland (153–157). FOXA2 is a
major upstream regulator of Pdx1 which is a transcription
factor implicated in the pancreas development (155, 158).
In mouse models it has been demonstrated that foxa2
is necessary for the pancreatic α-cells differentiation and
tissue-specific foxa2 ablation leads to an imbalance in
pancreatic β/α-cell ratio, profound hypoglucagonemia,
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inappropriate hyperinsulinaemia and hypoglycaemia
(105, 155, 158, 159). FOXA2 also regulates the expression
of KCNJ11 and ABCC8 genes and has a binding site on
the intronic region of HADH gene playing a role in its
transactivation (154, 157, 159).

The effects of FOXA2 mutations on the pituitary function
have previously been shown in cases with deletions of the
proximal 20p11 region (160, 161). The first mutation of
FOXA2 causing both pituitary dysfunction and CHI was
recently reported in a case with congenital hypopituitarism,
HH and endoderm-derived organ abnormalities (154). In
this report a “de novo” heterozygous c.505T>C (p.S169P)
variant was detected in the FOXA2 DNA-binding domain.
The patient had a specific clinical presentation including
hypoplasia of the anterior pituitary, absent neurohypophysis with
interrupted pitutary stalk and hypoplasia of corpus collosum,
associated with multiple pituitary hormone deficiency, persistent
HH, craniofacial dysmorphism and abnormalities of organs
of endodermal origin, e.g., liver, lungs and gastrointestinal

tract (154). The authors have shown increased pancreatic
hFOXA2 expression in the immunohistochemical analysis of
human embryos and lower transcriptional activity of hFOXA2-
p.S169P variant in the functional analysis. Soon after the
first report, another research group has reported a “de novo”
heterozygous p.R257L mutation in an infant with congenital
hypopituitarism, HH and atypical features including coarse face,
increased distance between the orbits, low-set ears, and widely-
spaced nipples (157). The functional analysis of this mutation
demonstrated decreased SHH, Gli2 and NKX2.2 gene expression
suggesting the importance of FOXA2mutation for the abnormal
findings of the pituitary gland. Besides, the partially reduced
expression of ABCC8, KCNJ11, andHADH has been suggested as
an evidence for the mutation effects on the developement of HH
in this case. Although, the molecular basis of the HH observed in
the patients has not been fully elucidated, results from previously
published mouse models and latest case reports suggest that
mutation in FOXA2 could potentially be a monogenic cause
of CHI.

TABLE 2 | Syndromic and metabolic causes of hyperinsulinaemic hypoglycaemia.

Gene Chromosome Mode of inheritance

PRENATAL AND POSTNATAL OVERGROWTH SYNDROMES

Beckwith-Wiedemann syndrome (162) IGF2/H19/

CDKN1C/

KCNQ1OT1

11p15.5-15.4 Autosomal dominant

Sporadic

Paternal uniparental disomy (patUPD)

Sotos syndrome (163) NSD1

NFIX

5q35.2-35.3

19p13.3

Autosomal dominant

Sporadic

Simpson-Golabi-Behmel syndrome (164) GPC3 Xq26 X-linked

Perlman syndrome (165) DIS3L2 2q37 Autosomal recessive

CHROMOSOMAL ABNORMALITY SYNDROMES

Turner syndrome (mosaic X loss) (166) KDM6A Xp11.2 Sporadic

Trisomy 13 (167) CDX2, IPF1 Trisomy 13 Sporadic

POSTNATAL GROWTH FAILURE SYNDROMES

Kabuki syndrome (168) KMT2D

KDM6A

12q13.12

Xp11.3

Autosomal recessive

Sporadic

Costello syndrome (169) HRAS 11p15.5 Autosomal dominant

Sporadic

CONTIGUOUS GENE DELETION AFFECTING THE ABCC8 GENE

Usher syndrome (170) USH1C 11p15.1 Autosomal recessive

SYNDROMES LEADING TO ABNORMALITIES IN CALCIUM HOMOEOSTASIS

Timothy syndrome (171) CACNA1C 3p21.1 Autosomal dominant

Sporadic

INSULIN RECEPTOR MUTATION

Insulin resistance syndrome (Donohue syndrome)

(165)

INSR 19p13.2 Autosomal recessive

CONGENITAL DISORDERS OF GLYCOSYLATION (CDG)

CDG Type Ia (138) PMM2 16p13.2-13.3 Autosomal recessive

CDG Type Ib (172) PMI 15q22-24 Autosomal recessive

CDG Type Id (173) hALG3 3q27 Autosomal recessive

OTHER CAUSES

Congenital central hypoventilation syndrome (174) PHOX2B 4p12 Autosomal dominant

Sporadic

Tyrosinemia type 1(175) FAH 15q25.1 Autosomal recessive

Poland syndrome (176) UCMA 10p13-14 Sporadic

CHARGE syndrome (177) CHD7 8q12 Autosomal dominant
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HYPERINSULINAEMIC HYPOGLYCAEMIA
DUE TO SYNDROMES

