
RESEARCH ARTICLE

HMB in DRAM-less NVMe SSDs: Their usage

and effects on performance

Kyusik KimID
1, Taeseok KimID

2*

1 Department of Computer Engineering, Kwangwoon University, Nowon-gu, Seoul, Republic of Korea,

2 School of Computer and Information Engineering, Kwangwoon University, Nowon-gu, Seoul, Republic of

Korea

* tskim@kw.ac.kr

Abstract

Solid-state drives (SSDs) that do not have internal dynamic random-access memory (DRAM)

are being widely spread for client SSD and embedded SSD markets in recent years because

they are cheap and consume less power. Obviously, their performance is lower than conven-

tional SSDs because they cannot exploit advantages of DRAM in the controller. However,

this problem can be alleviated by using host memory buffer (HMB) feature of Non-Volatile

Memory Express (NVMe), which allows SSDs to utilize the DRAM of host. In this paper, we

show that commercial DRAM-less SSDs clearly exhibit worse I/O performance than SSDs

with internal DRAM, but this can be improved by using the HMB feature. We also present

methods that reveal how the host memory buffer is used in commercial DRAM-less SSDs to

improve I/O performance. Through extensive experiments, we conclude that DRAM-less

SSDs evaluated in this study mainly exploit the host memory buffer as an address mapping

table cache rather than a read cache or write buffer to improve I/O performance.

Introduction

For the last decade, almost solid-state drives (SSDs) have included dynamic random-access

memory (DRAM) in their controller to improve input/output (I/O) performance and endur-

ance. DRAM in the controller is usually used for temporarily keeping data that have been

read from flash memory, data to be written to flash memory, or an address mapping table,

and it has been regarded as a necessary component of SSDs [1–5, 6]. Contrary to this conven-

tion, some companies have recently brought to market DRAM-less SSDs that do not contain

DRAM in the controller. If DRAM is eliminated from the controller, the power consumption,

manufacturing cost, and size of the form factor can decrease [7–9]. For this reason, the market

of DRAM-less SSDs has been rapidly increasing in customer, embedded, and enterprise SSDs

and they have been considered as storage for distributed edge computing due to the reduced

size [10–12]. Unfortunately, DRAM-less SSDs also have clear disadvantages. Because DRAM

in the controller cannot be used for caching data read/written or address mapping table, I/O

performance is unavoidably degraded.

For DRAM-less SSDs with a Non-Volatile Memory Express (NVMe) interface, this prob-

lem can be alleviated by using the host memory buffer (HMB) feature of NVMe [9, 13]. The

HMB is a feature introduced in the NVMe 1.2 protocol, which allows an SSD to utilize the

PLOS ONE

PLOS ONE | https://doi.org/10.1371/journal.pone.0229645 March 2, 2020 1 / 15

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Kim K, Kim T (2020) HMB in DRAM-less

NVMe SSDs: Their usage and effects on

performance. PLoS ONE 15(3): e0229645. https://

doi.org/10.1371/journal.pone.0229645

Editor: Rashid Mehmood, King Abdulaziz

University, SAUDI ARABIA

Received: July 5, 2019

Accepted: February 11, 2020

Published: March 2, 2020

Copyright: © 2020 Kim, Kim. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All relevant data are

within the manuscript.

Funding: The present Research has been

conducted by the Research Grant of Kwangwoon

University in 2019. It was also supported by the

National Research Foundation of Ministry of

Science, ICT & Future Planning of Korea under

Grant 2017R1A2B4008536. Sites: https://www.kw.

ac.kr and https://www.nrf.re.kr

Competing interests: The authors have declared

that no competing interests exist.

http://orcid.org/0000-0002-5470-9205
http://orcid.org/0000-0002-4200-2384
https://doi.org/10.1371/journal.pone.0229645
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0229645&domain=pdf&date_stamp=2020-03-02
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0229645&domain=pdf&date_stamp=2020-03-02
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0229645&domain=pdf&date_stamp=2020-03-02
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0229645&domain=pdf&date_stamp=2020-03-02
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0229645&domain=pdf&date_stamp=2020-03-02
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0229645&domain=pdf&date_stamp=2020-03-02
https://doi.org/10.1371/journal.pone.0229645
https://doi.org/10.1371/journal.pone.0229645
http://creativecommons.org/licenses/by/4.0/
https://www.kw.ac.kr
https://www.kw.ac.kr
https://www.nrf.re.kr


DRAM of the host for its own purposes [14]. As the controller can access the host DRAM

through very fast Peripheral Component Interconnect Express (PCIe)/NVMe interface, it can

exploit a portion of host DRAM as a cache for data or address mapping table as if it accesses

DRAM in the controller (Fig 1). In the last few years, DRAM-less SSD controllers and DRAM-

less SSDs that support the HMB feature have been developed and shipped, and operating sys-

tems exploiting these devices have also been studied [15–18].

