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The Spalt-like 4 transcription factor (SALL4) plays an
essential role in controlling the pluripotent property of em-
bryonic stem cells via binding to AT-rich regions of genomic
DNA, but structural details on this binding interaction have
not been fully characterized. Here, we present crystal structures
of the zinc finger cluster 4 (ZFC4) domain of SALL4
(SALL4ZFC4) bound with different dsDNAs containing a
conserved AT-rich motif. In the structures, two zinc fingers of
SALL4ZFC4 recognize an AATA tetranucleotide. We also solved
the DNA-bound structures of SALL3ZFC4 and SALL4ZFC1.
These structures illuminate a common preference for the
AATA tetranucleotide shared by ZFC4 of SALL1, SALL3, and
SALL4. Furthermore, our cell biology experiments demonstrate
that the DNA-binding activity is essential for SALL4 function
as DNA-binding defective mutants of mouse Sall4 failed to
repress aberrant gene expression in Sall4-/- mESCs. Thus,
these analyses provide new insights into the mechanisms of
action underlying SALL family proteins in controlling cell fate
via preferential targeting to AT-rich sites within genomic DNA
during cell differentiation.

Transcription factors (TFs) play essential roles in embryo
development through binding to the specific regions of
genomic DNA to direct different complexes in mediating
programmable gene transcription (1–3). The occupancy of
sequence-specific TFs is typically determined by the base
composition within a genomic DNA region (4–6). It has been
well known that unmodified CpG dinucleotide serves as
signaling motif to recruit epigenetic regulators containing
CXXC domain, a CpG-binding module (7–9). Although AT-
rich regions are also highly enriched in important regulatory
genomic DNA elements, including TATA box (10, 11),
whether they are also recognized by sequence-specific TFs and
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how they function in embryo development are largely un-
known (12, 13).

Very recently, two lines of work independently identified
Spalt-like transcription factor 4 (SALL4) as the AT-rich DNA-
binding protein via pull-down mass spectrometry screen and
protein binding microarray, respectively (14, 15). SALL4 be-
longs to the Spalt-like transcription factors (SALLs) family,
which includes SALL1-4 (16). Both SALL1 and SALL3 contain
four zinc finger clusters (ZFCs), termed as ZFC1-4, whereas
SALL2 and SALL4 contain three ZFCs and lack ZFC4 and
ZFC3, respectively (14). SALL4 is highly expressed in embry-
onic stem cells (ESCs) and several tumors but absent in most
adult tissues. Dysfunctional SALL4 pathway is associated with
severe human diseases, including Holt-Oram syndrome (17),
acro-renal-ocular syndrome (18), leukemogenesis, and other
cancers (19). SALL4 contains seven zinc fingers within its
three clusters and an additional single zinc finger near the
N-terminus (14). The ZFC4 is essential for SALL4 to recognize
AT-rich sequence to repress expression of a variety of genes,
and its mutation results in abnormal differentiation and em-
bryonic lethality (14, 15). All SALL proteins except SALL2
recognize AT-rich DNAs via ZFC4 (14, 15). Despite the crit-
ical role of SALL4ZFC4 in embryo development and its con-
servation in other SALL proteins, how it binds to AT-rich
DNAs and how the SALL4 occupancy at AT-rich regions in-
fluences gene expression remain elusive.

By using isothermal titration calorimetry (ITC)-binding as-
says, we ascertain that the ZFC4 of SALL3 and SALL4 prefer
AT-rich DNAs. By solving the structures of SALL3 and SALL4
ZFC4 bound with different AT-rich DNAs, we revealed that
the SALL3 and SALL4 ZFC4 recognize AT-rich DNAs
through the Gln-Ade residue base pairing and thymine-
mediated van der Waals interactions. In addition, we found
that SALL4ZFC1 also serves as a binder of AT-rich DNAs, albeit
with weaker binding affinity. Inspired by previous finding that
loss of Sall4 in ESCs causes aberrant neural gene expression
(20), we evaluated the functional relevance of DNA-binding
and found that DNA-binding deficient SALL4 mutant fails
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Structures of SALL4 bound with AT-rich DNAs
to repress aberrant expression of several genes, such as Irx3
and Irx5. Therefore, our study not only unveils how ZFC4 of
SALL proteins preferentially recognizes AT-rich DNAs but
also sheds light on the biological importance of their binding
to AT-rich DNA sequences in ESCs.
Results

ZFC4 of SALL4 and SALL3 selectively recognize AT-rich DNAs

To quantitatively study the binding activity of SALL4 to
DNAs with different base compositions, we cloned, expressed,
purified a fragment of human SALL4 spanning SALL4ZFC4

