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Abstract: Near real-time urban traffic analysis and prediction are paramount for effective intelligent
transport systems. Whilst there is a plethora of research on advanced approaches to study traffic
recently, only one-third of them has focused on urban arterials. A ready-to-use framework to support
decision making in local traffic bureaus using largely available IoT sensors, especially CCTV, is yet
to be developed. This study presents an end-to-end urban traffic volume detection and prediction
framework using CCTV image series. The framework incorporates a novel Faster R-CNN to generate
vehicle counts and quantify traffic conditions. Then it investigates the performance of a statistical-
based model (SARIMAX), a machine learning (random forest; RF) and a deep learning (LSTM) model
to predict traffic volume 30 min in the future. Tests at six locations with varying traffic conditions
under different lengths of past time series are used to train the prediction models. RF and LSTM
provided the most accurate predictions, with RF being faster than LSTM. The developed framework
has been successfully applied to fill data gaps under adverse weather conditions when data are
missing. It can be potentially implemented in near real time at any CCTV location and integrated
into an online visualization platform.

Keywords: traffic prediction; deep learning; intelligent transportation systems; IoT; geospatial data

1. Introduction

Near-future predictions of traffic conditions across an arterial road network have been
a fundamental part of intelligent transport system (ITS) technology for a few decades now.
Analyzing and predicting traffic conditions in real time can effectively support urban road
traffic management, resulting in reduced road disruptions and delays, providing congestion
warnings as well as allocating resources for a safe and sustainable urban infrastructure.
Nowadays, ITSs operate in conjunction with the Internet of Things (IoT) [1] and big data
analytics [2] for effective urban traffic management, indicating the importance of two
main aspects: (a) The traffic flow or volume analysis and prediction approaches applied;
and (b) the traffic sensor infrastructure installed and used. Parallel to those two aspects,
computational capacity has to be considered when integrating models and sensors for
real-time applications and automated IoT sensing systems.

Traffic flow analysis and prediction have been a major area of interest within the field
of ITSs since the late 1970s [3]. Typically, the number of vehicles constitutes one of the main
parameters to analyze urban traffic behavior, also indicative of traffic volume that is used
hereafter. Additional parameters include type, height and other characteristics of a vehicle.
Many approaches have been developed to extract traffic volume and other parameters
from various sensors. The faster region based convolutional neural network (Faster R-
CNN; [4]) has been a well-established deep learning approach used for vehicle detection
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and classification from images of camera sensors set up at road intersections or from aerial
platforms. The study in [5] investigated the Faster R-CNN performance in vehicle detection
by optimizing parameters for model fine-tuning. To run their experiments they used the
KITTI open-source benchmark image datasets, developed by the Karlsruhe Institute of
Technology and Toyota Technological Institute (KITTI; [6]). Another benchmark image
dataset is Common Objects in Context (COCO; [7]) introduced by Microsoft. Both datasets
contain images from the natural and built environment from various regions, used to train
deep learning models. As a result, open to the public pre-trained frozen graph inferences
have been established (e.g., in [8]). These pre-trained models have supported research
on vehicle count generation and vehicle classification. However, to accurately quantify
the traffic conditions across a local arterial network, datasets obtained from the network’s
infrastructure are essential.

Regarding traffic prediction approaches, neural network-based methods have been
the most popular ones according to the review in [9]. For instance, the study in [10]
has developed a long short-term memory (LSTM) model, which is a type of advanced
recurrent neural network (RNN), for predicting vehicle speeds on expressways using
data from roadside loop detectors. More recently, the authors in [11] have combined
multiple LSTM models with k-nearest neighbor (KNN), a traditional machine learning (ML)
approach, to predict traffic using data from nearby loop detectors with high spatiotemporal
correlations. Additionally, the authors of [12] developed a stacked auto-encoder model that
includes multiple layers of contemporary neural networks to predict traffic on freeways.
In all these studies, the authors have reported that their advanced proposed architectures
outperform other simple approaches with an approximate average accuracy improvement
ranging from 3% to 20%.

It is notable that the aforementioned studies [10–12] demonstrate exceptional ex-
amples of innovative model development. However, it is not always guaranteed that
advanced deep learning models can successfully be applied to any type of traffic data.
According to [13], simple architectures can sometimes work more efficiently than complex
advanced methods. The latter usually demand a series of “trial and error” tests for tuning
parameterization, increasing their life cycle cost [13]. The choice of prediction model is
strongly dependent on the type of prediction problem and the characteristics of the traffic
data used as input [13]. Nevertheless, compared to traditional ML methods, deep learning
models are not easily interpretable [14], hence, expert knowledge is often required [15].

