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Abstract

Background: Estrogen is a pivotal regulator of cell proliferation in the normal breast and breast cancer. Endocrine therapies
targeting the estrogen receptor are effective in breast cancer, but their success is limited by intrinsic and acquired
resistance.

Methodology/Principal Findings: With the goal of gaining mechanistic insights into estrogen action and endocrine
resistance, we classified estrogen-regulated genes by function, and determined the relationship between functionally-
related genesets and the response to tamoxifen in breast cancer patients. Estrogen-responsive genes were identified by
transcript profiling of MCF-7 breast cancer cells. Pathway analysis based on functional annotation of these estrogen-
regulated genes identified gene signatures with known or predicted roles in cell cycle control, cell growth (i.e. ribosome
biogenesis and protein synthesis), cell death/survival signaling and transcriptional regulation. Since inducible expression of
c-Myc in antiestrogen-arrested cells can recapitulate many of the effects of estrogen on molecular endpoints related to cell
cycle progression, the estrogen-regulated genes that were also targets of c-Myc were identified using cells inducibly
expressing c-Myc. Selected genes classified as estrogen and c-Myc targets displayed similar levels of regulation by estrogen
and c-Myc and were not estrogen-regulated in the presence of siMyc. Genes regulated by c-Myc accounted for 50% of all
acutely estrogen-regulated genes but comprised 85% (110/129 genes) in the cell growth signature. siRNA-mediated
inhibition of c-Myc induction impaired estrogen regulation of ribosome biogenesis and protein synthesis, consistent with
the prediction that estrogen regulates cell growth principally via c-Myc. The ‘cell cycle’, ‘cell growth’ and ‘cell death’ gene
signatures each identified patients with an attenuated response in a cohort of 246 tamoxifen-treated patients. In
multivariate analysis the cell death signature was predictive independent of the cell cycle and cell growth signatures.

Conclusions/Significance: These functionally-based gene signatures can stratify patients treated with tamoxifen into
groups with differing outcome, and potentially identify distinct mechanisms of tamoxifen resistance.
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Introduction

Among several advances that have contributed to the decreased

mortality from breast cancer observed in the past decade, the

routine use of adjuvant endocrine therapies directed at the

estrogen-estrogen receptor (ER) pathway is a major contributor

[1,2]. Tamoxifen, which blocks estrogen action at its receptor,

increases survival following a diagnosis of breast cancer and

prevents the development of breast cancer in high risk women [1–

5]. The more recently-developed aromatase inhibitors, which

block estrogen synthesis, appear to be even more effective

therapies [6]. Thus, targeting the estrogen receptor pathway is a

validated, effective, biologically-based therapy for breast cancer.

However, the overall success of this therapeutic approach is

limited by both intrinsic and acquired resistance. A significant

proportion of patients with ER-positive tumors do not have

sustained objective responses, and many who do initially respond

subsequently relapse due to the acquisition of endocrine resistance

[7–9]. Prospective identification of patients who are not good

candidates for adjuvant endocrine therapy would substantially

facilitate clinical decision-making. To address this need, several

gene expression signatures that cosegregate with poor outcome in
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tamoxifen-treated breast cancer have been derived using gene

expression profiling, prospectively-selected candidate genes or

differentially-expressed estrogen-regulated genes [reviewed in 10].

A gene expression grade index (GGI) developed as a molecular

correlate of histological grade also cosegregates with poor response

to tamoxifen therapy [11]. There is little overlap between the

genes contained within these signatures, other than the frequent

inclusion of genes involved in cell proliferation, and thus although

potentially clinically useful, they offer limited insight into the

molecular basis of endocrine resistance.

The biochemical and molecular basis of antiestrogen (tamox-

ifen) resistance has been the subject of intense investigation.

Aberrations in ER expression and function, alterations in

coactivator and corepressor expression, ligand-independent acti-

vation of ER via growth factor-mediated phosphorylation events, a

switch from estrogen-driven cell-proliferation to EGFR/erbB2-

driven proliferation and the overexpression of various signaling

molecules, particularly the mitogen-activated protein kinases and

various isoforms of protein kinase C, have all been implicated in

endocrine resistance [7–9]. Consistent with the idea that

deregulation of estrogen target genes, particularly those that

mediate cell proliferation and survival, is another potential

mechanism of endocrine resistance, overexpression of the

estrogen-targeted cell cycle regulatory molecules c-Myc and cyclin

D1, which occurs at high frequency in the clinical setting, has been

associated with altered sensitivity to endocrine therapy [reviewed

in Ref. 12]. Inducible expression of these genes can over-ride

antiestrogen-induced growth arrest [13] and overexpression can

modulate sensitivity to clinically-relevant antiestrogens in in vitro

models [reviewed in Ref. 12].

Since estrogen is a multifunctional hormone, we reasoned that

the approach of seeking to identify a minimal gene set associated

with adverse outcome in tamoxifen-treated patients and the binary

nature of many of the resulting classifications might obscure some

of the complexity of the underlying biology. Furthermore, several

of the endocrine response signatures have been derived using

hierarchical clustering, which may not consistently result in stable

classification in independent sample sets [14]. With the goal of

gaining further mechanistic insights into estrogen action and

therefore into endocrine resistance, we sought to classify estrogen-

regulated genes by function, and then determine the impact of

deregulation of distinct functionally-related sets of genes on the

response to tamoxifen in breast cancer patients.

Results

Gene expression profiling and identification of estrogen-
regulated genes that are also c-Myc-regulated

Since inducible expression of c-Myc can overcome the

inhibitory effects of antiestrogens and recapitulate many of the

effects of estrogen on molecular endpoints related to cell cycle

progression [13] we reasoned that determining which estrogen-

regulated genes were also targets of c-Myc might provide insights

into the role of c-Myc in different aspects of estrogen action and in

antiestrogen resistance. To this end, a series of clonal MCF-7 cell

lines was developed that inducibly express c-Myc or c-Zip (a

deletion mutant of c-Myc that lacks the N-terminal transactivation

domains). Representative clones that had 17b-estradiol (E2) and

antiestrogen responses matched to those of the parental MCF-7

cells were chosen for further experiments (Fig. 1A&B). Zinc

treatment resulted in increased c-Myc or c-Zip expression within

3 h, similar to the timing of E2 induction of c-Myc (see Fig. 1D).