(residues 856–930) (Fig. 1A), and measured its binding affin-
ities towards different dsDNAs by using ITC. Consistent with
previous studies (14, 15), SALL4ZFC4 binds to different 12-mer
DNAs, containing AATATT with KDs in a range of 6.9 to
9.0 μM (Fig. 1, B and C and Table S1). In contrast, the binding
was abolished when central four (ATAT) or six (AATATT)
nucleotides were replaced by CG-rich nucleotides (Table S1).
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Figure 1. Structure of SALL4ZFC4 bound with the 12-mer dsDNA. A, doma
boundaries indicated. B, ITC-binding curves for SALL4ZFC4 binding to the 12-me
to the 12-mer dsDNA (50-GCCAATATTGGC-30). D, ITC-binding curves for SALL3Z

of SALL4ZFC4 with the 12-mer dsDNA (50-GGTAATATTTCC-30). The DNA is shown
Two zinc fingers of SALL4ZFC4, ZFC4N, and ZFC4C are shown in purple and sal
recognition are shown in sticks. F, electrostatic surface of SALL4ZFC4 bound with
as shown in (E). ITC, isothermal titration calorimetry; SALL, Spalt-like transcrip
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To understand whether other SALL family members possess
similar DNA-binding selectivity, we cloned, expressed, and
purified the ZFC4 domain of SALL3 (SALL3ZFC4) spanning aa
1102 to 1167 and examined its DNA-binding property by ITC.
Our binding analyses indicate that SALL3ZFC4 binds to the
AATATT-containing 12-mer DNA with a KD of 8.0 μM
(Fig. 1D), comparable to that of SALL4ZFC4 (KD = 6.9 μM).
Like SALL4ZFC4, SALL3ZFC4 displayed no binding affinity to-
wards CGCG- or CGCGCG-containing DNAs (Table S1).
Thus, we conclude that ZFC4 domains of SALL3 and SALL4
specifically recognize AT-rich DNAs judged by an in vitro
binding assay.

The structures of SALL4 with different AT-rich DNAs

To gain insight into the molecular mechanism underlying
AT-rich DNA recognition by SALL4ZFC4, we solved the crystal
structure of the SALL4ZFC4 with a 12-mer dsDNA (50-GGT
AATATTTCC-30) in a 2.45 Å resolution (Table S2). The
density maps of protein and the dsDNA are of high quality
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FC4 binding to the 12-mer dsDNA (50-GGTAATATTTCC-30). E, crystal structure
in gray cartoon except the central AATA base pair, which is shown in cyan.

mon ribbon, respectively. SALL4ZFC4 residues involved in base-specific DNA
the 12-mer dsDNA, with the DNA shown in the same orientation and color

tion factor; ZFC, zinc finger cluster domain.



Structures of SALL4 bound with AT-rich DNAs
(Fig. S1, A and B). There are two dsDNA molecules in an
asymmetric unit, with each of them bound with two
SALL4ZFC4 molecules. SALL4ZFC4 is comprised of two zinc
fingers, termed as ZFC4N and ZFC4C (Figs. 1E and 2A). In
each complex, one SALL4ZFC4 molecule binds to the central
major groove of the dsDNA with both zinc fingers visible,
whereas the other one binds to the end of the dsDNA with
only ZFC4C visible. Given that ITC binding data suggest that
SALL4ZFC4 binds to the 12-mer dsDNA in a molecular ratio of
1:1 (Table S1), binding of the second SALL4ZFC4 to the dsDNA
is likely due to the crystal packing, and the invisible ZFC4N
might be due to its intrinsic flexibility. Therefore, our struc-
tural analysis focuses on the SALL4ZFC4 molecule bound at the
central major groove of the dsDNA. Upon binding to
SALL4ZFC4, the major groove of 12-mer DNA becomes nar-
rower (16.7 Å vs. 20.0 Å) (Fig. S1C)

SALL4ZFC4 wraps around the 12-mer DNA and interacts
with it via the positively charged surface (Fig. 1, E and F).
ZFC4N and ZFC4C each belongs to Cys2-His2 (C2H2) finger
motif that adopts a canonical β-β-α architecture (Fig. 2A).
Although the eight Zn2+-coordinating residues are conserved
in SALL1-4, the spacing between the last two histidines is
altered in SALL2 (Fig.2A), further suggesting that C-terminal
ZFC of SALL2 possesses distinct DNA-binding property.
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Figure 2. SALL4ZFC4 selectively recognizes AT-rich dsDNA. A, sequence
Q9UJQ4), SALL1 (Uniprot ID: Q9NSC2), SALL2 (Uniprot ID: Q9Y467), and SALL3 (
indicated at the top of sequences, while Zn2+-binding residues are indicate
schematic of the detailed interactions between SALL4ZFC4 and DNA. Residues
molecular hydrogen bonding and hydrophobic interactions are shown in red
and (C) central ApT (A5-T50/T6-A60), (D) T3-A30/A4-T40 , (E) A7-T70/T8-A80 , (F) T9
sticks, respectively. The ZFC4N and ZFC4C residues involved in DNA binding
factor; ZFC, zinc finger cluster.
Structural basis for 4AATA7-specific recognition by SALL4ZFC4

In the structure, the central 4AATA7 tetranucleotide is
recognized by SALL4ZFC4 via base-specific hydrogen bonding
and van der Waals interactions (Fig. 2B). The side chain
carboxyl and nitrogen groups of SALL4 Asn912 are hydrogen
bonded to the N6 and N7 atoms of A5, respectively. The side
chain carboxyl group of Asn912 also forms two water-
mediated hydrogen bonds with N6 atoms of A4 and A60,
respectively (Fig. 2, B–D). The Asn-Gua residue base pairing is
analogous to the Arg-Gua pair in the DNA-bound CXXC
domain structures (9, 21). The side chains of Ile887 and
Thr909 make van der Waals interactions with the methyl
group of T6, which forms one water-mediated hydrogen bond
with the Thr909 side chain (Fig. 2, B and C). Furthermore,
Gly911 of SALL4ZFC4 makes van der Waals interaction with
methyl group of T70, allowing A7 to be favored in the com-
plementary strand (Fig. 2, B and E). Collectively, above
hydrogen bonding and van der Waals interactions render
SALL4ZFC4 the ability to recognize the AATA motif within the
12-mer DNA.