In terms of conventional traffic sensor infrastructure, numerous studies have exten-
sively used in-ground or roadside inductive loop detectors for traffic prediction [2,12,16,17].
Other popular traffic sensors include the global navigation satellite systems (GNSSs) em-
bedded in smartphones [18] or those installed in taxis [19]. However, the aforementioned
sensor infrastructure requires a particular installation and can be relatively costly for traf-
fic management bureaus when installed at multiple locations across an entire city or in
hundreds of taxis. An alternative low-cost [2] and widely available sensor infrastructure
can be closed-circuit television (CCTV) systems which have been primarily employed for
traffic surveillance, vehicle detection (e.g., automatic number plate recognition (ANPR)
systems; [20]) and tracking [21] as well as event recognition applications [22–24], but not
explicitly used for traffic prediction. Compared to studies using loop detectors and GNSS
sensors, relatively little research on prediction has been conducted with CCTV datasets in
recent years (e.g., in [25]). In addition to this, more published research has been conducted
on highways or freeways whilst urban traffic prediction is yet to be investigated fully,
as only one-third of published work is focused on urban arterials, as recently reported
in [9]. To facilitate such research in urban environments, CCTV datasets have recently
become freely available from many local authorities in the UK through initiatives such as
the Urban Observatory (UO) project in the North East of England, hosted by Newcastle
University [26].

With the emergence of deep learning technology, a considerable literature has grown
up primarily around the development of novel individual architectures. On the one hand,
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this, together with the freely available benchmark datasets (e.g., COCO) and raw sensor
observations (e.g., CCTV image series), has led to the growth of numerous open-source
libraries consisting of state-of-the-art object detection and time series prediction approaches
(e.g., in [8,27]). On the other hand, as also discussed in a very recent study in [28], to apply
deep learning approaches for real-time predictions requires high computational capacity to
train and update prediction models when new real-time traffic information is retrieved.
Whilst there is a plethora of advanced approaches, a seamless practical workflow for both
traffic flow detection and prediction with minimal computational cost is yet to be further
developed. Moreover, combined traffic detection and prediction from raw IoT sensing
data would significantly benefit traffic monitoring and management, especially when
used on integrated platforms where raw data, detections and predictions can be explored
and visualized.

To that end, the presented research aims to develop an end-to-end automated CCTV-
based traffic volume analysis and prediction framework that is computationally fast and
effective to be potentially used for near real-time applications. The main motivation of the
research is to take advantage of commonly available raw IoT CCTV imagery alongside
advanced algorithms within an integrated pipeline (hence the term “end-to-end”) to pro-
vide a twofold outcome: (a) Quantification of urban traffic and (b) estimation of future
traffic conditions. This framework is intended to support the decision-making process
in a local traffic bureau for proactive actions under disruptive circumstances. Specifi-
cally, the framework incorporates state-of-the-art CNNs for generating vehicle counts as
identified in CCTV image series, quantifying the arterial traffic volume conditions of the
North East region, UK. It then utilizes free and open-source libraries for three models (i.e.,
one statistical-based model, one machine learning model and one deep learning model)
to predict traffic volume at multiple locations across the North East. Tests assess the three
prediction models at six locations with different lengths of historical vehicle counts and by
incorporating calendar attributes as well as spatio-temporal information from other nearby
CCTV cameras. Additionally, a use case of the framework is demonstrated for a six-day
period to fill gaps when data are missing from the CCTV image series. The possibility of
framework integration with an online demonstrator is also explored.

The main contributions of the study are as follows:

• To demonstrate the use of raw CCTV images for traffic prediction in complex urban
areas within a full end-to-end framework;

• To provide constantly updated traffic volume (i.e., vehicle counts) as an open-source
dataset to the general public, traffic managers and the research community;

• To develop an efficient traffic detection and prediction framework with the potential
for near real-time implementation, such as integrating into a live online platform.

The remainder of the paper is organized as follows: In Section 2, related work is de-
scribed. In Section 3, the methodology is presented, including the data used, the developed
framework and the experiments conducted. Section 4 demonstrates the results of traffic
prediction per experiment. In Section 5, a discussion of the results is presented with the
future directions of the developed framework and Section 6 concludes the main findings of
the work.

2. Related Work

2.1. CNNs for Vehicle Detection

Since early 1990s, CNNs have been applied in various studies, such as the recogni-
tion of handwritten numbers [29], but they have explicitly facilitated research in image
processing and object recognition [14]. Deep CNNs consist of multiple neurons with
learnable filters, which are activated after processing a raw input image using various
convolutional operations (e.g., gradients, blobs, edge filters etc.). A structured network
of neurons can localize subtle characteristics of features in a raw image using a combina-
tion of learnable variables (e.g., weights and biases) [14]. Nowadays, an advanced CNN
architecture, Faster R-CNN, has been widely implemented in vehicle detection from im-
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ages [5]. R-CNN segments each convolutional layer using a sliding window into proposed
regions, which contain the predicted location of multiple anchor boxes of different sizes
and scales per object. A global optimization refines the predicted box location with the aid
of regression algorithms.