Although the use of HMB is a main approach to reduce the I/O performance degradation

of DRAM-less SSDs, we do not know exactly how to utilize the host DRAM with the HMB

feature in DRAM-less SSDs because this is a trade secret. In this paper, we first experimentally

confirm that current commercial DRAM-less SSDs have poorer I/O performance than SSDs

with DRAM in their controllers but they improve the I/O performance to some extent when

using the HMB. We also present methods for experimentally understanding how DRAM is

used in commercial DRAM-less SSDs supporting HMB. Assuming that the HMB can be used

as 1) a read cache, 2) a write buffer, or 3) an address mapping table cache, we present methods

that can test the existence for all these cases. Through extensive experiments, we conclude that

DRAM-less SSDs evaluated in our study utilize most parts of the host DRAM as a cache for

storing an address mapping table.

The remainder of this paper is organized as follows. First, we describe the background and

related work in Section II. Then, we analyze how much the I/O performance degrades when

DRAM is eliminated from the SSD controller as well as how commercial DRAM-less SSDs

utilize the HMB in Sections III and IV, respectively. Finally, we make our concluding remarks

in Section V.

Background and related work

HMB feature of NVMe interface

NVMe is a high-performance scalable host controller interface designed for non-volatile mem-

ories such as PCIe based SSDs [19]. To provide high speed I/O, it supports up to 65,535 sub-

mission and completion queues that can queue up to 64K commands [4, 14, 20, 21]. Due to

Fig 1. Architecture of DRAM-less SSD supporting HMB.

https://doi.org/10.1371/journal.pone.0229645.g001

PLOS ONE HMB in DRAM-less NVMe SSDs

PLOS ONE | https://doi.org/10.1371/journal.pone.0229645 March 2, 2020 2 / 15

https://doi.org/10.1371/journal.pone.0229645.g001
https://doi.org/10.1371/journal.pone.0229645


the scalable architecture, the internal parallelism of SSDs can be fully exploited. I/O requests

issued by the host are delivered to submission queues, and then the SSD device dispatches

them from the submission queues in a round-robin fashion. After processing the I/O requests

in the SSD device, the messages notifying the I/O completion are inserted to the completion

queues.

The NVMe interface also provides additional features to improve the performance of SSDs

effectively. One of them is HMB [14], which was added in the NVMe 1.2 specification and allo-

cates a portion of the host DRAM for the SSD. The usage of the memory space is determined

by the SSD manufacturers. If both the SSD and host’s operating system support the HMB fea-

ture, it can be activated by the set features command, which is an NVMe administration com-

mand sent from the host’s operating system to the SSD. In the latest Linux kernel, the NVMe

device driver attempts to activate the HMB during device initialization if the NVMe SSD

device supports it [15].

In DRAM-less SSDs, the HMB feature provides several opportunities for alleviating the I/O

performance degradation. The NVMe interface provides very fast data transmission speeds

between the host and SSD controller, so the SSD controller can access the host DRAM without

performance loss, that is, as if the controller were using its own DRAM. In addition, because

the host DRAM can be accessed from the host’s operating system as well as the SSD controller,

more benefits could be obtained if it were effectively used. Nonetheless, there seem to be few

studies on improving I/O performance using HMB in DRAM-less SSDs. In [13], authors used

a host DRAM of 128 MB for caching an address mapping table in DRAM-less SSDs. They

demonstrated that enabling the HMB boosts the input/output operations per second (IOPS)

performance significantly compared to other DRAM-less solutions.

In [22], Hong et al. used a host DRAM as a data cache instead of an address mapping table

cache by modifying the NVMe command process and adding a direct memory access (DMA)

path between system memory and the host DRAM. The proposed scheme improved the I/O

performance by 23% for sequential writes compared to an architecture with internal DRAM in

the SSD. In [23], although the HMB feature of NVMe is not directly used, Jeong et al. proposed

a scheme called the host performance booster (HPB) in which a portion of the host DRAM is

used as an address mapping table cache. They define transactional protocols between the host

device driver and storage device to manage the address mapping table cache in the host. By

implementing the HPB on smartphones with a UFS (Universal Flash Storage) device, they

showed a performance improvement up to 67% for random read workloads.

Internal SSD information for optimization

Because of the fixed device interfaces, host operating systems cannot know the internal infor-

mation of SSDs such as buffer size and physical read/write sizes. The NVMe interface provides

some commands that deliver the internal information of SSD to the host, such as identify and

get features commands, but all SSDs do not implement such commands as well as information

provided by the commands is still limited. An alternative is the Open-Channel SSD that

migrates most of SSD’s internal operations to the host [24, 25]. Since the host directly performs

the flash translation layer (FTL) operations with the internal information of the SSD, I/O

requests can be more efficiently handled. For example, González et al. improved the I/O

latency on a system supporting multi-tenancy by dividing the SSD into physical units and

allowing the host to access those units in parallel [26]. However, since Open-Channel SSDs do

not follow the traditional I/O stack, it requires supports of operating systems, and as a result,

the utilization is greatly limited yet.