In addition to the base-specific interactions, the
SALL4ZFC4–DNA complex is further stabilized by extensive
electrostatic interactions between DNA backbone and the
basic residues of SALL4. The Arg905 and His916 side chains
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and gray arrows, respectively. C–F, detailed interactions between SALL4ZFC4

-A90/A10-T100 . Nucleotides from two strands are shown in cyan and yellow
are shown in purple and salmon, respectively. SALL, Spalt-like transcription
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Structures of SALL4 bound with AT-rich DNAs
form hydrogen bonds with T3 (Fig. 2, B and D); the side chains
of Lys896 and Arg905 make electrostatic interactions with A4
(Fig. 2, B and D); the Lys877 and His888 side chains form two
hydrogen bonds with T6 (Fig. 2, B and C); the side chains of
Lys910 and Lys914 form are hydrogen bonded to the back-
bones of A80 and T7’ (Fig. 2, B and E), respectively; Ser881 and
Ser883 form several hydrogen bonds with the T100 backbone
(Fig. 2, B and F).

Next, we applied structure-guided mutagenesis to evaluate
the roles of SALL4 interfacial residues. While N912D abol-
ished the binding, N912A reduced the DNA binding by > 55-
fold (KDs: >400 μM vs. 6.9 μM). In contrast, N912Q binds to
the DNA with affinity comparable to the WT (KDs: 8.0 μM vs.
6.9 μM), underscoring the critical role of base-specific
hydrogen bonds between Asn912 and A5. The double muta-
tion I887A/T909A weakened the DNA binding affinity by >
10-fold (KDs: 75 μM vs. 6.9 μM), indicating the importance of
the van der Waals interactions between Ile887, Thr909, and
Thymine (T6); the triple mutant R905A/K910A/K914A dis-
rupted the DNA binding, indicating the essential role of
electrostatic interactions between basic residues and DNA
backbone (Table S2). Collectively, mutagenesis and ITC-
binding experiments further pinpointed the key interactions
at the protein-DNA interface.
SALL4ZFC4 disfavors T or G upstream of ApT

Given that A5 and T6 are engaged in most of base-specific
interactions, we sought to replace nucleotides flanking A5 to
see how it could impact on its DNA binding. All nucleotide
N912
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T4'
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N912-ApA
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G4

T5'

C4'
N912-GpA (model)

A

C

Figure 3. SALL4ZFC4 Asn912 disfavored TpA and GpA dinucleotides. A, in th
stacks with upstream A4. B, in the modeled structure, the A4 substituted by T
group of T4. C, the A4 substituted by G4 disrupts the water-mediated hydrog
specific interactions. SALL, Spalt-like transcription factor; ZFC, zinc finger clust
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replacements were based on the 12-mer dsDNA (50-1GGTAA-
TATTTCC12-30). ITC binding assay demonstrated that T3C/
A30G and A4C/T40G only slightly weakened the binding to 12-
mer AT-rich DNA (KDs: 9.0–11 μM vs. 6.9 μM), whereas
A4T/T40AandA4G/T40Cdecreased the SALL4-binding affinity
by �2.7 to 5 fold (KDs: 19–36 μM vs. 6.9 μM).

To understand why SALL4 favors AAT and CAT, but not
TAT or GAT, we modeled the structures of SALL4 bound
with 4TAT7, 4GAT7, and 4CAT7, respectively (Fig. 3). When
A4 is replaced by a thymine, the distance between the methyl
moiety of T4 and Cβ of Asn912 is 3.2 Å, which likely results in
the repulsion of the Asn912 side chain and the impaired
hydrogen bonds between Asn912 and A5 (Fig. 3, A and B). In
addition, A4T disrupts the water-mediated hydrogen bond
between Asn912 and A4 (Fig. 3B). In the modeled structure of
SALL4 bound with 4GAT7, N7 and O6 of G4, and carboxyl
oxygen of Asn912, are all hydrogen bond acceptors, which
disrupts the water-mediated hydrogen bond observed between
Asn912 and A4 (Fig. 3C). In contrast, A4C did not affect the
hydrogen bond between Asn912 and A4 and also maintains
the water-mediated hydrogen bond (Fig. 3D). However, if C4 is
methylated to mC4, mC4 would weaken the Asn912-A5
hydrogen bond as T4 does. Thus, our structural analysis and
binding data further reveal that SALL4 prefers an 4AATA7 or a
4CATA7motif within the 12-mer dsDNA. The AATA-specific
recognition is achieved by the base-specific hydrogen bonds
and the water-mediated hydrogen bonds, as well as the
Thymine-specific hydrophobic interactions.

To study whether the AATA recognition by SALL4ZFC4 also
applies for dsDNAs of different lengths, we determined the
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er.