Due to the design of region proposals, Faster R-CNN outperforms in object detec-
tion compared to other CNN models, as reported in [5]. The study in [30] assessed the
performance of Faster R-CNN against the single shot multibox detector (SSD) MobileNet;
an alternative deep CNN specifically designed for mobile applications [31]. They found
that a pre-trained Faster R-CNN ResNet model fine-tuned with 700 CCTV images could
identify more small vehicles in the image background, providing better precision and
fewer false negatives than the fine-tuned SSD model. To address the issue of varying
vehicle scales in a natural scene, the study in [32] optimized the default anchor box size and
changed the default combination of convolutional layers in the Faster R-CNN architecture
using KITTI image datasets. That way, they further improved its performance in detecting
small vehicles by circa 7%.

2.2. Traffic Prediction Approaches

Over the years, extensive reviews have categorized the numerous traffic prediction
approaches based on different factors, such as the input data, the application, the method-
ology, etc. According to the review in [33], traffic prediction approaches can be generally
categorized as naïve, parametric and nonparametric. An example of a naïve approach,
applied in [34,35], included the calculation of the historical average (HA) to predict future
traffic over a specified time interval. The authors in [35] also applied a naïve approach
solely based on the traffic values of the previous day to compute the traffic for the follow-
ing day in the same time interval. Even though naïve methods are computationally easy
to implement, they rely on the past traffic behavior without additional information and
therefore are limited in predicting abnormal situations [33,34].

Based on previous reviews [3,33], parametric approaches mostly include analytical
and traffic simulation-based methods. In such methods, traffic flow or volume is pre-
dicted via mathematical equations derived from traffic theory [10,33]. As mentioned
in [10] and [33], these methods are still widely employed as they use physical assump-
tions to aid in interpreting transportation functionality. However, they are often weak in
modeling real-time traffic systems, especially when such systems comprise big data [10].
Other parametric approaches also include statistical-based methods, with the seasonal
autoregressive integrated moving average (ARIMA; [36]) model being one of the most
widely established strategies for traffic prediction [35,37–39]. A series of ARIMA variants,
such as seasonal ARIMA (SARIMA; [39]), ARIMA with exogenous features (ARIMAX; [40])
and others, were gradually developed over the years. In theory, an ARIMA model, as a
linear statistical approach, considers that the properties of a traffic time series are constant
and any variations around its mean typically follow a consistent pattern [10]. As ARIMA
models often mishandle the stochastic and nonlinear nature of traffic behavior, it has
been superseded through the emergence of nonparametric approaches. However, ARIMA
variants are still used in traffic prediction as benchmarks for comparative purposes [3] due
to their ease of implementation.

Typical nonparametric approaches primarily include: Kalman filtering [41]; sup-
port vector regression (SVR) [25,42]; random forest (RF) regression [43]; and traditional
artificial neural networks (ANNs) [44]. Among those, the review here is focused on RF
regression. RF is a supervised ML algorithm based on decision tree models where data
are sub-sampled, trained and predicted multiple times under individual well-structured
trees [43,45]. A particular averaging method is applied to assess the variance and accuracy
per prediction and a mean prediction is finally voted on while the algorithm converges [43].
As reported in [46], RF can handle overfitting with sufficient speed when large data series
are used, compared to other similar regression tree algorithms. A more recent study in [47]
reported that RF achieved the lowest average errors compared to other regression models
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for predicting travel times across an urban road network. An empirical analysis in [48]
acknowledged the limitation that fine-tuning is a time-consuming procedure. In addi-
tion, a previous study in [49] showed that RF requires little time for tuning, favorable for
real-time applications.

Enhanced nonparametric approaches primarily include recently developed deep
learning RNNs. LSTM is one of the most widely implemented RNNs for traffic analysis,
especially after the study in [10]. LSTM is specifically designed to memorize long-term de-
pendencies [11]. Typically, an LSTM is formed by a chain of repeating memory blocks, each
of them consisting of interactive neural network layers, as introduced in [50]. These layers
are regulated by gating units to control the input/output information flow, enabling each
block to update its memory. A more detailed description can be found in [10,50].

In traffic prediction, the temporal aspect (i.e., specified time horizon to predict traffic
values) typically depends on the scope of the application (e.g., long- or short-term predic-
tion) [3]. However, when developing a particular model, it is important to consider the
spatial dependency across a road network [3,9]. To address this in a simple way, the study
in [12] combined traffic data from multiple loops along a freeway and calculated an av-
erage traffic speed that was used as input for LSTM predictions. A more sophisticated
way was developed by [51], transforming the traffic speeds of a road network into a 2D
image where speed in each road segment was represented with different pixel values.
These images were then used as input to a CNN alongside an LSTM model to capture
the spatio-temporal dependencies for speed prediction. Alternatively, the study in [52]
optimized an origin–destination (OD) matrix to spatially represent a traffic network ca-
pable of predicting how traffic propagates from one link to adjacent links with the aid of
an ARIMA model. They used historic data wherever available, while traffic flows were
simulated to fill data gaps along missing links. The aforementioned studies demonstrated
that the spatial aspect in traffic prediction mainly relies on data availability, especially for a
city-scale prediction application.