PLOS ONE HMB in DRAM-less NVMe SSDs

PLOS ONE | https://doi.org/10.1371/journal.pone.0229645 March 2, 2020 3 / 15

https://doi.org/10.1371/journal.pone.0229645


There are some studies that obtain the internal information of an SSD in an operating sys-

tem by measuring the I/O performance with different workloads. Kim et al. extracted basic

internal SSD information such as read cache size, write buffer size, cluster block size, and clus-

ter page size by analyzing the times taken to process various workloads with regular patterns

[27]. Using a similar approach, Ko et al. obtained the cluster page and cluster block sizes of an

SSD and then used them to tune the operating system’s configuration parameters such as file

system block size and I/O request size [28]. Using the SSD’s internal information, they also

proposed an I/O scheduler that improves average I/O latency. There have also been studies

that measure the performance of SSDs through exhaustive experiments. As a representative

example, Jung et al. observed some interesting behaviors that contradict commonly held con-

ceptions [29]. For example, they reported that the random read performance of an SSD is

worse than both sequential and random write performance and that sequential reads become

significantly worse over time. These studies were performed using older SATA SSDs. In this

paper, we focus on the performance of NVMe SSDs, especially those that do not have any

DRAM in the controller.

I/O Performance of DRAM-less SSDs

To analyze how much the I/O performance of DRAM-less SSDs is degraded when compared

to that of SSDs with internal DRAM, we evaluated six SSDs described in Table 1 using the fio

benchmark tool [30]. SSD-A, SSD-B, and SSD-C are DRAM-less SSDs supporting the HMB

feature and are all products that currently can be obtained commercially. SSD-D, SSD-E,

and SSD-F are SSDs with internal DRAM and were chosen for the performance comparison.

SSD-A, SSD-C, and SSD-D have similar hardware compositions except that SSD-A and

SSD-C do not have any DRAM in the controller. SSD-B and SSD-E also have similar hardware

compositions. Finally, SSD-F has the best hardware specification of all the SSDs compared in

this study. In SSD-A, SSD-B, and SSD-C, the host DRAM size for HMB can be determined

through NVMe device driver to within a limited range specified by each SSD. All experiments

were performed in the PC environment listed in Table 2.

We measured the I/O performances of these SSDs with two I/O workloads, LIGHT and

HEAVY, which are created by configuring the fio benchmark to generate light and heavy

workloads, respectively (Table 3). The experimental results are shown in Fig 2. In the results

for the LIGHT workload (Fig 2(a)–2(d)), the lack of DRAM in the controller incurs a signifi-

cant performance degradation in all experiments. Although SSD-A, SSD-C, and SSD-D have

a similar hardware composition, when the HMB is disabled, SSD-A and SSD-C, which are

DRAM-less SSDs, have much worse I/O performance than SSD-D. On the contrary, SSD-B

achieves an I/O performance that is similar to that of SSD-E, which has almost the same hard-

ware composition as SSD-B, when HMB is disabled.

Table 1. Tested SSDs.

SSD-A SSD-B SSD-C SSD-D SSD-E SSD-F

Product SP A80 HP EX900 Tammuz M730 Kingston A1000 WD Black 3D Samsung 970 PRO

Interface PCIe 3.0 x2 PCIe 3.0 x4 PCIe 3.0 x2 PCIe 3.0 x2 PCIe 3.0 x4 PCIe 3.0 x4

Controller DRAM DRAM-less DRAM-less DRAM-less O, size unknown 512MB 512MB

NAND Flash 3D TLC 3D TLC 3D TLC 3D TLC 3D TLC 3D MLC

Capacity 512GB 500GB 512GB 480GB 500GB 512GB

HMB O (8MB to 480MB) O (64MB only) O (8MB to 480MB) X X X

https://doi.org/10.1371/journal.pone.0229645.t001

PLOS ONE HMB in DRAM-less NVMe SSDs

PLOS ONE | https://doi.org/10.1371/journal.pone.0229645 March 2, 2020 4 / 15

https://doi.org/10.1371/journal.pone.0229645.t001
https://doi.org/10.1371/journal.pone.0229645


In the results obtained for the HEAVY workload (Fig 2(e)–2(h)), DRAM-less SSDs have

much worse I/O performance than SSDs with internal DRAM. Specifically, the gap in read

performances between the two types of SSDs is substantial. When HEAVY workloads with

random and sequential read patterns are used, SSD-A and SSD-C have a much lower band-

width than SSD-D. In contrast to the experimental results obtained using the LIGHT workload,

even SSD-B has much less bandwidth than SSD-E when HMB is disabled (Fig 2(e) and 2(g)).

Finally, SSD-F exhibits better I/O performance than other SSDs overall in our experiments.

Next, we measured the I/O performance of DRAM-less SSDs after the HMB was activated.

In the experiments using the LIGHT workload, the I/O performances of SSD-A and SSD-C

are improved when the I/O patterns are sequential read and random read, as shown in Fig 2(a)

and 2(c). Specifically, the performances of sequential read and random read become almost

similar when HMB is used. The performance of SSD-B is improved only when the workload

pattern is random read (Fig 2(c)). When the HEAVY workload is used, the performance of

random read is improved again in all the SSDs we evaluated (Fig 2(g)). As in previous results,

the performance of random read becomes similar to that of sequential read in SSD-A, SSD-B,

and SSD-C when HMB is used.

Because the internals of SSDs such as architecture and FTL algorithm are maintained as

trade secrets, we cannot answer exactly why the performances of the compared SSDs are differ-

ent just with these results. However, it is clear that DRAM-less SSDs have worse I/O perfor-

mances than SSDs with internal DRAM in many results and the I/O performance can be

improved by using the HMB feature of NVMe. In the next section, we investigate how the

HMB is utilized in DRAM-less SSDs through additional experiments.