Induction of c-Myc led to re-initiation of cell cycle progression and

regulation of molecular endpoints that mimicked the effects of E2,

but induction of c-Zip was ineffective (Fig. 1). Cyclin D1 induction

preceded S phase entry in E2-treated cells, but was not apparent in

zinc-treated control or c-Myc transfected cells (Fig. 1D), consistent

with previous data obtained using this model system [13].

Using mitotically-selected cells, we previously established that

MCF-7 cell cycle progression is antiestrogen-sensitive in early-to-

mid G1 phase, but becomes independent of estrogen signaling 3–

4 h before S phase entry [15]. We therefore selected a timepoint

within the window of estrogen-dependent cell cycle progression,

6 h after estrogen treatment, and compared the gene expression

profile generated after estrogen treatment with that following zinc

induction of c-Myc or c-Zip. Initially, genes that were significantly

up- or down-regulated following E2 treatment compared with

vehicle-treated cells were identified (n = 799 genes, represented by

939 probesets, adjusted p,0.01 i.e. false discovery rate 1%). The

estrogen-regulated genes were then divided into those that were

regulated in the same direction following c-Myc induction or E2

treatment but not regulated by c-Zip induction, designated ‘E2 and

Myc’ (adjusted p,0.01, 402/799 genes i.e. 50%), and the

remainder, designated ‘E2 not Myc’ (Fig. 2A, Table S1).

The relationship between the response to E2 treatment or c-Myc

induction for the 635 E2-upregulated probesets is shown in Fig. 2B.

Those in the ‘E2 and Myc’ category formed a cluster which was

largely distinct from the cluster designated ‘E2 not Myc’. At the

zinc concentration used for the microarray experiment, c-Myc

expression after zinc induction was higher than after estrogen

treatment, and consequently genes in the ‘E2 and Myc’ category

were more strongly regulated by c-Myc than by estrogen. The ‘E2

not Myc’ cluster included the most highly-regulated probes and

had an average relative expression of 0.97 after c-Myc induction.

In contrast, the distribution of downregulated probes in the ‘E2 not

Myc’ category essentially overlapped with that of the probes in the

‘E2 and Myc’ category (Fig. 2C). Databases of estrogen-responsive

genes [16] and c-Myc targets [17] were used to give an indication

of the proportion of the genes in each category that had been

previously identified as either estrogen- or c-Myc-regulated.

Almost 40% of the probes from the ‘E2 not Myc’ category that

increased in expression were previously-documented estrogen

targets (Fig. 2D), significantly more than the corresponding ‘E2

and Myc’ probes (P = 9.8661027, Fisher’s exact test). A similarly

high proportion of the probes in the ‘E2 and Myc’ category that

increased in expression were present in the Myc target gene

database (Fig. 2D), significantly more than in the ‘E2 not Myc’

category (P = 1.64610212), suggesting that this analysis identified

many bona fide c-Myc targets that have not been previously

described as estrogen targets. The presence of known c-Myc

targets in the ‘E2 not Myc’ categories might result, in part, from

misclassification, but likely also reflects cell-type specificity in the

response to c-Myc induction. For example, CCND1 (cyclin D1),

which is among the genes in the ‘E2 not Myc’ category, is present

in the c-Myc target gene database but does not increase after c-

Myc induction in this experimental model ([13], see also Fig. 1D).

If a c-Myc-dependent pathway is an integral part of the

response to estrogen, the changes in expression of targets in the ‘E2

and Myc’ category after estrogen treatment or zinc induction

would be expected to be of similar magnitude, provided similar

levels of c-Myc were achieved. To test this prediction, we adjusted

the concentration of zinc so that the induction of c-Myc mRNA

was similar to that after estrogen treatment (Fig. 3A), and

examined the expression of selected genes from the ‘E2 and

Myc’ category. The 5 genes examined all either increased

(HSU79274, HSPC 111, DKC1, MKI67IP), or decreased (CDKN1A,

encoding the CDK inhibitor p21WAF1/Cip1) in expression to a

similar degree after E2 treatment or zinc induction of c-Myc

Estrogen- and c-Myc Targets
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Figure 1. Effects of estrogen treatment and induction of c-Myc and c-Zip in antiestrogen-arrested cells. Cell lines stably transfected with
the inducible vector pDMT containing c-Myc, a c-Myc mutant lacking the entire N-terminal domain (c-Zip) or empty vector (Empty vector) were
growth arrested with 10 nM ICI 182780 for 48 h. Cells were treated at time zero with either 100 nM 17b-estradiol (E2) or vehicle (ethanol, EtOH) for

Estrogen- and c-Myc Targets
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Figure 2. Comparison of genes regulated by estrogen and c-Myc. The experimental design is described in Fig. 1, except that a concentration
of 75 mM Zn was used. After 6 h E2 or Zn treatment, cells were harvested and transcript profiling undertaken using Affymetrix Human Genome U133
Plus 2.0 oligonucleotide microarrays. After normalisation and correction for multiple hypothesis testing, probesets that were significantly regulated in
the same direction by estrogen or c-Myc (but not by c-Zip) were identified (adjusted P,0.01). (A) The number of up-regulated (filled) or down-
regulated (hatched) genes classified as ‘E2 and Myc’ (red) or ‘E2 not Myc’ (blue) is shown. (B, C) The fold change in the expression of significantly-
regulated probesets following estrogen treatment (relative to vehicle (EtOH) treatment) is shown compared with that following zinc induction of c-
Myc (relative to zinc treatment of empty vector cells) as the average of three independent experiments. Red: ‘E2 and Myc’; Blue: ‘E2 not Myc’. (D) The
overlap between probesets in the indicated categories and publically available databases of estrogen-regulated genes (open bars) and c-Myc-
regulated genes (filled bars) is shown.
doi:10.1371/journal.pone.0002987.g002

the parental MCF-7, and 65 mM zinc for empty vector, c-Myc and c-Zip. (A, B) Cells additionally treated with nocodazole to prevent cell division of
estrogen-stimulated cells were harvested for analysis of cell cycle phase distribution by flow cytometry. A: Representative histograms 36 h after E2

and nocodazole treatment; B: mean6SD of 3 independent experiments. Control (EtOH): open bars; Zn (red) or E2 (blue). (C) The proportion of cells in
S phase was determined by flow cytometry at intervals after E2 or Zn treatment. Data are mean6SD of 3 independent experiments. E2, $ filled
circles; c-Myc, & filled squares; c-Zip, m filled triangles; EtOH, # open circles; Empty vector, h open squares. (D) Cell lysates were analysed by
immunoblotting for the proteins shown. Arrowhead indicates a non-specific protein (NS).
doi:10.1371/journal.pone.0002987.g001
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(Fig. 2B–F). As a further test of the conclusion that these genes are