Structures of SALL4 bound with AT-rich DNAs
2.5 Å structure of SALL4ZFC4 with a 16-mer dsDNA con-
taining two ATA motifs (Table S2). In the structure, the two
SALL4ZFC4 molecules recognize 8AATA11 and 5TATA8 within
the 16-mer dsDNA, respectively, to form the complex in a
2:1 M ratio (protein: DNA) (Fig. S2, A–E). The sequence-
specific recognition mode is the same as observed in the
12-mer DNA complex (Fig. S2, B–E). Consistently, the ITC-
binding assay also demonstrates that SALL4ZFC4 binds to the
16-mer dsDNA with two KDs in a range of 13 to 16 μM. While
N912Q mutant binds to the 16-mer DNA with KDs similar to
those of the WT (KDs: 16–19 μM vs. 13–16 μM), R905A/
K910A/K914A mutant displays no binding towards the 16-mer
dsDNA (Table S1). Thus, we conclude that SALL4ZFC4 prefers
AATA over other motifs within AT-rich dsDNA even within
the context of multimeric binding.
Structure of SALL3ZFC4 with the 12-mer AT-rich dsDNA

To understand whether above DNA recognition mode also
applies for other SALL members, we determined the crystal
structure of SALL3ZFC4 with the same 12-mer AT-rich dsDNA
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Figure 4. SALL3ZFC4 specifically recognizes AT-rich dsDNA. A, structure of S
shown in cyan cartoon, while the two zinc fingers of SALL3ZFC4 are shown in
SALL3ZFC4 with the 12-mer dsDNA (cyan ribbon), SALL4ZFC4 with the 12-mer d
base specific interactions between SALL3ZFC4 and central 4AAT6, which are co
backbone. Protein and DNA are shown in ribbon and cartoon, respectively. SALL
factor; ZFC, zinc finger cluster.
in a 2.50 Å resolution (Table S2). There is only one
SALL3ZFC4–DNA complex in an asymmetric unit. Similar to
that of SALL4 ZFC4 with 12-mer dsDNA, SALL3ZFC4 binds to
the central major groove of the 12-mer DNA via its extensive
positive charged surface (Fig. 4A). The DNA-bound
SALL3ZFC4 structure is superimposed well with the two
SALL4 complexes (Fig. 4B), with the rmsd in a range of 0.53 to
0.64 Å over 681 atoms, suggesting the conserved architecture
of SALL complexes.

Extensive hydrogen bonding and van der Waals in-
teractions were found between SALL3ZFC4 and DNA. SALL3
Asn1155, the counterpart of SALL4 Asn912, forms two base-
specific hydrogen bonds with A5; Ile1130 and Thr1152 of
SALL3, the counterparts of SALL4 Ile887 and Thr909,
respectively, make van der Waals interaction with T6, which
forms a water-mediated hydrogen bond with Thr1152;
Gly1154 makes additional van der Waals interaction with T7’
(Fig. 4C). Overall, 4AATA7 recognition by SALL3ZFC4 is the
same as that by SALL4ZFC4. In addition, the electrostatic in-
teractions between DNA backbone phosphates and SALL3
residues, including Ser1124, Ser1126, His1131, Lys1139,
SALL3ZFC4-4AATA7
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ALL3ZFC4 bound with the 12-mer dsDNA (50-GGTAATATTTCC-30). The DNA is
purple and red cartoon, respectively. B, superposition of the structures of

sDNA (red ribbon), and SALL4ZFC4 with the 16-mer dsDNA (yellow ribbon). C,
lored the same as in Figure 1E. D, interactions between SALL3ZFC4 and DNA
3 residues are colored the same as in Figure 1E. SALL, Spalt-like transcription
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Structures of SALL4 bound with AT-rich DNAs
Arg1148, Lys1153, Lys1157, and His1159, are also conserved
in the SALL4 complex (Fig. 4D). Given that the base-specific
binding residues of SALL3 are conserved in SALL1 but not in
SALL2, we reason that the preference for AATA-containing
dsDNAs is conserved in ZFC4 domains of SALL1, SALL3,
and SALL4.
SALL4ZFC1 recognizes AT-rich DNAs

Sequence alignment of SALL4 ZFC1 and ZFC4 shows that
all SALL4ZFC4 residues involved in the recognition of AATA
motif are conserved in SALL4ZFC1 except Ala882, which is
replaced by an Asp (Asp394) in SALL4ZFC1 (Fig. S3A). We
examined the DNA binding of SALL4ZFC1 (aa 378–453) by
ITC. Binding data show that SALL4ZFC1 binds to the 12-mer
AT-rich DNA with a KD of 24 μM and binds to the 16-mer
AT-rich DNA with KDs in a range of 17 to 21 μM
(Table S1), weaker than that for SALL4ZFC4.