3. Methodology

3.1. Data Description

Tests were conducted at six CCTV locations in a part of the North East urban arterial
road network in Newcastle upon Tyne and Gateshead, UK. CCTV raw datasets were
retrieved from North East Combined Authority (NECA) Travel and Transport Data [53],
UK. These datasets are freely available and, together with the CCTV locations, can be
retrieved from the Urban Observatory (UO; [54]) API. The chosen CCTV cameras are
located on roads with different classifications, such as A roads (e.g., A1058) and B roads
(e.g., B1305), with various traffic conditions and volumes.

As CCTV cameras are set up by NECA operators to automatically switch views every
few minutes, an image is captured from one of a number of different directions every time
the camera turns. The number of views per CCTV differs. In addition, as every CCTV has
a set of specific views, and vehicle counts of a single camera do not necessarily follow an
identical pattern in all views (e.g., having city center surface parking in view provides high
counts in off-peak hours). It should be noted that the CCTV cameras are categorized per
location and not per view on NECA and UO web platforms. Due to this particular setup,
the estimated vehicle counts have an irregular time interval and can often include gaps.

3.2. Workflow and Experiments

The overarching end-to-end framework of the CCTV-based traffic volume analysis and
prediction is schematically presented in Figure 1. CCTV-based vehicle counts detected with
a fine-tuned Faster R-CNN constitute the current state of traffic volume. Those generated
vehicle counts then feed the prediction analysis which can support decision making before,
during and after a disruptive event via an online platform.
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Figure 1. End-to-end CCTV-based traffic volume analysis and prediction.

The methodological workflow of the framework is broken down into five stages,
as follows: (1) Fine-tuning of pre-trained Faster R-CNN; (2) estimation of vehicle counts
and post-training evaluation; (3) normalization of traffic volume data; (4) model parame-
terization, training and prediction; (5) implementation. The first two stages refer to vehicle
count generation from CCTV images which characterize the traffic volume. Stage 3 pre-
pares traffic datasets for model training and prediction. The final stage of implementation
demonstrates a use case of the workflow for a six-day period. It also explores integrating
the fine-tuned models for traffic volume detection and prediction on web-based platforms
(e.g., Flood-PREPARED architecture [55]). Note the explanation of the integration is out of
the scope of the presented work, and will be covered in a future study.

Regarding the first two stages, preliminary investigations were carried out in [30] to
analyze the optimal deep learning neural network for vehicle detection in CCTV images
with respect to precision and recall. The results showed that the fine-tuned Faster R-CNN
model provided a better harmonic mean (F) (80%) than the fine-tuned SSD MobileNet,
but with a relatively unsatisfactory recall (69%). Therefore, additional tests involving the
development of a frozen inference graph model with improved performance in vehicle
detection are carried out in this study.

In stage 4, three prediction approaches from parametric and nonparametric cate-
gories were tested, namely: SARIMAX, RF and LSTM. These were assessed under two
different scenarios: Firstly using one-month (from midnight 1 July to midnight 2 Au-
gust 2019) and four-month (from midnight 1 April to midnight 2 August 2019) periods
of training/validation datasets and secondly including spatio-temporal time series from
neighboring CCTV sensors via an OD matrix. To keep the consistency across all experi-
ments for direct comparison, 10% of the experiment dataset served as a validation dataset.
After identifying the optimal settings per prediction model, the models were re-trained
using the entire dataset without omitting the 10%. In all experiments, final predictions
were evaluated with respect to detected vehicles counts, on 2 August 2019 from 06.30 to
19.00, which constitute the “ground truth” test dataset. A final prediction assessment was
also conducted over the period 3–9 August 2019 and included in stage 5 of the method-
ological workflow.

3.3. CCTV-Based Traffic Volume (Stages 1 and 2)

Additional tests using the same computing platform to those described in [30] assessed
the performance of two model types with precision, recall and F, reported in Table 1.
More information about the calculation of the aforementioned metrics can be found in [30].
The Faster R-CNN ResNet 101 and the Faster R-CNN Inception V2 are the two model
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types tested. Pre-trained frozen inference graphs of those types with COCO datasets were
retrieved from [8]. The Faster R-CNN architecture consists of a convolution layer where a
600 × 1024 image is fed through, followed by a pooling, a fully connected and a softmax
layer. A 0.7 and a 0.6 intersection over union (IoU) threshold was used in the initial and
second stage of the model post-processing, respectively. The maximum number of region
proposals was set at 300, the localization loss weight was equal to 2 and the classification
loss weight was set to unity. Most parameters were configured as the default, based on the
configurations of pre-trained models in [8]. A learning rate of 0.0002 and a 0.9 momentum
optimizer were used during the model development with the different numbers of epochs
per model indicated in Table 1. To fine-tune the pre-trained models, a total of 1269 NECA
CCTV images from the year 2018 were used. Fifty NECA CCTV images which were not
included in the training dataset were used as ground truth.

Table 1. Faster R-CNN post-training evaluation of 50 ground truth images.