estrogen regulated via an estrogen-mediated increase in c-Myc

expression, MCF-7 human breast cancer cells were stimulated

with E2 in the presence of siRNAs directed at c-Myc (siMyc). The

most effective of the siRNAs tested, siMyc-17, reduced the

estrogen induction of c-Myc protein and mRNA at 6–9 h from

,5-fold to a statistically non-significant level of ,2-fold (Fig. 4A&B

and data not shown). In the presence of siMyc, none of the genes

Figure 3. Estrogen and c-Myc regulation of selected genes. The experimental design is described in Fig. 1. For the indicated genes, mRNA
levels were quantitated by qRT-PCR and are presented as the mean6range or SEM of 2–3 experiments. EtOH, E2, Empty and c-Myc data in (C) are
redrawn from [18].
doi:10.1371/journal.pone.0002987.g003
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from the ‘E2 and Myc’ category tested (HSU79274, DKC1,

MKI67IP), displayed significant induction after E2 treatment

(Fig. 4C–E). In contrast two genes from the ‘E2 not Myc’ category,

GREB1 and CCND1 (encoding cyclin D1), were both significantly

induced by E2 in either the presence or absence of siMyc

(Fig. 4F&G), despite evidence that CCND1 is a Myc target in other

systems. More detailed examination of the regulation of HSPC 111

showed that its induction by estrogen required ongoing protein

synthesis, did not occur in the presence of siMyc, and was

accompanied by recruitment of c-Myc to the HSPC 111 promoter

Figure 4. Effect of RNAi-mediated knockdown of c-Myc on regulation of selected genes after estrogen treatment. Cells were mock-
transfected or transfected with 50 nM of control (non-targetting siRNA, siNT2) or Myc siRNA (siMYC17), treated with antiestrogen (ICI 182780) for
48 h, and then treated with E2 for 6 h (A) or 9 h (B–G). (A) Protein lysates were immunoblotted for c-Myc 6 h after E2 treatment and quantitated by
densitometry. Data are the mean6range or SEM of 2–3 experiments. (B–G) For the indicated genes, mRNA levels were quantitated by qRT-PCR and
are presented as the mean6SEM of 3 experiments.
doi:10.1371/journal.pone.0002987.g004

Estrogen- and c-Myc Targets
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[18]. In addition, others have shown that c-Myc is required for

estrogen-mediated decreases in CDKN1A expression [19]. Thus,

estrogen regulation of all of these 5 genes from the ‘E2 and Myc’

category is dependent on c-Myc. Together these data provide

strong evidence that our analysis reliably distinguished genes

regulated by ‘E2 and Myc’ from those regulated by ‘E2 not Myc’,

and that genes in the ‘E2 and Myc ‘ category are regulated via

estrogen induction of c-Myc.

Pathway analysis of estrogen- and c-Myc-regulated
genes

In order to develop hypotheses about the biological processes

regulated by estrogen in this system we undertook further analysis

using the gene ontology tool Onto-Express [20] and Ingenuity

Pathways Analysis, which uses a curated database of known

functional interactions to identify networks of mammalian genes.

The entire set of estrogen-regulated genes, i.e. both ‘E2 and Myc’

and ‘E2 not Myc’, contained a significant over-representation of

genes in gene ontology biological process categories related to

ribosome biogenesis, the cell cycle and cell death (Table 1).

Ingenuity analysis of this geneset identified 4 networks with high

scores for relevance to the input dataset. These had the following

functional annotations: cancer, cell cycle, DNA replication, gene

expression and cell death. One network consisted of genes with

roles in the cell cycle and its gene signature was expanded by

including estrogen-regulated genes from gene ontology categories

related to the cell cycle and DNA replication (Fig. 5A, Table S2).

Ingenuity analysis of the ‘E2 not Myc’ signature identified one

high-scoring network that contained genes with roles in cell death

and substantially overlapped with two of the high-scoring networks

identified using the entire set of estrogen-regulated genes. The

main clusters of the latter networks were therefore combined, and

the resulting signature expanded by addition of genes from gene

ontology categories related to cell death (Fig. 5B, Table S2). The

fourth Ingenuity network derived from the entire estrogen-

regulated geneset, consisting of genes with roles in transcriptional

regulation, was not further modified (Fig. 5C, Table S2).

The functional annotation of the final gene signatures was

confirmed using Ingenuity (Table S3). The annotation of the ‘cell

cycle’ signature revealed a highly significant overrepresentation of

genes involved in: DNA replication and DNA metabolism, e.g.

several MCMs, PCNA, RFC2 and RFC4; cell cycle control, e.g.

CCND1 and CCNE2, encoding cyclins D1 and E2, respectively, and

CDKN1A, the gene encoding p21Waf1/Cip1, which forms a central

node in this network; and cancer, including breast cancer. The ‘cell

death’ signature was annotated as containing genes involved in cell

death, apoptosis and survival. Cancer was also over-represented in

this network. Interestingly, for this signature the functional

annotations within cancer included invasion and migration as well

as cell death and general oncogenic processes (Table S3), and cell

movement was significantly overrepresented overall. The ‘tran-

scriptional regulation’ signature included a number of nuclear

receptor coregulators, and many of the genes have documented

functional interactions with the estrogen receptor (ESR1) (Fig. 5C).

The annotation of this network identified transcription and cancer

as significantly over-represented, as was development of the

mammary alveolus, albeit with a small number of genes (Table S3).

The gene ontology classifications of estrogen-regulated genes and

the processes represented by the Ingenuity networks displayed many

overlapping categories. However, several processes linked by their

importance in cell growth, i.e. the increase in cell mass that

accompanies progress through the cell cycle, were amongst those

most significantly over-represented in the gene ontology (Table 1) but

were not well-represented in the Ingenuity networks, i.e. rRNA

processing, ribosome biogenesis and protein biosynthesis. This was

likely because much of the current understanding of these processes is

based on studies in model systems other than mammalian cells. We

therefore extended our analysis by predicting likely interactions using

the Human Interactome Map (HiMAP), which builds networks based

on known protein-protein interactions in human cells and on

Table 1. Gene ontology of all estrogen-regulated genes.