Use of HMB in DRAM-less SSDs

Almost all modern SSDs use DRAM in their controller as a read cache or write buffer to

improve the I/O performance and lifecycle of NAND flash memory [1, 3–5]. DRAM is also

used to temporarily store the mapping table for address translation [31]. Based on these facts,

we hypothesize that commercial DRAM-less SSDs might use the HMB as a read cache, write

buffer, or mapping table cache as if they were using their own DRAM in the controller. In this

section, we present methods that can analyze how commercial DRAM-less SSDs make use of

the HMB and demonstrate the results through extensive experiments.

Table 2. Host PC environment.

Category Description

Processor Intel i7-8700 3.2GHz

Main memory DDR4 16GB

OS Ubuntu 16.04.4 (Kernel 4.13.10)

Benchmark tool fio-2.2.10

https://doi.org/10.1371/journal.pone.0229645.t002

Table 3. Two workloads by fio.

Parameter LIGHT workload HEAVY workload

#active CPU cores 1 12

#running threads 1 72

Total I/O size 16GB 100% of each SSD

Block size 4KB 4KB

https://doi.org/10.1371/journal.pone.0229645.t003

PLOS ONE HMB in DRAM-less NVMe SSDs

PLOS ONE | https://doi.org/10.1371/journal.pone.0229645 March 2, 2020 5 / 15

https://doi.org/10.1371/journal.pone.0229645.t002
https://doi.org/10.1371/journal.pone.0229645.t003
https://doi.org/10.1371/journal.pone.0229645


Use of HMB as a read cache

First, we present a method that checks whether the HMB is used as a read cache or not by

referencing a previous work [27]. A read cache in an SSD is used to improve the read perfor-

mance by storing data temporarily. If the data requested for a read are not in the read cache or

the amount of data is larger than that of the read cache, the data should be read from NAND

flash memory and thus the latency of the read request will increase. Hence, we perform the

experiment described below to identify whether the HMB is used as a read cache.

1. Open a raw DRAM-less SSD device with the O_DIRECT flag to bypass various caches and

buffers in the operating system [32].

2. Read sufficient data from the SSD to completely fill a read cache if one exists (a maximum

cache size of SCACHE). If the SSD has a read cache, the read cache will be filled with useless

data.

3. Measure the time elapsed while reading data of size s from the SSD. If there is no read

cache, the data should be read from NAND flash memory. Even if there is a read cache,

because it is filled with useless data, s-sized data should be read from NAND flash memory

and stored in the read cache.

4. Repeat step 3) and measure the elapsed time again. If there is a read cache, some or all of

the requested data will be in the read cache. If the size of the requested data is smaller than

or equal to that of the read cache, all the requested data will exist in the read cache (Fig 3(a)

and 3(b)). In this case, the host will read all data only from the read cache in the HMB, so

the read latency will be low. When the size of the requested data is larger than that of the

Fig 2. I/O performance comparison of DRAM-less SSDs (SSD-A, SSD-B, SSD-C) and SSDs with internal DRAM (SSD-D, SSD-E,

SSD-F). (a) LIGHT, sequential read, (b) LIGHT, sequential write, (c) LIGHT, random read, (d) LIGHT, random write, (e) HEAVY,

sequential read, (f) HEAVY, sequential write, (g) HEAVY, random read, and (h) HEAVY, random write.

https://doi.org/10.1371/journal.pone.0229645.g002

PLOS ONE HMB in DRAM-less NVMe SSDs

PLOS ONE | https://doi.org/10.1371/journal.pone.0229645 March 2, 2020 6 / 15

https://doi.org/10.1371/journal.pone.0229645.g002
https://doi.org/10.1371/journal.pone.0229645


read cache, part of the requested data, such as Sd in Fig 3(c), should be read from NAND

flash memory, so the read latency will increase. Clearly, if a DRAM-less SSD does not use

the HMB as a read cache, all data requested in this step will be read from NAND flash

memory.

5. Repeat steps 2) to 4) while increasing the read request size s from SMIN to SMAX in incre-

ments of SINC. As mentioned above, the time taken to process the second read operation

should sharply increase when s exceeds the read cache size.

The pseudocode for this test is given in Fig 4. After setting SMIN to 8 KB, SMAX to 2,048 KB,

and SINC to 2 KB, we performed the above experiment on SSD-A, SSD-B, and SSD-C. The

value of SCACHE was set to 512 MB because these SSDs can be configured to use up to about

500 MB as the HMB space.

The results show that latencies of the re-read operations measured in step 4) increased sud-

denly when the read request sizes of SSD-A, SSD-B, and SSD-C were 32 KB, 768 KB, and 512 KB,

respectively. When the request size is smaller than these values, re-read operations have lower

latency than the first read operations because all the data requested can be accessed from the

read cache instead of NAND flash memory. Note that this behavior is not different even when

the HMB is not activated. As can be seen in Fig 5(d)–5(f), the curves in the graphs when HMB is

not used are similar to previous results. It can be concluded that the DRAM-less SSDs used in

our experiments employ some sort of read cache, but they use other media within the controller

such as single level cell (SLC) NAND flash memory instead of the HMB as a read cache.