We further solved the structure of SALL4ZFC1 with the 16-
mer AT-rich DNA at 2.72 Å resolution (Table S2). There are
three dsDNAs and six SALL4ZFC1 molecules in one asym-
metric unit, with one dsDNA bound with two SALL4ZFC1

molecules (Fig. 5A). In the structure, all six SALL4ZFC1
A9
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Figure 5. SALL4ZFC1 selectively binds to AT-rich dsDNA. A, structure of SA
dsDNAs are shown in cyan cartoon, while six SALL4ZFC1 molecules are shown
central adenosine via Asn424. In (B, E, and F), Asn424 recognizes A9 in the co
Asn424 is shown in sticks and all DNAs are shown in cyan sticks. SALL, Spalt-l
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recognizes A-T base pair (A9-T90 or A70-T7) via Asn424
(Fig. 5, B–G). Asn424 of molecules A, D, and E recognizes A9
in the context of ApA (Fig. 5, B, E, and F), whereas Asn424 of
molecules B, C, and F interacts with A70 in the context of TpA
(Fig. 5, C, D, and G). The lengths of hydrogen bonds between
Asn424 and A70 are in a range of 3.1 to 3.6 Å, longer than
those observed between Asn424 and A9 (2.7–3.1 Å) (Fig. 5, B–
G), suggesting the weaker hydrogen bonds in the context of
TpA.

Next, we superimposed the structure of DNA-bound
structure of SALL4ZFC1 with that of SALL4ZFC4 and found
that Ala882 of ZFC4 is spatially proximal to the phosphate
group of A140 due to the hydrogen bond between the DNA
backbone and the main chain amide of Ser883 (Fig. S3A). In
contrast, SALL4ZFC1 Asp394, the counterpart of SALL4ZFC4

Ala882, leads to charge repulsion with the DNA backbone
phosphate, which would impair the hydrogen bond between
A140 and SALL4ZFC1 Ser395, the counterpart of SALL4ZFC4

Ser883 (Fig. S3B). Consistent with the structural analysis, we
found that A882D of SALL4ZFC4 reduced the DNA-binding
affinity by > 6.5-fold (KDs: 47 μM vs. 6.9 μM) (Fig. S3C).
Collectively, our structural data, complemented by mutagen-
esis and binding experiments, reveals that SALL4ZFC1 also
A

D

B

C

EF

T7

A8

N424C

T7

A8A7'

T8'

N424F

T7

A8A7'

T8'T9'

T8'

D

G

LL4ZFC1 bound with the 16-mer dsDNA (50-GGAATATAATATTTCC-30). Three
in cartoon with different colors. B–G, all six SALL4ZFC1 molecules recognize
ntext of ApA; In (C, D, and G), Asn424 recognizes A70 in the context of TpA.
ike transcription factor.
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specifically recognizes AT-rich DNA, albeit with weaker
affinity.
Targeting of SALL4 at AT-rich sites inhibits aberrant
expression of differentiation prompting genes

In mouse ESCs, binding of SALL4 to AT-rich putative
enhancer sequences prevents expression of differentiation
promoting genes (14). To test whether loss of DNA binding in
the SALL4ZFC4 Asn912 mutation has a biological significance,
we generated Sall4−/− mouse ESCs from Sall4-/flox ESCs by
infecting adenovirus-EGFP-Cre, which does not integrate into
the genome. Then, we infected Sall4−/− ESCs with lentivirus
carrying either WT mouse Sall4 or mouse Sall4 N922D
mutant (human SALL4 Asn912 corresponds to mouse SALL4
Asn922). First, we examined Sall4 expression levels by qRT-
PCR. Expression of transgene WT Sall4 and Sall4 N922D is
approximately 1.8 and 0.9 fold, respectively, compared to Sall4
expression in control ESCs (Fig. 6A). Then, we examined
expression of several neural differentiation genes to which
D

H

BA Sall4
** ***
***

***
***

Irx3

**
***

**
***

E
Irx5

F
*** ***

7835-e8.7 2.5e-3065

SALL4 motifs

Figure 6. mSall4 N922D mutant partially rescues aberrant gene expression
of mSall4 (A), Sox1 (C), Irx3 (E), Irx5 (F), and Irx6 (G) in Sall4−/flox cells, Sall4−/− ce
N922D (ND) mutant expression. *p < 0.05, **p < 0.01, ***p < 0.001 by One-Way
the average plus/minus SD is shown. B, top three motifs obtained by de novo m
p values shown under the motifs. D and H, SALL4 CUT&RUN tracks of the Sox1
genes other than Irx3-Irx5-Irx6 are not labeled for the simplicity. Mouse SALL
SALL4, Spalt-like transcription factor.
SALL4 is enriched. We also performed SALL4 CUT&RUN
experiments in order to detect SALL4 enrichment. De novo
motif analysis of SALL4-enriched sequences showed AT-rich
motifs (Fig. 6B), which is consistent with a recent SALL4
ChIP-seq result in mouse ESCs (14).

CUT&RUN experiments also showed enrichment of SALL4
near the Sox1 gene (Fig. 6D). As previously shown (20), Sox1
expression is elevated in Sall4-/- ESCs, compared to the control
(Fig. 6C). Both WT Sall4 and Sall4 N922D, introduced into
Sall4-/- ESCs, prevented aberrant expression of Sox1 (Fig. 6C).
SALL4 was also enriched in the region where Irx3, Irx5, and
Irx6 are closely located on chromosome 8 (Fig. 6H). Expression
of Irx3 was elevated in Sall4-/- ESCs. The WT Sall4 transgene
repressed aberrant expression of Irx3, but Sall4 N922D failed
to repress Irx3 expression (Fig. 6E). Similarly, WT not N922D
Sall4 repressed aberrant expression of Irx5 (Fig. 6F), and a
similar trend was observed for Irx6 (Fig. 6G). We found that
both peaks near the Sox1 gene and 15 out of 17 peaks at the
Irx3-Irx5-Irx6 region contain the AATA sequence, which was
found in 55,995 of the 64,249 (87%) of the genome-wide
Sox1