GO ID Function Name
Unique UniGene
Total

Unique Reference
UniGene Total

Corrected P-
Value

GO:0006364 rRNA processing 13 37 1.79E-09

GO:0007046 ribosome biogenesis 7 15 1.39E-08

GO:0008033 tRNA processing 9 37 2.69E-06

GO:0006412 protein biosynthesis 25 260 1.34E-04

GO:0006260 DNA replication 17 97 7.97E-07

GO:0006270 DNA replication initiation 6 19 1.75E-05

GO:0048015 phosphoinositide-mediated signaling 4 16 1.63E-03

GO:0006164 purine nucleotide biosynthesis 4 11 1.03E-03

GO:0009396 folic acid and derivative biosynthesis 3 7 1.66E-03

GO:0009113 purine base biosynthesis 3 4 2.58E-03

GO:0008285 negative regulation of cell proliferation 14 134 3.17E-03

GO:0000079 regulation of cyclin dependent protein kinase activity 5 35 6.36E-03

GO:0000074 regulation of cell cycle 18 213 7.49E-03

GO:0008632 apoptotic program 3 9 8.61E-03

GO:0007264 small GTPase mediated signal transduction 20 199 7.22E-04

GO:0042493 response to drug 3 15 9.18E-03

The analysis used Onto-Express, with a binomial distribution model and false discovery rate (FDR) correction for multiple comparisons. Only categories with 3 or more
genes are presented, and categories with related functions have been grouped together.
doi:10.1371/journal.pone.0002987.t001
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predictions from interactions in model organisms including yeast, co-

ordinate expression in a panel of human tissue samples, shared

biological function and conserved protein-protein interaction do-

mains [21]. A gene signature for ‘cell growth’ was compiled from an

initial small subnetwork identified by Ingenuity, together with genes

that were in relevant gene ontology categories or encoded proteins

that proteomic analysis has assigned to the nucleolus [22,23], and

estrogen-regulated genes that were predicted by HiMAP to have

direct connections to these genes. The network generated by HiMAP

from this list of genes was redrawn using Ingenuity (Fig. 5D) and

contained three major clusters that were largely composed of

predicted, rather than known, interactions. Using the gene ontology

classifications, data from proteomic analysis of the human ribosome

biogenesis pathway [23] and annotation of the final network using

Ingenuity, these clusters were identified as genes involved in protein

synthesis or RNA post-transcriptional modification, particularly

splicing, and components of the 90S pre-ribosomal complex (Tables

S2 & S3), consistent with the HiMAP prediction of functionally

relevant interactions between these genes.

To gain potential insights into the role of c-Myc in estrogen-

responsive biological processes, we determined what fraction of the

genes in each signature was regulated by c-Myc in our experimental

model (Fig. 5, Table S2). In total the ‘cell cycle’ gene signature

contained 60 genes, of which 27 (45%) were regulated by both

estrogen and c-Myc. Similarly, of the ‘transcriptional regulation’

signature 12 of 31 genes (39%) were regulated by c-Myc. The

proportion of genes in these two networks regulated by estrogen and

c-Myc was comparable with the 50% overall proportion (P = 0.42

and 0.20, respectively, Fisher’s exact test). However, genes regulated

by both estrogen and c-Myc comprised only one-third of the total

genes in the ‘cell death’ network (19/55, i.e. 35%), significantly

different from the overall proportion (P = 0.017). Conversely, the ‘cell

growth’ gene signature contained significantly more genes regulated

by c-Myc (102/123, 83%, P = 5.5610216). These data suggest that

the degree to which estrogen regulation of cell cycle, cell growth and

cell death is secondary to the induction of c-Myc varies significantly.

Role of c-Myc induction in estrogen stimulation of cell
cycle progression and cell growth

Cell growth is necessary but not sufficient for S phase entry and

the two processes are closely co-ordinated [24]. Our pathway

analysis indicated that estrogen may regulate cell growth

principally via c-Myc. To test this prediction, we examined

whether estrogen regulated cell growth in this model system. The

first rate-limiting step in ribosome biogenesis is transcription of the

45S rRNA precursor, which is subsequently processed to yield

rRNAs that are integral to the ribosomal subunits. The 59

externally transcribed spacer (59ETS) of the 45S rRNA began to

increase in abundance 6–8 h after estrogen treatment (Fig. 6A),

significantly preceding the initiation of DNA synthesis, which was

first apparent after 12 h (Fig. 6B). Similarly, total protein synthesis

measured by [35S]-methionine incorporation was increased by 6–

9 h after estrogen treatment (Fig. 6C). These endpoints were then

measured in antiestrogen-arrested MCF-7 human breast cancer

cells stimulated with E2 in the presence ofsiMyc-17, which reduced

the induction of c-Myc protein to less than 2-fold (Fig. 6D, see also

Fig. 4). Under these conditions, the increase in 59ETS levels was

inhibited, as was estrogen induction of total protein synthesis

(Fig. 6E). Thus, estrogen activates ribosome biogenesis and protein

synthesis in a c-Myc-dependent manner, as predicted by our

pathway analysis.

Relationship between functional signatures and
response to endocrine therapy

To determine whether the individual processes regulated by

estrogen might have different impacts on the response to

endocrine therapy, we examined the relationship between the

estrogen-regulated gene signatures and breast cancer patient

outcome using transcript profiles generated from a population of

246 women with ER-positive breast cancer who received

tamoxifen as their only adjuvant systemic therapy [11]. A semi-

supervised principal component method [25] was used to assess

the ability of each signature to predict time to development of

distant metastasis. The ‘cell cycle’, ‘cell death’ and ‘cell growth’

signatures were all prognostic (Table 2, Fig. 7A), but the

‘transcriptional regulation’ signature was not, although it con-

tained some genes that were individually significant predictors of

outcome (for example, CCND1 and NCOA1/SRC-1). MYC was not

prognostic as a continuous variable (P = 0.372), and its inclusion in

either the cell cycle or cell growth signatures did not influence their

predictive ability. The three signatures that were significant

remained predictive in multivariate models against standard

clinicopathological parameters i.e. patient age, tumor grade,

tumor size and lymph node status, whether analysed using the

interquartile range (Table 3, models 1–3) or when treated as

continuous variables (Cell cycle P = 0.001, HR 1.016, 95% CI

1.007–1.025; cell death P = 0.0001, HR 1.022, 95% CI 1.011–

1.033; cell growth P = 0.002, HR 1.015, 95% CI 1.005–1.024).