Use of HMB as a write buffer

A write buffer in an SSD can improve the write performance and the lifecycle by storing the

updated data into the controller’s DRAM temporarily. If the size of the updated data is larger

than the write buffer size, part of the data should be flushed to NAND flash memory. Hence,

we present the following method that determines whether the HMB is used as a write buffer or

not by referencing a previous work [27].

1. Open a raw DRAM-less SSD device with the O_DIRECT flag to bypass various caches and

buffers in the operating system, as in the previous experiment.

Fig 3. Some scenarios by read requests.

https://doi.org/10.1371/journal.pone.0229645.g003

PLOS ONE HMB in DRAM-less NVMe SSDs

PLOS ONE | https://doi.org/10.1371/journal.pone.0229645 March 2, 2020 7 / 15

https://doi.org/10.1371/journal.pone.0229645.g003
https://doi.org/10.1371/journal.pone.0229645


Fig 5. Test results for the existence of a read cache in the HMB of various SSDs. (a) SSD-A, with HMB, (b) SSD-B, with HMB, (c)

SSD-C, with HMB, (d) SSD-A, without HMB, (e) SSD-B, without HMB, and (f) SSD-C, without HMB.

https://doi.org/10.1371/journal.pone.0229645.g005

Fig 4. An algorithm for testing the existence of a read cache.

https://doi.org/10.1371/journal.pone.0229645.g004

PLOS ONE HMB in DRAM-less NVMe SSDs

PLOS ONE | https://doi.org/10.1371/journal.pone.0229645 March 2, 2020 8 / 15

https://doi.org/10.1371/journal.pone.0229645.g005
https://doi.org/10.1371/journal.pone.0229645.g004
https://doi.org/10.1371/journal.pone.0229645


2. Write an amount of data that is larger than the maximum write buffer size SBUFFER, which

is large enough to fill a write buffer if one exists. If the SSD has a write buffer, the write

buffer will be filled with the useless data.

3. Measure the latency incurred while writing data of specific size s. If there is a write buffer in

the SSD, the write buffer will be already fully filled with the data written in step 2). If a write

operation is requested in this situation, the write buffer will not have enough space to

accommodate it, and thus at least some data should be written to NAND flash memory.

Although it depends on the write buffer management algorithm in the controller, the newly

written data are usually stored in the write buffer and the existing data in the write buffer

are moved to NAND flash memory. If the request size exceeds the write buffer size, the

overflow amount of data will be written into NAND flash memory directly (Fig 6(a)). In

any case, the time taken to write the requested amount of data in NAND flash memory is

measured in this step, and this time will still be the same even without the write buffer.

4. Move data in the write buffer into NAND flash memory using the flush command. Obvi-

ously, if there is no write buffer in the controller, this command will not do anything.

5. Repeat step 3). If the SSD has a write buffer, the latency measured in this step will be less

than that of step 3) because all or part of the requested data is stored in the write buffer (Fig

6(b) and 6(c)). If SSD does not have a write buffer, the results of step 3) and this step will be

similar because the same amount of data as requested for write should be eventually be writ-

ten to NAND flash memory in both cases.

6. Repeat steps 2) to 5) while increasing s from SMIN to SMAX in steps of SINC. If SSD has a

write buffer, the latency of the write operation will dramatically increase when the size of

the data requested exceeds that of the write buffer.

The pseudocode for this test is given in Fig 7. We performed the above experiment with

SSD-A, SSD-B, and SSD-C when SMIN, SMAX, and SINC were 64 KB, 2,048 KB, and 2 KB,

Fig 6. Some scenarios by write requests.

https://doi.org/10.1371/journal.pone.0229645.g006

PLOS ONE HMB in DRAM-less NVMe SSDs

PLOS ONE | https://doi.org/10.1371/journal.pone.0229645 March 2, 2020 9 / 15

https://doi.org/10.1371/journal.pone.0229645.g006
https://doi.org/10.1371/journal.pone.0229645


respectively. Considering the maximum configurable HMB size of SSDs used, we set SBUFFER

to 512 MB.

As Fig 8(a) shows, when the request size is less than 964 KB, because all data to be written can

be stored into a write buffer, the latency of the re-write operation measured in step 5) has a rela-

tively clean curve with respect to the request size. However, if the request size is larger than 964

KB, the distribution of the latency spreads while the values also increase sharply. This is because

the remaining data could not be stored in the write buffer must be written to NAND flash mem-

ory. Again, we can conclude that SSD-A uses other media instead of the HMB as a write buffer

because this behavior is almost same, even when the HMB is not activated (Fig 8(d)).

In the results of SSD-B and SSD-C, there is no similarly clear behavior (Fig 8(b) and 8(c)).

However, we can infer that neither SSD uses the HMB as a write buffer because there is little

difference when HMB is not activated (Fig 8(e) and 8(f)). The hardware specification for

SSD-C notes that it employs an SLC cache to enhance write operations [33].

Use of HMB as a mapping table cache

Recently, many SSDs have begun to use a page-level address mapping technique, which

requires 0.1% of an SSD’s total storage capacity for storing the mapping table [34]. Because the

DRAM of the controller is not large enough to hold all of the mapping table entries, in general,

just a part of mapping table is cached and the entire mapping table is maintained in NAND

flash memory [23].