***

***
***

**

C

G

***

***
*
***

Irx6

2591-e4.3

in Sall4-/- mouse ESCs. A, C, E–G, graphs showing relative expression levels
lls, Sall4−/− cells with WT mSall4 expression (WT), and Sall4−/− cells with Sall4
ANOVA with post-hoc Tukey HSD test. Each replicate is shown as a dot, and
otif analysis of SALL4-enriched sequences by CUT&RUN in mouse ESCs with
and Irx3-Irx5-Irx6 regions in Sall4-/- and Sall4flox/flox (F/F) mouse ESCs. In (H),
4 Asn922 corresponds to human SALL4 Asn912. ESC, embryonic stem cell;
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SALL4-binding peaks. Inhibition of aberrant expression of
Sox1 and Irx genes is consistent with the notion that ZFC4-
dependent DNA binding of SALL4 contributes to the repres-
sion of these gene expression. In addition, repression of Sox1
by Sall4 N992D might be associated with the binding of
SALL4 N922D to the AT-rich region via its ZFC1 domain,
consistent with our structural and biochemical data.

Discussion

More than 700 Zinc fingers proteins in human genome
belong to the C2H2-type, and �400 of them were annotated
as TFs (22, 23). Uncovering the preferred motif of zinc finger
TFs is important for understanding their roles in orches-
trating spatiotemporal gene transcription. SALL family
members are a subfamily of zinc finger proteins playing
important roles in cell development and differentiation.
Dysfunctional SALL proteins are associated with different
types of cancers. In this study, we uncovered the conserved
AATA-rich DNA recognition mode by SALL family members
through presenting several structures of SALL proteins with
respective DNA ligands. SALL proteins utilize a conserved
Asn, such as Asn912 of SALL4 or Asn1155 of SALL3, to
recognize the adenosine of A-T base pair, while hydrophobic
residues of SALL proteins interact with the methyl moiety of
the downstream thymine. In addition, the adenosine-binding
Asn favors an adenosine at the upstream position. Overall,
these base-specific interactions confer SALL proteins the
ability to interpret AT-rich DNAs.

Given that SALL4ZFC1 binds to AT-rich DNAs weaker than
SALL4ZFC4, it might be insufficient to maintain the occupancy
of SALL4 after the deletion of ZFC4, consistent with previous
report that mutation or deletion of SALL4ZFC4 impairs the
targeting of SALL4 at genome sites (14).

Comparison of SALL4-DNA structure with those of other AT-
rich DNA complexes

It has been reported that transcriptional repressor MogR
specifically recognizes AT-rich DNAs (24), which prompts us
to compare it with the SALL4ZFC4 complex. The DNA
recognition modes in two complexes are quite different
(Fig. S4). MogR specifically recognizes the AT-rich motif but
in a manner distinct from that between SALL4 and DNA li-
gands (Fig. S4). MogR binds to dsDNA as a dimer with the
central AAAA tetranucleotide contacting both protomers.
Arg140 of protomer A (Arg140A) inserts into the narrow mi-
nor groove of AAAA tetranucleotide by forming two hydrogen
bonds with the T6-A60 base pair. The other base-specific in-
teractions are conferred by protomer B. Asn118B of protomer
B forms one hydrogen bond with A60; Ser114B and Gln117B

form water-mediated hydrogen bonds with A50 and T4,
respectively; Val94B and Tyr121B make hydrophobic in-
teractions with T3 and T4 (24). The AT-rich dsDNA recog-
nition by MogR is likely minor-groove–specific (Fig. S4B),
distinct from the major-groove–specific binding observed in
the SALL4 complexes, which is mediated by the Asn-
Adenosine pair (Fig. S4A).
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Disease-associated mutations

Many mutations or deletions in SALL4 were known to
result in Okihiro Syndrome. Only very few single mutations
within ZFC4, including H888R, is reported to be associated
with Okihiro Syndrome. Based on the Catalogue of Somatic
Mutations in Cancer database (https://cancer.sanger.ac.uk/
cosmic), identified single mutations in SALL4ZFC1 and
SALL4ZFC4 likely have impact on protein stability and/or DNA
binding affinity, including S396F and R431Q of SALL4ZFC1 and
H888Q, R905Q, K914N, and H916Y of SALL4ZFC4 (Fig. S5, A
an B). S396F disrupts the intramolecular hydrogen bond and
might destabilize the protein, while R431Q of SALL4ZFC1

weakens the interaction with DNA backbone; R905Q and
K914N would weaken the binding of SALL4ZFC4 with DNA
backbone, whereas H888Q and H916Y not only disrupt the
binding to Zn2+ but also abolish the hydrogen bond with DNA
backbone. Consistently, our ITC assays show that while
R905Q and K914N reduced the 12-mer dsDNA-binding af-
finity by �14-fold and �6-fold, respectively, neither H888Q
nor H916Y displays detectable DNA-binding affinity (Fig. S5,
C–F and Table S1). These disease-associated mutations sug-
gest that impaired DNA-binding affinities of SALL4ZFC4 mu-
tants are likely associated with human cancers.