Since the ‘cell cycle’ and ‘cell growth’ signatures were strongly

correlated with tumor grade, grade was omitted from the models

for these signatures. To determine if the gene signatures gave

prognostic information additional to the clinical variables

described above, we generated a predictor based on a principal

components analysis using the clinical variables, and then

developed additional models using both the clinical variables

and the individual gene signatures. Using this alternative

approach, each signature still added significantly to the risk

prediction using the clinical covariates alone (Cell cycle P = 0.002;

cell death P = 0.05; cell growth P = 0.04).

To gain possible insights into the contribution of components of

the processes represented by each signature, we further divided the

signatures. When the ‘cell growth’ signature was subdivided into

components representing RNA processing, ribosome biogenesis

and protein synthesis, each was individually prognostic (Table 2,

Fig. 7B). Because the ‘cell death’ signature contained some genes

that also had roles in processes that might be expected to affect

metastasis, i.e. cell migration and invasion, we assessed the

prognostic ability of genes with a ‘cell movement’ annotation

compared with the remainder of the signature. The ‘cell

movement’ subgroup was predictive (Table 2, Fig. 7C). However,

although for the remainder of the ‘cell death’ signature the high

risk and low risk groups diverged, this was not statistically

significant (Table 2, Fig. 7C).

The question of whether these signatures identified distinct

groups of patients is important in relation to both their potential

clinical utility and a better understanding of the underlying

Figure 5. Networks of estrogen-regulated genes. Gene ontology, Ingenuity Pathways analysis and HiMAP were used as detailed in the text to
generate networks of estrogen-regulated genes identified by transcript profiling after 6 h estrogen treatment of antiestrogen-arrested cells. Yellow:
‘E2 not Myc’; blue: ‘E2 and Myc’. Some genes were included for the purposes of illustration e.g. ESR1, encoding the ER, and are not coloured. A: cell
cycle; B: cell death; C: transcriptional regulation; D: cell growth.
doi:10.1371/journal.pone.0002987.g005
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Figure 6. Effect of RNAi-mediated knockdown of c-Myc on cell growth after estrogen treatment. A, B: MCF-7 cells were growth arrested
with 10 nM ICI 182780 for 48 h then treated with either 100 nM E2 or vehicle (ethanol) (A) Abundance of the 59ETS of the 45S rRNA transcript was
measured using qRT-PCR. Vehicle control, # open circles; estrogen, $ filled circles. Data are mean6SEM of triplicate experiments. (B) Cells treated
with E2 for the indicated times were additionally treated with BrdU 2 h before harvesting. BrdU content (immunofluorescence) and DNA content
(propidium iodide staining) were measured using 2 parameter flow cytometry. (C) Overall protein synthesis was measured by [35S]-methionine
incorporation at the indicated times after E2 treatment. Data are mean6range or SEM of 2–3 experiments. D, E: Cells were mock-transfected or
transfected with 100 nM of control (RISC-free, RF,) or Myc siRNAs (siMYC17), treated with antiestrogen (ICI 182780) for 48 h, and then treated with
100 nM E2 or vehicle (ethanol). (D) Protein lysates were immunoblotted for c-Myc. (E) 59ETS abundance (qRT-PCR) and protein synthesis ([35S]-
methionine incorporation) were measured in the presence of control (RF) and c-Myc siRNAs (siMyc17) in duplicate experiments.
doi:10.1371/journal.pone.0002987.g006
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biological mechanisms. There were strong correlations between

the cell cycle and cell growth signatures (r = 0.653, p,0.01), but

weaker associations between cell cycle and cell death (r = 0.326,

p,0.01), or cell growth and cell death (r = 0.385, p,0.01).

Consistent with the idea that the cell death signature might

identify a distinct subset of patients, the discordance between

classification on the basis of the cell cycle or cell death signatures

was 42%, compared with 27% between the cell cycle and cell

growth signatures. Furthermore, patients classified as low risk

based on the ‘cell death’ signature, but not those classified as high

risk on this basis, could be separated into groups of differing

outcome on the basis of the ‘cell cycle’ signature (p = 0.015 and

0.67, respectively; Fig. 7D). Finally, multivariate analysis compar-

ing all three signatures as continuous variables revealed that the

cell death signature was predictive independent of the other two

signatures whether analysed using the interquartile range (Table 3,

Model 4), or as continuous variables (Cell cycle P = 0.058, HR

1.010, 95% CI 1.000–1.021; cell death P = 0.009, HR 1.013, 95%

CI 1.003–1.023; cell growth P = 0.287, HR 1.006, 95% CI 0.995–

1.017). In models including either ‘cell cycle’ or ‘cell growth’

against ‘cell death’ and the clinicopathological variables, all

remained predictive when analysed using the interquartile range

(Table 3, Models 5&6), although ‘cell growth’ did not when treated

as a continuous variable (Cell death vs cell cycle: cell cycle

P = 0.006, HR 1.013, 95% CI 1.004–1.023; cell death P = 0.038,

HR 1.010, 95% CI 1.001–1.020. Cell death vs. cell growth: cell

death P = 0.005, HR 1.014, 95% CI 1.004–1.024; cell growth

P = 0.081, HR 1.009, 95% CI 0.999–1.019). The ‘cell death’ and

‘cell cycle’ signatures therefore apparently confer independent

prognostic information.

Discussion

Estrogen action is necessary both for the normal development of

the female reproductive organs, including the mammary gland,

and for the development and proliferation of a majority of human

breast cancers. However, understanding the mechanisms under-

lying the physiological effects of this important hormone and how

their deregulation impacts on sensitivity to therapies directed at

the ER remains a significant challenge.

Role of c-Myc in estrogen action
By analysis based on functional annotation of acutely estrogen-

regulated genes we have identified gene signatures that encompass

four different aspects of estrogen action, and contain different

proportions of c-Myc-responsive genes: cell cycle control, cell

growth, cell death and transcriptional regulation. The proportion

of human protein-coding genes that is c-Myc-responsive is

estimated at 10–15% and many non-coding RNAs are also

regulated by c-Myc [26]. In addition, c-Myc and ERa binding

sites co-localise near the transcription start site of a subset of

estrogen-responsive genes [27]. Nonetheless, the observation that

as many as half of estrogen-responsive genes are also c-Myc-

responsive is striking and unexpected, and argues strongly for a

critical role for c-Myc in estrogen action. This was revealed by our

focus on the acute effects of E2 and use of an experimental model

designed to maximise sensitivity to the ability of E2 to promote the

G1-S phase transition, in contrast with previous analyses which

have often been undertaken over longer timeframes or in

experimental models with less sensitivity to effects on proliferation.