To determine whether DRAM-less SSDs use the HMB as the mapping table cache, we per-

form the following experiment.

1. As in the other experiments, open the raw DRAM-less SSD device with the O_DIRECT flag.

Fig 7. An algorithm for testing the existence of a write buffer.

https://doi.org/10.1371/journal.pone.0229645.g007

PLOS ONE HMB in DRAM-less NVMe SSDs

PLOS ONE | https://doi.org/10.1371/journal.pone.0229645 March 2, 2020 10 / 15

https://doi.org/10.1371/journal.pone.0229645.g007
https://doi.org/10.1371/journal.pone.0229645


2. Erase all data in the SSD and then write data sequentially up to the capacity of the SSD to

create a new mapping table. Wait long enough for the SSD to complete the internal opera-

tions generated by erase and write. Because some SSDs cannot properly process the format
command, which erases data in the SSDs, we used the dataset management command with

the deallocate option, which is like the trim command of SATA for erasing data in an SSD.

3. Divide the entire space of SSD into d sections and read 512 B from the beginning position

of each section, that is, 0, Sssd/d, 2�(Sssd/d), 3�(Sssd/d), . . . (d-1)�(Sssd/d) while measuring the

elapsed time. Because we only focus on operations for managing the address mapping table

in this experiment, we set the request size to 512 B, which is the minimum read request size,

to reduce the effects of a data read. Because we have sequentially written data into the entire

SSD in step 2), the mapping table entries for all data in the SSD would have been completely

created. If the HMB is used to cache the mapping table entries and has enough free space

for caching them, the mapping table entries for the beginning position of each section

should be cached in this step.

4. Repeat step 3) while increasing d from DMIN to DMAX in steps of DINC and measure the time

taken for processing the read request in each section. As d increases, the number of map-

ping table entries to be cached also increases. If d exceeds the limit of the mapping table

entries that can be cached in the HMB, the time for processing each read request will dra-

matically increase because of cache misses.

The pseudocode for this test is given in Fig 9. For this experiment, we first set DMIN, DMAX,

and DINC to 100, 20,000, and 100, respectively. While SSD-A and SSD-C can allocate from 8

MB to 480 MB for the HMB, SSD-B can allocate only 64 MB.

For SSD-A and SSD-C, the latency sharply increases when d is 2,000, 4,000, 8,000, and

16,000 with respect to HMB size (Fig 10(a) and 10(c)). When HMB is not used, the SSDs show

high latency in general. As a result, we can guess that SSD-A and SSD-C store the address map-

ping table entries in the HMB. Because the HMB size and number of sections when the latency

Fig 8. Test for existence of write buffer in the host memory buffer. (a) SSD-A, with HMB, (b) SSD-B, with HMB, (c) SSD-C, with

HMB, (d) SSD-A, without HMB, (e) SSD-B, without HMB, and (f) SSD-C, without HMB.

https://doi.org/10.1371/journal.pone.0229645.g008

PLOS ONE HMB in DRAM-less NVMe SSDs

PLOS ONE | https://doi.org/10.1371/journal.pone.0229645 March 2, 2020 11 / 15

https://doi.org/10.1371/journal.pone.0229645.g008
https://doi.org/10.1371/journal.pone.0229645


sharply increases are proportional, we can conclude that part of the HMB is used as a mapping

table cache. If both SSDs use the HMB only for the mapping table cache, the size of caching

unit for storing mapping table in the HMB can be estimated to be about 4 KB. For SSD-B,

when the number of sections is less than 200, we can see a small difference in the latency when

using and not using the HMB. However, we cannot conclude that SSD-B uses the HMB as

mapping table cache from this observation alone because it is not possible to experiment with

different HMB sizes.

Fig 9. An algorithm for testing the existence of a mapping table cache.

https://doi.org/10.1371/journal.pone.0229645.g009

Fig 10. Test for existence of mapping table cache in HMB. (a) SSD-A, (b) SSD-B, and (c) SSD-C.

https://doi.org/10.1371/journal.pone.0229645.g010

PLOS ONE HMB in DRAM-less NVMe SSDs

PLOS ONE | https://doi.org/10.1371/journal.pone.0229645 March 2, 2020 12 / 15

https://doi.org/10.1371/journal.pone.0229645.g009
https://doi.org/10.1371/journal.pone.0229645.g010
https://doi.org/10.1371/journal.pone.0229645


Conclusion and future work

In this paper, we studied the effects and roles of the HMB in commercial DRAM-less SSDs

that support the HMB feature. We first experimentally showed that commercial DRAM-less

SSDs have worse I/O performance than SSDs with internal DRAM, but they can improve it

when using the HMB feature of NVMe. Because the internals of SSDs is usually not known, we

also presented several methods that can analyze experimentally how the HMB is used to

improve the I/O performance in DRAM-less SSDs. Experimental results show that DRAM-

less SSDs used in our works mainly use the HMB for caching the address mapping table rather

than the read cache or write buffer.