HH has been described in several different syndromes (6)
(Table 2). In most cases the underlying biochemical and
molecular basis of the HH is unknown. Beckwith-Wiedemann
syndrome (BWS), the most frequent syndromic condition
associated with HH, is an overgrowth disorder characterized
with macrosomia, macroglossia, neonatal hypoglycaemia,
hemi-hypertrophy, omphalocele. BWS patients are also prone
to the development of embryonal tumors (Wilm’s tumor,
hepatoblastoma, neuroblastoma, rhabdomyosarcoma). BWS is
linked to genetic and/or epigenetic abnormalities that alter the
expression of imprinted genes on chromosome 11p15.5 (178).
HH develops in approximately 50% of patients with BWS and
in most cases it is transient. However, in some cases treatment
with diazoxide will be required or a near total pancreatectomy
(179). Although the molecular basis of HH due to BWS is not
known, patients with BWS due to mosaic paternal isodisomy
for chromosome 11 have the most severe hypoglycaemia (180).
In one patient with BWS due to paternal uniparental disomy
for this chromosome, electrophysiological studies of β-cells
received at the time of surgery showed defects in pancreatic KATP

channels (162). HH also occurs in other genetic forms of BWS
but tends to be milder and shows marked clinical heterogeneity
even with the same genetic cause (181). In some BWS patients,
HH may be the main clinical presentation (182).

Kabuki syndrome is a rare genetic multisystem disorder
characterized by developmental delay, “peculiar” face with
elongated palpebral fissures, eversion of the lateral part of the
lower eyelids, dermatoglyphic abnormalities with persistent
fingertip pads, multiple congenital skeletal and visceral
anomalies. Most of the cases with Kabuki syndrome have been
associated with mutations in MLL2 and KDM6A genes. HH
has been reported in a few patients with Kabuki syndrome
(168, 183, 184). However, a group has recently identified 10
patients with the syndrome (5 with MLL2 and 5 with KDM6A
mutations) associated with HH. Following description of these
10 patients the authors have analyzed 100 HH patients with
unknown etiology and detected Kabuki syndrome in one of
those patients (1%) (185). They, therefore, have suggested that
Kabuki syndrome might account for the etiology of HH in more
patients. Nevertheless, the role/s of MLL2 and KDM6A in insulin
release and glucose physiology is/are not ellucidated.

Sotos syndrome is also an overgrowth disorder. More than
75% of the cases with Sotos syndrome are due to intragenic
mutations and deletions of the nuclear receptor binding SET-
Domain 1 (NSD1) which is located at chromosome 5q35.
Transient HH has been identified in several patients with Sotos
syndrome (163, 186). NSD1 is not known to be directly involved
in regulating insulin secretion but patients with Sotos syndrome
have alterations in the IGF-1 axis which could play a role in β-cell
hyperplasia (187).

Turner syndrome (partial or total monosomy X) leads to
short stature in females and is associated with impaired glucose
tolerance later in life. Until recently, only three patients had
been described with mild diazoxide-responsive HH (166, 188,
189), all being mosaic and having the ring X chromosome.

Therefore, the abnormal mosaic expression of unknown X-
chromosomal gene(s) in the β-cells was suggested leading to
HH. However, recently, Gibson et al. reported that patients with
Turner syndrome account for 10 out of 1,050 patients with
HH suggesting a frequency of 48 times more than expected
(190). The authors showed that a half of the girls with Turner
syndrome and HH were medically unresponsive, with 3 patients
requiring a partial or near-total pancreatectomy. Furthermore,
all patients with HH had at least one monosomic cell line
for the X–chromosome. In the same study the authors also
demonstrated increased cytosolic calcium and enhanced amino
acid-induced secretion of insulin in isolated pancreatic islets
from 1 case and mouse islets exposed to a KDM6A inhibitor.
They suggested that the KDM6A haploinsufficiency caused by
mosaic X chromosome monosomy may explain the HH in
Turner syndrome.

Timothy syndrome is a rare multi-system disorder
characterized by lethal arrhythmias, congenital heart defects,
syndactyly, immune deficiency, intermittent HH, intellectual
disability, autism and autistic spectrum disorders. It is due to
novel Ca(V)1.2 missense mutations (171). This is a calcium
channel protein and theoretically could be connected with the
regulation of the calcium homeostasis and secretion of insulin.
One patient with another calcium channel gene (CACNA1D)
mutation has been described with HH, hypotonia and congenital
heart defects (69).

Other syndromes associated with HH include Costello (169),
Trisomy 13 (167), central hypoventilation syndrome (174) and
recently in CHARGE syndrome (177) (Table 2).

CONCLUSION

CHI is a complex condition characterized by upregulated
β-cell insulin secretion leading to HH. Mutations in the
ABCC8/KCNJ11 genes of the KATP channel result in the
most severe forms of CHI. Abnormal variants in several
other genes with a particular importance in the regulation
of insulin release and several syndromic conditions may
cause milder forms of HH. The molecular cause of CHI is
determined in only half of the patients. The understanding
of novel molecular mechanisms of the dysregulated release
of insulin will provide novel insights into the pancreatic
β-cells function.
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