It has been reported that the N-terminal 12 amino acid
stretch of SALL4 interacts with the nucleosome remodeling
deacetylase complex that creates repressive chromatin struc-
ture in ESCs (25, 26). Here our structural study illustrates
module-specific roles of SALL4 in target sequence recognition
by ZFC and recruiting nucleosome remodeling deacetylase. In
this way, our study not only uncovers the conserved DNA
recognition mode by SALL family members but also provides
insights into a better understanding how SALL4 mutations
result in human cancers via altering the expression profile of
key regulators such as Sox1.

In summary, our study not only provides mechanistic
insight into the AT-rich DNA recognition by SALL4ZFC4 and
SALL4ZFC1, but also uncovers that the binding of SALL4 at
specific AT-rich genomic DNA regions influences cell differ-
entiation and cell fate in vivo.

Experimental procedures

Cloning, protein expression, and purification

The sequence encoding SALL4ZFC4 (residues 856–930) was
amplified by PCR from a complementary cDNA library; se-
quences encoding human SALL4ZFC1 (aa 378–453) and
SALL3ZFC4 (aa 1102–1166) were synthesized by Genscript
(Nanjing); the sequence encoding human SALL4548-1029, which
spans ZFC2 and ZFC4, was synthesized by Sangon Biotech
(Shanghai). All of them were cloned into pET28-MHL vector,
and the cloned plasmid was transformed into Escherichia coli
BL21 (DE3). Cells were grown in LB medium at 37 �C until the
A600 reached �0.8. The recombinant protein was overex-
pressed at 16 �C for 18h after induction by 0.2 mM (final
concentration) IPTG and 40 μM ZnCl2 (final concentration).
Cells were harvested by centrifuging at 3600g, 4 �C for 15 min
and pellets were resuspended in a buffer containing 20 mM

https://cancer.sanger.ac.uk/cosmic
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Tris–HCl, pH 7.5, and 400 mMNaCl. Lysates were centrifuged
at 10,000g, 4 �C for 30 min and supernatants were collected.

Recombinant SALL4ZFC4 was purified by Ni-NTA column
(GE healthcare) and eluted by 20 mM Tris–HCl, pH 7.5,
400 mM NaCl, and 500 mM imidazole. N-terminal poly-
histidine tags (His-tags) of the recombinant protein were
cleaved by Tobacco etch virus protease and dialyzed overnight
with the buffer containing 20 mM Tris–HCl, pH7.5, and
150 mM NaCl. SALL4ZFC4 was further purified by Superdex 75
gel filtration (GE Healthcare) and HitrapTM S HP column (GE
healthcare). The purified protein was concentrated to 8 mg/ml
in the buffer containing 20 mM Tris–HCl, pH 7.5, and
150 mM NaCl and was stored at −80 �C before further use.

Expression and purification of SALL4ZFC1 and SALL3ZFC4

were performed in the same way as for SALL4ZFC4. Site-
specific mutations were carried out by using two reverse and
complementary primers containing mutated codons. Primer
sequences used for cloning mutants are listed in Table S3. All
mutants were purified in the same way as for WT proteins.

Isothermal titration calorimetry

ITC experiments were performed on a MicroCal PEAQ-ITC
calorimeter (Malvern Panalytical) at 25 �C by titrating 2 μl of
protein (1-2 mM) into cell containing 40 μM double strand
DNA, with a spacing time of 120 s and a reference power of 5
μCal s−1. The ITC binding assays were performed in a buffer
containing 20 mM Tris–HCl, pH 7.5, and 150 mM
NaCl. Control experiments were performed by titrating pro-
teins (1-2 mM) into the buffer only, which were subtracted
during analysis. Binding isotherms were plotted, analyzed, and
fitted by MicroCal PEAQ-ITC Analysis software (Malvern
Panalytical). The dissociation constants (KDs) were determined
from a minimum of two experiments (mean ± SD). Sequences
of dsDNAs used for ITC are listed in Table S4.

The SALL4ZFC4 N912Q mutant is less stable in 20 mM
Tris–HCl, 150 mM NaCl, pH 7.5, so its ITC experiments were
carried out by titrating 2 μl of dsDNA (0.7 mM) into cell
containing 40 μM protein. Representative ITC-binding curves
are shown in Fig. S6.

Crystallization, data collection, and structure determination

All crystals were grown using the sitting drop vapor diffu-
sion method at 18 �C. Before crystallization, protein is mixed
with respective dsDNA ligand at a ratio of 1:1. Crystal of
SALL4ZFC4 in complex with the 12-mer dsDNA (50-
GGTAATATTTCC-30) was obtained by mixing 1.0 μl of
complex with 1.0 μl of well solution containing 0.1 M BIS–
TRIS, pH 6.5, and 25% (w/v) PEG 3350. Crystal of
SALL4ZFC4 in complex with the 16-mer dsDNA (50-GGAA-
TATAATATTTCC-30) was obtained by mixing 1.0 μl of
complex with 1.0 μl of well solution containing 0.1 M BIS–
TRIS, pH 5.5, 0.2 M sodium chloride, and 25% PEG 3350.
Crystal of SALL4ZFC3 in complex with the 12-mer dsDNA (50-
GGTAATATTTCC-30) was obtained by mixing 1.0 μl of
complex with 1.0 μl of well solution containing 0.1 M MES
monohydrate, pH 6.5, 0.2 M ammonium sulfate, and 30% w/v
PEG monomethyl ether 5000. Crystal of SALL4ZFC1 in com-
plex with the 16-mer dsDNA (50-GGAATATAATATTTCC-
30) was obtained by mixing 1.0 μl of complex with 1.0 μl of well
solution containing 0.1 M Hepes, pH 6.5, 10% PEG 6000, and
5% (v/v) 2-methyl-2,4-pentanediol. Before flash-freezing crys-
tals in liquid nitrogen, crystals were soaked in a cryoprotectant
consisting of 85% reservoir solution plus 15% glycerol.