The different contributions of c-Myc-responsive genes to the

different estrogen-responsive signatures indicates that the role of c-

Myc may be specific to some processes, rather than global.

The ‘cell cycle’ network presented here integrates upstream cell

cycle regulatory molecules with those more directly involved in DNA

replication i.e. PCNA, Cdc6, and the MCMs. Recent evidence that

c-Myc is associated with the pre-replication complex suggests one

means by which estrogen could regulate DNA replication [28].

However, c-Myc regulates the number of replication origins rather

than the rate of replication fork movement [28], while estrogen

increases the rate of replication fork movement [29]. Since many of

these DNA replication genes are E2F-responsive, estrogen stimula-

tion of E2F activity as cells progress through G1 phase [30,31]

provides a likely mechanism for their activation. Interestingly,

CDKN1A, the gene encoding p21Waf1/Cip1, is a prominent hub

linking many of the genes within the ‘cell cycle’ signature, consistent

with studies identifying p21Waf1/Cip1 as an important effector of c-

Myc action on the cell cycle in estrogen-treated cells [13,19]. Had

this not already been known, our analysis would have suggested

p21Waf1/Cip1 as a strong candidate for further investigation,

highlighting the ability of these functional pathways to provide

mechanistic insights and suggesting that some of the hubs in other

networks merit further investigation as mediators of estrogen action.

Like the ‘cell cycle’ signature, the ‘transcriptional regulation’

signature contained approximately equal proportions of c-Myc-

regulated genes and genes unresponsive to c-Myc activation.

Prominent in the ‘transcriptional regulation’ network are a

number of nuclear receptor coregulators (the coactivators

NCOA1/SRC-1/RIP160, NCOA2/SRC-2/GRIP1, NCOA3/

AIB1/SRC-3, NCOA7, ARNT, ARNT2 and the corepressor

NRIP1/RP140), which play a central role in transcriptional

activation by members of the nuclear receptor superfamily [32]

and which were regulated in a manner consistent with the well-

known ligand-activated downregulation of estrogen receptor

signaling [33]. Interestingly, NCOA1, ARNT and ARNT2 and

one of two probsets for NCOA3 were also significantly

downregulated by c-Myc, suggesting that c-Myc-mediated repres-

sion may also contribute to this response.

Estrogen regulates both RNA and protein synthesis, an

important physiological response that was the focus of much early

work on estrogen action [34]. However, the molecular mecha-

nisms for estrogen effects on cell growth remain largely

unexplored. We show here that almost all of the acutely

estrogen-regulated genes with roles in cell growth are also c-Myc

targets, and that estrogen activation of rRNA synthesis and protein

synthesis depends on c-Myc. The idea that estrogen regulates cell

growth via c-Myc is supported by evidence that estrogen induction

of c-Myc in the rodent uterus is not prevented by progesterone,

Table 2. Analysis of functional signatures in tamoxifen-
treated patients.

Signature Log rank P

Cell cycle 0.036

Cell death 0.004

Cell movement 0.014

Remainder 0.076

Cell growth 0.01

RNA processing 0.03

Ribosome biogenesis 0.001

Protein synthesis 0.002

Transcriptional regulation 0.85

The log-rank p was generated after 500 permutations.
doi:10.1371/journal.pone.0002987.t002
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which inhibits DNA synthesis but not growth [35], and the known

role of c-Myc in regulating cell growth in mammalian cells

[24,36].

Like the ‘cell cycle’ network, the ‘cell death’ network contains both

effectors and upstream regulators. Bcl-2 acts as a hub connecting

many of the effectors, consistent with the well-documented role of

Figure 7. Relationship between estrogen-regulated gene signatures and response to tamoxifen therapy. Kaplan-Meier survival curves
of the relationship between time to distant metastasis and the indicated gene signatures, dichotomised at the 50th percentile, in a cohort of 246
breast cancer patients treated with tamoxifen. (A) Signatures illustrated in Fig. 5. (B) Subsets of the ‘cell growth’ signature. (C) Subsets of the ‘cell
death’ signature. (D) Patients were sequentially stratified using the ‘cell death’ and ‘cell cycle’ signatures.
doi:10.1371/journal.pone.0002987.g007
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Bcl-2 as a mediator of the anti-apoptotic effects of estrogen [37,38].

The ‘cell death’ signature also contains components of survival

signaling pathways, e.g. receptor tyrosine kinases (IGF1R and Ret)

and their effectors (IRS1, Jak1, Jak2) that are increased in response to

estrogen treatment. The implications of transcriptional regulation of

these signaling pathways has been much less well-studied than their

regulation by protein-protein interactions and phosphorylation, but

a co-ordinate increase in expression is likely to result in enhanced

survival signaling. Estrogen suppression of apoptosis resulting from

growth factor deprivation is c-Myc dependent [39] but genes

regulated by c-Myc were under-represented in the ‘cell death’

signature. However, our experimental model, i.e. cells cultured in the

presence of serum and insulin, is rich in survival factors, and the

ability of estrogen to enhance survival signaling may further oppose

the ability of c-Myc to promote apoptosis in this model.

Deregulation of estrogen action and endocrine
resistance

An association between increased breast cancer proliferation

and poor outcome in response to endocrine therapies is clearly

apparent from studies measuring both individual markers of

proliferation (e.g. Ki67) and gene signatures associated with

reduced survival [10,40–42]. The particularly poor outcome of

highly proliferative ER-negative breast cancers and the association

between signatures containing prominent proliferation-related

components, for example the genomic grade signature [11], and

poor outcome in both untreated and tamoxifen-treated ER+ve

breast cancers [10], raises the question of whether increased

proliferation per se is a marker of an adverse prognosis, or whether

there are aspects of loss of proliferative control that affect response

to individual therapies. Whether the signatures identified here are

specifically predictive of response to tamoxifen or might also be

associated with poor response to other therapies remains to be

determined. However, in contrast with previous analyses in breast

cancer, we have distinguished cell cycle/cell growth, and cell

survival signatures that are independent predictors of outcome in

tamoxifen-treated patients.