Model No of Images
/Epochs (K)

Identified
Vehicles

True
Positives

False
Positives

False
Negatives Precision (%) Recall (%) F (%)

Faster R-CNN
ResNet 101 1269/26 326 318 8 74 97.5 81.1 88.6

Faster R-CNN
ResNet 101 1269/164 330 320 10 77 97.0 80.6 88.0

Faster R-CNN
Inception V2 1269/40 319 307 12 85 96.2 78.3 86.4

Faster R-CNN
Inception V2 1269/91 318 308 10 84 96.9 78.6 86.8

Faster R-CNN
Inception V2 569/200 374 355 19 42 94.9 89.4 92.1

Any type of vehicle was manually labeled as a single class by two operators; the first
one labeled 569 images and the second operator 700 images. After conducting six tests,
as seen in Table 1, it was found that mixing the training images from two operators
increased the number of false negatives with a low recall and harmonic mean. This may
have been caused by unlabeled vehicles in the set of 700 images, resulting in false negatives.
The Faster R-CNN Inception V2 model provided the highest number of identified vehicles
and the best recall and harmonic mean among all tests.

Figure 2 shows the vehicle detection results of the NC_A1058C1 CCTV camera from
two different views. Figure 2a illustrates that nine vehicles were identified, with 19 missed
because they were relatively small in size in the background of the image. Droplets on the
CCTV sensor deteriorated the image quality. In Figure 2b, the fine-tuned model identified
nine out of 10 vehicles from a second view of the NC_A1058C1 camera approximately
40 min later when the rain had stopped. It should be noted that the traffic volume estimated
here incorporates vehicle counts from different lanes and directions, as CCTV cameras
alter views (Figure 2). Moreover, the fine-tuned model required circa 0.4 s per image to
detect and record the number of vehicles as well as export a single image, as in Figure 2.
For that, an i5-6500 CPU@3.2GHz Ubuntu 16.04.5 LTS with a graphics processing unit
(GPU) Quadro P4000 was used. The vehicle count time series generated with the Faster
R-CNN fine-tuned model served as training, validation and “ground truth” test datasets in
the experiments, presented here in stages 4 and 5.



Sensors 2021, 21, 629 8 of 23

 (a) (b)

Figure 2. Detected vehicles on 2 August 2019 in two out of four views of the NC_A1058C1 CCTV. (a) View towards a main
road; (b) View towards a residential street.

3.4. Data Normalization (Stage 3)

Prior to any model training and prediction, data normalization (stage 3) is imple-
mented, as follows:

(1) CCTV cameras with which prediction is planned to be modeled are designated as
target cameras. Six target cameras are used in all experiments here, but the framework can
be designed to select more CCTV cameras;

(2) To ensure regularity, time series are aggregated by calculating the average vehicle
count over a time period. This aggregation period can overcome the challenge of varying
camera views per location. The selection of an optimal aggregation period is described in
stage 4;

(3) A filtering process flags those cameras with null counts for two consecutive days,
excluding them from becoming target cameras, as they do not provide adequate observa-
tions for model training. The same filtering process excludes cameras with counts of an
identical value for two consecutive days, to remove noise from the time series to be used as
a training dataset;

(4) Filtered time series are reshaped to data formats suitable for SARIMAX, RF and
LSTM algorithms, with respect to a specified aggregation period, the input exogenous
attributes and a past sequence. The latter constitutes a time series in the past that can be
used as input for predicting one step forward in the future.

One month of traffic volume was used for training (Figure 3). The 25% highest flow
on weekdays and weekends is equivalent to the 3rd quartile of the July 2019 dataset.
Intuitively, this indicates variations in traffic behavior during peak hours due to people
driving from/to work. Because the chosen CCTV sensors represent traffic volume for roads
of different classifications, the number of vehicles varies, as seen on the y-axes in Figure 3.
For instance, the NC_B1307B1 CCTV showed the lowest variation between weekends and
weekdays compared to the NC_A695E1 CCTV (Figure 3). Similarly, different low and
high peaks were observed at the six CCTV sensors in a single day. To accommodate such
daily and weekly temporal patterns in the prediction models, four exogenous factors were
added in the input time series as follows: (1) Weekend or weekday; (2) day of the week;
(3) period of the day before; and (4) after midnight.
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Figure 3. Aggregated vehicle counts showing the traffic volume during July 2019 (including
1 August 2019) at the six CCTV locations. Black and red lines represent the highest 25% of traf-
fic volume on weekdays and weekends, respectively. Gray zones indicate weekends. Note the
different scales of the y-axes.

3.5. Evaluation Metrics for Prediction

Three error metrics were adopted to assess the prediction models’ performance,
namely, (a) mean absolute error (MAE); (b) the mean absolute percentage error (MAPE);
and (c) the root mean square error (RMSE). These were calculated as follows:

MAE =
1
N ∑N

i=1|xi − yi| (1)

MAPE =
1
N ∑N

i=1|xi − yi| (2)

RMSE =

√
1
N ∑N

i=1 (xi − yi)
2 (3)

where N is the length of evaluation data and xi is the measured and yi the predicted
value of the ith observation. It should be noted that no issue with division by zero in
(1) was encountered, as vehicle counts were always greater than zero during traffic hours
(06.30–19.00) for the test dataset.
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3.6. Prediction Model Parameterization (Stage 4)

To identify optimal parameters per model before conducting the actual experiments,
a tuning process was carried out using 90% of the one-month (July 2019) datasets as training
data and 10% as validation data.