The diffraction data were collected on beam line BL17B and
BL18U1 at Shanghai Synchrotron Facility and processed with
HKL2000/3000 (27, 28) or XDS software (29). Although the
dataset of SALL4ZFC4 with 12-mer DNA was collected at
0.978560 Å, zinc single-wavelength anomalous dispersion
phasing was successful owning to the good signal strength. The
structure of SALL4ZFC4 was solved by CRANK2 (30), with 6
Zn2+ versus�1200 atoms. Then, theDNAwas builtmanually by
COOT (31), and the complex model was further refined by
Phenix (32). The other complexes were solved by molecular
replacement using Phaser (33) with previously solved
SALL4ZFC4 complex as the searchmodel. Then, themodels were
built and refined manually by COOT (31) and were further
refined by Phenix (32). The statistic details about data collection
and structure refinement were summarized in Table S2.

Mouse ESC culture

Sall4-/floxmouse ESCswere previously described (34). Cells are
maintained in the 2i media (35). To generate Sall4-/- cells, Sall4-/
flox ESCs were suspended by trypsinization and neutralization,
then, infected with adenovirus EGFP-Cre (36). Independent
clones were isolated, expanded, and the Sall4-/- genotype was
confirmed by genomic PCR as previously described (34).

WT mouse Sall4 was cloned in the pLV-EF1a-IRES-Puro
vector (37). The Sall4 N922D mutant was generated by site-
directed mutagenesis using Q5 High-Fidelity DNA Polymerase
(NewEnglandBiolabs) and In-FusionSnapAssembly (TakaraBio
USA) following the manufacturer’s instructions. Lentiviruses
were produced according to a standard procedure (38) and were
concentrated using Lenti-X Concentrator (Takara Bio USA).
Approximately, 1x 105 Sall4−/− mESCs were infected with lenti-
virus carrying WT or mutant Sall4 and selected by 2 μg/ml pu-
romycin. Selected cells were expanded and used for experiments.

For qRT-PCR, total RNA was isolated using the Direct-zol
RNA MicroPrep kit (Zymo Research), and complementary
DNA was synthesized using iScript cDNA synthesis kit (Bio-
Rad) according to the manufacturers’ instructions. Quantita-
tive PCR was performed using SYBR green master mix
(ThermoFisher) and primers in Table S5.

CUT&RUN experiments

CUT & RUN (39) was performed essentially as described in
the online protocol (dx.doi.org/10.17504/protocols.io.zcpf2vn)
using Sall4flox/flox or Sall4−/− mouse ESCs (105 cells per reac-
tion) cultured in the 2i + LIF media (20). Anti-SALL4 antibody
(SC-101147 (EE-30)) or normal rabbit IgG (SC-2025) were
each used at a 1:300 dilution. EDTA was excluded from all
buffers prior to MNase inactivation to avoid Zn+ chelation.
Cell permeabilization and all subsequent steps were performed
J. Biol. Chem. (2022) 298(12) 102607 9
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using buffers containing 0.02% digitonin. Recovered DNA
fragments were end-repaired, A-tailed, and ligated with xGen
adapters (10005974, Integrated DNA Technologies) using the
Kapa Hyper Prep Kit (07962312001, Roche) and barcoded
during amplification using Kapa HotStart Readymix
(7958927001, Roche). Libraries were sequenced using a 2 ×
150 paired-end configuration on a HiSeq 4000 (Genewiz).
Reads were trimmed using TrimGalore (0.6.0) and CutAdapt
(1.18) and read quality was assessed with Fastqc (0.11.8).
Trimmed reads were mapped with BWA MEM (0.7.17) using
the mouse genome (GRCm38) as reference. Peaks were iden-
tified using MACS (2.1.1.20160309) using the –call-summits
-g mm parameters. Peak lists from each replicate were merged
using R (4.1.2) to find high confidence peaks present in both
replicates. The 500 bp of sequence flanking the summit of each
peak was used for de novo motif analysis with MemeChip
(v5.0.1) using -order 2 -meme-p 2 -meme-nmotifs 10 -psp-gen
parameters and the DNAse accessible regions from ENCODE
dataset ENCFF782QYA for the background model.
Data availability

The coordinates and structure factors files for the structures
of SALL4ZFC4 with 12-mer dsDNA, SALL4ZFC4 with 16-mer
dsDNA, SALL3ZFC4 with 12-mer dsDNA, and SALL4ZFC1

with 16-mer dsDNA were deposited into Protein Data Bank
under accession codes 7Y3I, 7Y3K, 7Y3L, and 7Y3M, respec-
tively. CUT&RUN data were deposited in the Gene Expression
Omnibus with the accession code GSE203303 (https://www.
ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE203303).
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information.
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