These results will be useful for the further development and utilization of DRAM-less SSDs

by the wider research community. We believe that the HMB feature can provide many oppor-

tunities for performance improvement in DRAM-less SSDs. Especially, as the HMB is shared

by both the host and the SSD device, the I/O performance can be significantly improved if

they cooperate to use the HMB efficiently. We are now studying how to optimize the I/O soft-

ware stack from file systems to FTL within SSDs by using the HMB for I/O performance

improvement.

Author Contributions

Conceptualization: Kyusik Kim, Taeseok Kim.

Data curation: Kyusik Kim.

Formal analysis: Kyusik Kim, Taeseok Kim.

Funding acquisition: Taeseok Kim.

Investigation: Kyusik Kim.

Methodology: Kyusik Kim, Taeseok Kim.

Project administration: Taeseok Kim.

Resources: Kyusik Kim.

Software: Kyusik Kim.

Supervision: Taeseok Kim.

Validation: Kyusik Kim, Taeseok Kim.

Visualization: Kyusik Kim, Taeseok Kim.

Writing – original draft: Kyusik Kim.

Writing – review & editing: Taeseok Kim.

References

1. Shin IH, Kim JD. Performance analysis of buffer management policy considering internal parallelism of

solid state drives. IEICE Electronics Express. 2018; 15(15): 1–8.

2. Lee SW, Moon B, Park C. Advances in flash memory SSD technology for enterprise database applica-

tions. Proceedings of the 2009 ACM SIGMOD International Conference on Management of data. 2009:

863–870

3. Tavakkol A, Gómez-Luna J, Sadrosadati M, Ghose S, Mutlu O. MQSim: A Framework for Enabling

Realistic Studies of Modern Multi-Queue SSD Devices. Proceedings of the 16th USENIX Conference

on File and Storage Technologies. 2018: 49–66.

PLOS ONE HMB in DRAM-less NVMe SSDs

PLOS ONE | https://doi.org/10.1371/journal.pone.0229645 March 2, 2020 13 / 15

https://doi.org/10.1371/journal.pone.0229645


4. Zhang J, Kwon M, Gouk D, Koh S, Lee C, Alian M, et al. FlashShare: Punching through server storage

stack from kernel to firmware for ultra-low latency SSDs. Proceeding of the 13th USENIX Symposium

on Operating Systems Design and Implementation. 2018: 477–492.

5. Kim BS, Yang HS, Min SL. AutoSSD: an autonomic SSD architecture. Proceedings of the 2018 USE-

NIX Annual Technical Conference. 2018: 677–690.

6. Zuolo L, Zambelli C, Micheloni R, Olivo P. Solid-State Drives: Memory Driven Design Methodologies for

Optimal Performance. Proceedings of the IEEE. 2017: 1589–1608.

7. Huang S. DRAM-Less SSD facilitates HDD replacement. Flash Memory Summit. 2015.

8. Wu M. DRAM-less SSD—The new trend for embedded system. Flash Memory Summit. 2015.

9. Yang S. Improving the design of DRAM-Less PCIe SSD. Flash Memory Summit. 2017.

10. Zhong J. Small Form Factor for PCIe and SATA Devices. Flash Memory Summit. 2017.

11. Chen M. Which PCIe BGA SSD Architecture is Right for Your Application. Flash Memory summit. 2017.

12. Alvares N. Innovative Chipset Solutions for Accelerating the Data Economy. Flash Memory Summit.

2019.

13. Dorgelo J. Host memory buffer (HMB) based SSD system. Flash Memory Summit. 2015.

14. Huffman A. NVM Express Base Specification Revision 1.3c. 2018. [cited 1 Jul 2019]. https://

nvmexpress.org/wp-content/uploads/NVM-Express-1_3c-2018.05.24-Ratified.pdf

15. Linux kernel NVMe device driver. [cited 1 Jul 2019]. https://git.kernel.org/pub/scm/linux/kernel/git/

stable/linux.git/tree/drivers/nvme/host/pci.c?h=v4.13.10

16. Ramseyer C. Silicon Motion SM2263XT HMB SSD Preview. Tom’s Hardware. 18 Jan 2018. https://

www.tomshardware.com/reviews/silicon-motion-sm2263xt-controller-preview.5404.html Cited 1 Jul

2019.

17. Marvell 88NV1160 product brief. [cited 1 Jul 2019]. https://www.marvell.com/storage/assets/Marvell-

88NV1160-Product-Brief-20160830.pdf

18. Silicon motion SM2263EN/SM2263XT Product brief. [cited 1 Jul 2019]. http://en.siliconmotion.com/

download.php?t=U0wyRnpjMlYwY3k4eU1ERTRMekEyTHpBMkwzQnliMlIxWTNRMk9EWTFNakk1

TlRBMkxuQmtaajA5UFVSTlh5QlRUVEl5TmpORlRsOVRUVEl5TmpOWVZBPT1D

19. NVMe Overview. [cited 1 Jul 2019]. https://www.nvmexpress.org/wp-content/uploads/NVMe_

Overview.pdf

20. Peng B, Zhang H, Yao J, Dong Y, Xu Y, Guan H. MDev-NVMe: A NVMe storage virtualization solution

with mediated pass-through. Proceedings of the 2018 USENIX Annual Technical Conference. 2018:

665–676.

21. Kim S, Yang JS. Optimized I/O determinism for emerging NVM-based NVMe SSD in an enterprise sys-

tem. Proceedings of the 55th Annual Design Automation Conference. 2018;56: 1–6.