A recent analysis of ‘molecular concepts’ associated with

progression of prostate cancer identified increased protein synthesis

and enrichment at chromosome 8q, which includes MYC (8q24), as

features distinguishing the precursor lesion prostatic intraepithelial

neoplasia (PIN) from benign epithelium [43]. The proliferation

signature was distinct from the protein synthesis network, and

although both increased during disease progression, they did so at

different stages [43], consistent with the idea that enhanced cell

cycle progression and enhanced cell growth may reflect different

initiating events. In our analysis c-Myc-responsive genes predom-

inated in the ‘cell growth’ signature, which contains many of the

most strongly c-Myc-regulated genes. The ‘cell growth’ signature

may therefore be a surrogate measure of deregulated c-Myc

expression that identifies a subset of proliferative, endocrine-

resistant breast cancers with distinct biology.

The poor outcome associated with the ‘cell growth’ signature

may reflect a specific resistance to endocrine therapies associated

with deregulation of c-Myc. However, the ‘wound signature’,

which is induced by co-ordinate amplification of MYC and CSN5/

JAB1/COPS5 [44], is predictive of a poor outcome in a cohort of

patients with ER-positive cancers who were more commonly

treated with chemotherapy than endocrine therapy [45], suggest-

ing that deregulation of c-Myc may result in resistance to multiple

therapies.

The well-established role of estrogen in promoting cell survival

suggests that increased apoptosis might be associated with a better

clinical response to endocrine therapies. However, clinical studies

addressing this question have often revealed conflicting data,

perhaps because of inherent difficulties in accurately monitoring

the dynamics of apoptosis in vivo [reviewed in 46]. As found by

another study identifying genes differentially expressed in

tamoxifen-sensitive and -insensitive breast cancer [47], the adverse

outcome predicted by the ‘cell death’ signature was associated with

both pro-apoptotic and anti-apoptotic changes in gene expression.

Consequently the likely effect of the observed changes in

expression within the ‘cell death’ signature is not clear. The dual

role of a subset of genes within the signature in regulating invasion

and motility provides another mechanism whereby their deregu-

lation may impair response to endocrine therapies. For example,

Bcl-2, which has functional interactions with many other genes

within the signature, has been implicated in estrogen regulation of

invasion downstream of RelB [48].

Table 3. Cox regression analysis.

Variable HR 95%CI P

Model 1

Cell cycle 4.028 1.816–8.937 0.001

Patient age 0.833 0.283–2.449 0.740

Tumor size 1.948 1.129–3.361 0.017

Nodal status 1.274 0.729–2.226 0.396

Model 2

Cell death 6.096 2.013–18.459 0.001

Patient age 0.902 0.267–3.049 0.868

Grade 1.011 0.636–1.608 0.962

Tumor size 1.988 1.059–3.734 0.033

Nodal status 1.323 0.718–2.439 0.370

Model 3

Growth 3.690 1.561–8.726 0.003

Patient age 0.959 0.333–2.761 0.937

Tumor size 1.875 1.081–3.252 0.025

Nodal status 1.411 0.819–2.432 0.215

Model 4

Cell cycle 2.401 0.993–5.804 0.052

Cell death 3.006 1.258–7.185 0.013

Cell growth 2.097 0.798–5.514 0.133

Model 5

Cell death 3.344 1.400–7.987 0.007

Cell cycle 2.785 1.203–6.446 0.038

Patient age 0.672 0.266–2.351 0.790

Tumor size 1.881 1.088–3.254 0.024

Nodal status 2.430 0.772–2.430 0.282

Model 6

Cell death 3.421 1.450–8.075 0.005

Cell growth 2.469 1.003–6.081 0.049

Patient age 0.876 0.299–2.564 0.809

Tumor size 1.846 1.062–3.210 0.030

Nodal status 1.429 0.821–2.489 0.207

For each signature the interquartile HR is shown i.e. highest vs. lowest quartile.
Grade is treated as a continuous variable (1 vs. 2 vs. 3) while tumor size (#2 cm
vs. .2 cm), age (#50 vs. .50 yrs), and nodal status (negative vs. positive) are
binary variables.
doi:10.1371/journal.pone.0002987.t003
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In summary, the main findings of this work are the

predominance of c-Myc as a target of estrogen action, its specific

role as a mediator of estrogen effects on cell growth, and the ability

of functionally-based gene signatures to stratify patients treated

with tamoxifen into groups with differing outcome, potentially

identifying distinct mechanisms of tamoxifen resistance. This

provides an opportunity to identify new therapeutic options for

endocrine-resistant breast cancer.

Materials and Methods

Plasmid construction and transfection
The plasmids pDMT and pDMT-Myc, which contain a metal-

inducible metallothionein promoter [49] have been previously

described [13]. pDMT-c-Zip was constructed using the mouse c-

Zip cDNA subcloned from KS c-Zip [50]. MCF-7 cells were

transfected with either pDMT, pDMT-c-Myc or pDMT-c-Zip

together with a plasmid containing a selectable marker

(puromycin). Multiple individual puromycin-resistant colonies

(10–20 for each construct) were isolated, expanded and

characterised.

Cell culture, DNA flow cytometry and measurement of
protein synthesis

MCF-7 cells were maintained as previously described [51]. Stock

solutions of the pure antiestrogen ICI 182780 {7a-[9-(4,4,5,5-

pentafluoropentyl-sulfinyl)nonyl]estra-1,3,5(10)-triene-3,17b2diol}

and the steroid estradiol (17b-estradiol) were prepared as described

previously [52]. Stocks of Nocodazole {methyl-[5-(2-thienyl-

carbonyl)-1H-benzimidazol-2-yl] carbamate} were prepared in

DMSO and used at a final concentration of 50 ng/ml.

Exponentially proliferating cells were growth arrested by

pretreatment for 48 h with the steroidal antiestrogen ICI 182780

(10 nM) and then treated with either 100 nM E2 or 65 mM Zn (as

ZnSO4) as previously described [13]. DNA analysis by flow

cytometry was as previously described [13]. To measure protein

synthesis MCF-7 cells were labeled with 45 mCi [35S]-methionine

for 20 mins as previously described [53].