The tuning process for RF model development involved the setting of four parameters
as follows: Number of trees; maximum depth of a tree; minimum number of samples to
split an internal node of a tree; and minimum number of samples at the leaf node (i.e.,
the tree base), as defined in the Python scikit-learn library [56]. The tuning process was
applied to the one-month time series of the NC_A167E1 CCTV (Figure 3). The process
also examined the RF prediction performance using different hours and minutes for past
sequence and aggregation periods, respectively, as seen in Table 2. To estimate the best
combination of parameters, a grid search algorithm was adopted using a 3-fold cross
validation strategy in GridSearchCV [57] calculating the MAE, as reported in Table 2. The 3-
fold strategy performs cross-validation after fitting a number of RF models equivalent to
the number of candidates (i.e., various combinations of parameters) multiplied by three.
For instance, 9600 candidates were cross validated three times for tuning with 30 min
aggregated training data, which required 10 h on an i5-6500 CPU@3.2GHz Ubuntu 16.04.5
LTS. MAPE and RMSE metrics were calculated against the 10% validation dataset of the
one-month time series.

Table 2. Optimal random forest (RF) parameters after grid search with evaluation metrics.

Agg. Period (min) No. of Trees Max. Depth of a Tree Min. No. of
Samples to Split

Min. No. of
Samples at Leaf MAE/MAPE/RMSE

Past sequence: 2 h
15 min 105 55 5 5 0.99/0.27/1.08
30 min 115 100 8 5 0.86/0.20/0.94
60 min 93 75 6 2 0.84/0.12/0.64

Past sequence: 6 h
15 min 134 80 5 2 0.98/0.18/0.77
30 min 115 90 7 5 0.86/0.17/0.85
60 min 121 55 8 7 0.84/0.15/0.79

Past sequence: 12 h
15 min 127 95 5 4 0.97/0.21/0.90
30 min 105 30 10 3 0.86/0.15/0.76
60 min 112 45 5 3 0.87/0.11/0.61

Past sequence: 24 h
15 min 96 40 10 4 0.95/0.21/0.94
30 min 96 25 10 4 0.82/0.15/0.75
60 min 90 45 7 3 0.80/0.11/0.68

As evidenced in Table 2, all evaluation metrics became minimum when data were
aggregated over 60 min, regardless of the given past sequence. However, such a period
smoothed the traffic pattern and disregarded subtle traffic behavior that occurred within
an hour. In contrast, due to higher temporal resolution, a 15 min aggregation period
could incorporate abrupt changes in traffic behavior, but with high MAE and RMSE
metrics close to unity in most cases. To overcome this, a 30 min aggregation period was
considered as the trade-off between performance and the sufficient capture of unexpected
short-term traffic behavior. This time period was also considered suitable as it could
accommodate the challenges of varying views in the CCTV images. For the 30 min
aggregation period, all three metrics were lower when 12 and 24 h past sequences were
used. Intuitively, when a longer past sequence is fed into a model, the prediction can
be more stable. Hence, a past sequence of 24 h and a 30 min aggregation period were
selected for all experiments. Based on those variables, the tuning process was repeated
for the remaining five CCTV locations. Afterwards, the input time series, together with
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the exogenous factors, were reshaped into a one-dimensional array and fed into the RF
regressor for training using the tuned parameters reported in Table 3.

Table 3. RF tuned parameters per CCTV after grid search.

CCTV No. of Trees Max. Depth of a Tree Min. No. of
Samples to Split

Min. No. of
Samples at Leaf

NC_A167E1 96 25 10 4
NC_B1307B1 143 30 5 4
NC_A695E1 140 50 10 2
NC_A167B1 118 21 10 5
NC_A1058C1 96 48 7 3
GH_A184D1 131 48 10 2

Regarding the tuning process for SARIMAX, there are seven parameters to specify.
The model is typically denoted as SARIMAX (p, d, q) × (P, D, Q) [S] where: S refers to
the number of periods per season; p is the autoregressive term expressing the number of
lagged observations; d is the integrated term indicating the degree of differencing of raw
observations; q is the moving average term; and uppercase P, D and Q are the equivalent
autoregressive, integrated and moving average terms of the model’s seasonal part. More de-
tails on the SARIMAX model can be found in previous studies [35,39,40,42]. An inspection
of the time series for the year 2019 ensured that there was no apparent downward or up-
ward trend in the datasets with respect to the four annual seasons. However, as evidenced
in Figure 3, a daily seasonal pattern was observed, implying that S is 24 h, equivalent to 48
for a 30 min aggregation period per day. Similar to [35], since there was no trend in the
datasets, adopting S = 48 ensured that the time series became stationary with a lag (i.e.,
order of difference) equal to one day. This is in line with the selected past sequence of 24 h,
as explained previously.