22. Hong JH, Han SW, Chung EY. A RAM cache approach using host memory buffer of the NVMe inter-

face. Proceeding of 2016 International SoC Design Conference. 2016: 109–110.

23. Jeong W, Cho H, Lee Y, Lee J, Yoon S, Hwang J, et al. Improving flash storage performance by caching

address mapping table in host memory. Proceeding of the 9th USENIX Workshop on Hot Topics in Stor-

age and File Systems. 2017.

24. Bjørling M, Gonzalez J, Bonnet P. LightNVM: The Linux Open-Channel SSD Subsystem. Proceedings

of 15th the USENIX conference on File and Storage Technologies. 2017:359–374.

25. Lu Y, Zhang J, Yang Z, Pan L, Shu J. OCStore: Accelerating Distributed Object Storage with Open-

Channel SSDs. Proceedings of IEEE 39th International Conference on Distributed Computing Systems.

2019.

26. González J, Bjørling M. Multi-Tenant I/O Isolation with Open-Channel SSDs. Nonvolatile Memory

Workshop. 2017.

27. Kim JH, Jung D, Kim JS, Huh J. A methodology for extracting performance parameters in Solid State

Disks (SSDs). Proceeding of 2009 IEEE International Symposium on Modeling, Analysis & Simulation

of Computer and Telecommunication Systems. 2009: 1–10.

28. Ko B, Kim Y, Kim T. Performance improvement of I/O subsystems exploiting the characteristics of solid

state drives. Proceeding of International Conference on Computational Science and Its Applications,

2011: 528–539.

29. Jung M, Kandemir M. Revisiting widely held SSD expectations and rethinking system-level implications.

Proceeding of the ACM SIGMETRICS/international conference on Measurement and modeling of com-

puter systems. 2013: 203–216.

30. Flexible I/O Tester. [cited 1 Jul 2019]. https://github.com/axboe/fio

PLOS ONE HMB in DRAM-less NVMe SSDs

PLOS ONE | https://doi.org/10.1371/journal.pone.0229645 March 2, 2020 14 / 15

https://nvmexpress.org/wp-content/uploads/NVM-Express-1_3c-2018.05.24-Ratified.pdf
https://nvmexpress.org/wp-content/uploads/NVM-Express-1_3c-2018.05.24-Ratified.pdf
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/tree/drivers/nvme/host/pci.c?h=v4.13.10
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/tree/drivers/nvme/host/pci.c?h=v4.13.10
https://www.tomshardware.com/reviews/silicon-motion-sm2263xt-controller-preview.5404.html
https://www.tomshardware.com/reviews/silicon-motion-sm2263xt-controller-preview.5404.html
https://www.marvell.com/storage/assets/Marvell-88NV1160-Product-Brief-20160830.pdf
https://www.marvell.com/storage/assets/Marvell-88NV1160-Product-Brief-20160830.pdf
http://en.siliconmotion.com/download.php?t=U0wyRnpjMlYwY3k4eU1ERTRMekEyTHpBMkwzQnliMlIxWTNRMk9EWTFNakk1TlRBMkxuQmtaajA5UFVSTlh5QlRUVEl5TmpORlRsOVRUVEl5TmpOWVZBPT1D
http://en.siliconmotion.com/download.php?t=U0wyRnpjMlYwY3k4eU1ERTRMekEyTHpBMkwzQnliMlIxWTNRMk9EWTFNakk1TlRBMkxuQmtaajA5UFVSTlh5QlRUVEl5TmpORlRsOVRUVEl5TmpOWVZBPT1D
http://en.siliconmotion.com/download.php?t=U0wyRnpjMlYwY3k4eU1ERTRMekEyTHpBMkwzQnliMlIxWTNRMk9EWTFNakk1TlRBMkxuQmtaajA5UFVSTlh5QlRUVEl5TmpORlRsOVRUVEl5TmpOWVZBPT1D
https://www.nvmexpress.org/wp-content/uploads/NVMe_Overview.pdf
https://www.nvmexpress.org/wp-content/uploads/NVMe_Overview.pdf
https://github.com/axboe/fio
https://doi.org/10.1371/journal.pone.0229645


31. Xie W, Chen Y, Roth P. Exploiting internal parallelism for address translation in solid-state drives. ACM

Transactions on Storage. 2018; 14(4): 1–30.

32. open(2)—Linux manual page. [citied 1 Jul 2019]. http://man7.org/linux/man-pages/man2/open.2.html

33. Tammuz M730 512GB. [cited 1 Jul 2019]. http://tammuz.co.kr/post/238

34. Kim H, Shin D, Jeong YH, Kim KH. SHRD: Improving spatial locality in flash storage accesses by

sequentializing in host and randomizing in device. Proceedings of the 15th USENIX Conference on File

and Storage Technologies. 2017: 271–284.

PLOS ONE HMB in DRAM-less NVMe SSDs

PLOS ONE | https://doi.org/10.1371/journal.pone.0229645 March 2, 2020 15 / 15

http://man7.org/linux/man-pages/man2/open.2.html
http://tammuz.co.kr/post/238
https://doi.org/10.1371/journal.pone.0229645