Myc siRNA
siRNAs (siMyc-17 (D-003282-17-0050), non-targeting control 2

(D-001210-02-20) and RISC-Free siRNA (D-001220-01-20)) were

purchased from Dharmacon (Lafayette, Colorado, USA) and

transfected at 50 or 100 nM using Lipofectamine 2000 (Invitro-

gen). Transfection with fluorescinated siRNAs showed that .98%

of target cells were transfected. The siRNA/transfection mix was

removed 24 h after transfection and replaced with fresh RPMI

medium containing ICI 182780 (10 nM). After a further 48 h the

cells were treated with vehicle (ethanol) or E2 (17-b estradiol,

100 nM).

Western blot analysis
Cell lysates were prepared and immunoblotted as previously

described [52]. The following primary mouse monoclonal

antibodies were used: cyclin D1 (DSC-6, Novocastra, Laboratories

Ltd, Newcastle-upon-Tyne, UK), b-actin (AC-15, Sigma, St Louis,

MO, USA), p21 (610233; BD Transduction Laboratories,

Lexington, KY, USA), p27 (610241, BD Transduction Laborato-

ries, Lexington, KY, USA), pRB (554136, BD Pharmigen, San

Diego, CA, USA), c-Myc (9E10, Santa Cruz Biotechnology Inc,

Santa Cruz, CA, USA). The following primary rabbit polyclonal

antibodies were used: cyclin A (C-19), and c-Myc (C-19) (Santa

Cruz Biotechnology).

Quantitative Real-Time PCR
Total RNA was isolated using the RNAeasy kit (Qiagen) from

E2 or vehicle and Zn-treated cells and reverse-transcribed using

the Reverse Transcription System (Promega, NSW, Australia).

Real-time PCR was performed using an ABI Prism 7900HT

Sequence Detection System using inventoried Taq-Man probes

(Applied Biosystems, Foster City, CA, USA). GAPDH and RPLPO

were used as internal controls.

Transcript profiling and microarray data analysis
RNA was collected in three independent experiments, each

including parental cells treated with E2 or ethanol, zinc-treated

pDMT-c-Myc cells, zinc-treated pDMT-c-Zip cells and zinc-

treated empty vector (pDMT) cells. Cells were arrested for 48 h

with 10 nM ICI 182780 and then treated for 6 h with either

100 nM E2 or ethanol vehicle, or 75 mM zinc for the stably

transfected cell lines. Target probes were prepared and hybridised

to Affymetrix Human Genome U133 Plus 2.0 oligonucleotide

microarrays (Millennium Science, Box Hill, Vic, Australia)

according to the manufacturer’s instructions. The microarray

data are available through the Gene Expression Omnibus (GEO)

database (accession number GSE11791).

Quality of the arrays was assessed using histograms of probe

intensity, RNA degradation plots and Affymetrix-style quality

control measures generated using functions within the affy and

simpleaffy package of Bioconductor [54]. The arrays showed similar

‘gamma’ shaped distributions of probeset intensities, and had

scaling factors of 0.995–2.048 units, confirming their high quality

and suitability for batch normalization. Normalization of the

arrays was performed using the RMA algorithm, as implemented

in the affy package of Bioconductor and using the default options

of RMA (with background correction, quantile normalization, and

log transformation).

After normalisation probesets with intensity .100 in any of the

experimental conditions were analysed using Bayesian linear

modelling in the limma package [55], with replicate and treatment

as fixed effects. Penalized t-statistics from these comparisons were

generated by Benjamini and Yekutieli adjustment for multiple-

hypothesis comparisons [56] using the multtest package and probes

displaying significant differential expression (adjusted p,0.01)

were identified and compared with databases of estrogen-

responsive genes ((ERGDB, http://research.i2r.a-star.edu.sg/

promoter/Ergdb-v11/, [16]), c-Myc targets (http://www.

myc-cancer-gene.org, [17]), and nucleolar proteins (http://www.

lamondlab.com/NOPdb/, [22] current in November 2005.

Pathway analysis used Onto-Express (http://vortex.cs.wayne.

edu/index.htm, [20]), Ingenuity Pathways Analysis (Ingenuity

Systems, Redwood City, CA, http://www.ingenuity.com), and

HiMAP (www.himap.org [21]. Gene ontology and functional

annotation is presented for only those categories containing $3

genes and with an adjusted P value ,0.01.

Clinical microarray data
The clinical dataset used for analyzing the relationship between

the functional gene signatures and response to endocrine therapy

consisted of 246 primary breast cancer samples. The demograph-

ics and methods have been previously described [11] and the raw

data are available at the GEO database (accession number

GSE6532). All samples were required to be estrogen and/or

progesterone receptor positive by ligand-binding assay and had

received tamoxifen monotherapy only in the adjuvant setting. The

cut-off value for classification of patients as ER-positive or -

negative was 10 fmol per mg protein. The primary endpoint used

for generating the classifiers was the first distant metastatic event as
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survival can be confounded by local recurrence and treatments

given at relapse.

Data analyses were performed using version 3.5 of BRB

ArrayTools (http://linus.nci.nih.gov/BRB-ArrayTools.html). The

survival analyses were performed using the ‘survival risk prediction

tool’ where the survival risk groups are constructed using a

supervised principal component method [25]. All genes from each

of the functional networks that were present on the U133A

Affymetrix microarrays used for analysis of gene expression in

tamoxifen-treated patients were entered to generate the classifier.

Two principal components, 10-fold cross-validation and a binary

cut-off using the 50th percentile were used to generate two

prognostic groups. The log-rank P value for the Kaplan-Meier

curve was generated after 500 permutations. To determine the

predictive accuracy of each of the functional gene signatures

compared with the clinical prognostic variables alone, two models

were created for each signature—one with clinical covariates only

and one with the clinical covariates and the gene signature. The

cross-validated Kaplan-Meier curves and log-rank statistics for

these models were generated after 500 permutations and the P

value measures whether the expression data significantly adds to

predictive accuracy compared with the clinical factors alone. This

approach is preferable to a multivariate model which only

compares prognostic effects and can be unstable due to multi-

colinearity between variables in the model and random fluctua-

tions in the data. Multivariate Cox regression analyses were

performed using SPSS statistical software package (SPSS Inc.

Chicago, IL) version 13.0. Each gene signature and tumor grade (1

vs. 2 vs. 3) were treated as continuous variables, while tumor size

(#2 cm vs. .2 cm), patient age (#50 vs. .50 yrs) and nodal

status (positive vs. negative) were treated as binary variables.
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