As also suggested in [42], the autoregressive and partial autoregressive correlation
function plots were utilized to define a range of candidate values (between 0 and 5 for the
six seasonal and non-seasonal parameters). A grid search algorithm was adopted as found
in the statistical “pyramid” Python library [58]. This uses Akaike’s information criterion
(AIC) to identify the optimal set of SARIMAX parameters with the best fit to the provided
datasets (for AIC calculation, see also [35]). The grid search was applied to the datasets of
the six CCTVs and the best combinations of parameters are listed in Table 4.

Table 4. SARIMAX tuned parameters per CCTV after grid search.

CCTV Location SARIMAX Parameters

NC_A167E1 (2.0,1) × (2,1,2) [48]
NC_B1307B1 (1.0,1) × (0,1,1) [48]
NC_A695E1 (1.0,1) × (1,1,1) [48]
NC_A167B1 (2.0,2) × (1,1,2) [48]

NC_A1058C1 (2.0,2) × (2,1,1) [48]
GH_A184D1 (1.0,1) × (0,1,1) [48]

Regarding the LSTM model development, various tests for tuning hyperparameters
were carried out using the one-month time series for the NC_A167E1 CCTV camera.
Initially, based on trial and error, two LSTM layers using the ReLU activation function were
found to be suitable, with a single dense layer and a single dropout layer with a linear
activation function following afterwards. The Adam optimizer was adopted with a learning
rate set at 0.001 and the mean squared error used as the loss function during training. The
one-month time series data were reshaped into a three-dimensional array as required for
training and validation with a 128 batch size. For instance, a validation dataset with a
length of 140 observations (i.e., 10% of the one-month dataset) was reshaped into (90,49,5)
where 90 is the number of data samples, 49 the length of the past data sequence including
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the last 30 min time step (i.e., a window of 24 h) and 5 the number of input attributes
including the time series of the NC_A167E1 camera alongside the four exogenous factors.

An additional test investigated the optimal number of neurons of the two LSTM layers,
applying a grid search for a range of [10–700] neurons run for 100 epochs. MAE, MAPE and
RMSE were calculated with respect to the measured traffic volume of the validation dataset.
As seen in Figure 4, there was no significant increase in the metrics’ magnitude when
hundreds of neurons were set for the two LSTM layers. However, a slight upward trend
was observed for MAE and RMSE values. MAPE was not plotted in Figure 4 because its
magnitude did not differ more than ±0.02 from a value equal to 0.21. Based on this test,
60 neurons were chosen as units in the LSTM layers, as they provided minimal values for
all three metrics (MAPE = 0.20, MAE = 0.60 and RMSE = 0.98).
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Figure 4. MAE and RMSE metrics estimated using the validation dataset within a grid search test
under different numbers of long short-term memory (LSTM) neurons.

It should be noted that for the LSTM model development and prediction, a Python
script was retrieved from [27], and was amended accordingly. The script utilizes Tensorflow
and Keras routines for LSTM modeling. After defining the LSTM structure, six models
were trained for 200 epochs, separately, per CCTV location with the input being all the
observations for one- and four-month datasets per experiment. With a trial and error
procedure, it was found that 200 epochs were sufficient, resulting in a low loss value.
Overfitting was examined by monitoring the loss of the validation dataset during the
aforementioned tests for the LSTM structure development. An example of a loss curve
for the NC_A167E1 CCTV camera is shown in Figure 5. The algorithm picks the training
epoch with the lowest loss value to build the LSTM model.

Regarding time consumption for model training, approximately 4 min and 15 min per
CCTV sensor were required for a 200-epoch training of an LSTM model with one month
and four months of data, respectively. The tests were conducted with a GPU Quadro P4000
in Ubuntu 16.04.5 LTS. Without the use of a GPU, approximately 1.2 and 4.7 min were
required to train an RF model with one month and four months of data, respectively.

3.7. Origin–Destination (OD) Matrix

To incorporate spatial dependencies from neighboring CCTV sensors into traffic
predictions, an OD matrix was firstly structured across the 219 CCTV locations in the
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North East region. This was achieved with the aid of the network analyst tool in ArcGIS
from ESRI [59]. An arterial road network model was built using A and B roads supplied
by Ordnance Survey [60]. A part of the road network is mapped, shown with blue lines,
in Figure 6.

0 25 50 75 100 125 150 175 200
Training epochs

0.050

0.075

0.100

0.125

0.150

0.175

0.200

0.225

0.250
Lo

ss
 d

ur
in

g 
tra

in
in

g

Figure 5. Loss curve during training with the NC_A167E1 one-month dataset.

Figure 6. Part of the structured arterial road network in Newcastle upon Tyne and Gateshead shown
with blue lines with target CCTVs illustrated in cyan. Inset map depicts the shortest routes in blue,
whose lengths are stored in the origin–destination (OD) matrix. These routes were used to select the
four closest cameras to the NC_B1307B1 CCTV.
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The OD matrix was constructed based on the calculated shortest routes along the road
network between all CCTV locations. This was then imported into the data preparation
step to select traffic data from the four closest CCTV sensors that are as evenly distributed
as possible across the north, east, south and west directions from the target camera. Prior to
this selection step, the traffic data were filtered out from the noise, as described in stage 3:
Data normalization. The filtered time series of traffic data from the selected nearby CCTV
sensors was considered additionally to the four exogenous attributes. The selection process
is automated and follows three steps as below:

(1) Select a camera closest to pre-defined distance from target cameras (0.20 m was
used in the experiments here);

(2) Calculate ideal bearings to cameras based on the desired number of cameras to
include in the final training set (e.g., if 4 cameras are to be selected, then the angle between
them should be 360/4 = 90 degrees) The bearing is calculated based on the aforementioned
angle (e.g., when the first bearing is at 45 degrees from the target camera, then the other
three bearings would be 135, −135 and −45 degrees);

(3) For every bearing left, rank all candidate cameras used for training except the
first selected (in step 1) based on how close they are to the desired distance and how
close they are to the desired bearing and apply weights to choose the best-scoring camera.
Distances and bearings are normalized between 0 to 1 and expressed as below:

Normalizeddist_bearing = dWd·bWb (4)

where d and b are the calculated distances and bearings between candidate CCTVs with
Wd and Wb as their corresponding weights. Here, weights of 4 and 1 are used for distance
and bearing, respectively. These values were chosen after a trial and error process as they
seemed most suitable to identify the closest cameras to the target one.

The inset map in Figure 6 shows an example for the NC_B1307B1 target camera with
PS191, NC_B1307A1, NC_GNSA1 and PS193 as the assigned four nearby CCTV cameras
for the one-month time series. It should be noted that the PS196 camera included null
traffic data for the specified training periods, hence, it was excluded from the selection step,
even though it was the closest to the target camera, among others. Additionally, there were
no CCTV cameras located in the east direction close enough to be selected, therefore the
PS193 camera was considered as the fourth choice.

4. Results

4.1. Resulting Predictions with Zero Nearby CCTVs

Predicted traffic volumes between 06:30 and 19:00 on 2 August 2019 are shown in
Figure 7 and the corresponding evaluation metrics are reported in Table 5.

These results refer to the prediction models built for each target camera with four
exogenous attributes not including any neighboring CCTV cameras. As clearly evidenced
in Figure 7, SARIMAX predictions provided the worse results among the three models,
as traffic did not follow the actual patterns. For instance, for NC_A1085C1, SARIMAX
predicted a high peak at around midday, whereas the high peak was observed at 16:00.
This is also reflected in Table 5, with SARIMAX MAE and RMSE values being greater than
unity at all CCTV locations but the NC_B1307B1 camera.

Similar results were observed with MAE and RMSE values calculated from LSTM
predictions, possibly because the flow in this CCTV location did not include high variations
and the predictions from all three models could capture the relatively constant traffic
behavior. When comparing LSTM and RF in Figure 7, distinctive discrepancies are observed.
For instance, LSTM underestimated the traffic volume in the morning for the GH_A184D1
camera, predicting a low peak when the actual traffic showed a high peak. RF also failed
to capture the sudden peaks at this location. As reported in Table 5, estimated MAE and
RMSE values were the highest for this camera compared to the others for both LSTM and
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RF. However, RF provided the best overall performance based on the average values for
the three evaluation metrics in Table 5.
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Figure 7. Predictions on 2 August 2019 obtained with three tuned models, RF, LSTM and SARIMAX,
using the past one month of training data including four exogenous attributes. Measured traffic
volume constitutes the “ground truth”.

Regarding the overall performance of the predictions (i.e., average values in Table 5)
when compared to the amount of training data, metrics were worse for SARIMAX, better for
LSTM and consistent for RF results. As also seen in Figure 8, no apparent improvement
of the predicted traffic curves were observed with SARIMAX. The difference between
Figures 7 and 8 is that the latter shows predictions after training with a four-month dataset.
The wrong peaks LSTM predicted in the morning at NC_A1058C1 and GH_A184D1 seen
in Figure 7 were considerably improved in Figure 8. This is reflected in Table 5, with lower
RMSE values for the four-month compared to the one-month training datasets at those
CCTV locations. When comparing LSTM with RF results in Table 5, RF MAPE values were
improved for the four-month training at all locations with the exception of two CCTV
cameras (NC_A167E1 and NC_A695E1), but all were lower than 0.20. Overall, RF models
using either one month or four months of training provided more consistent predictions.
However, the four-month training period clearly improved LSTM predictions in most cases.
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As noted in [45], the longer the training is, the more context the models can incorporate,
in turn resulting in reduced prediction errors.

Table 5. Evaluation metrics per CCTV per prediction model 06:00–19:00 2 August 2019.

CCTV Location
SARIMAX LSTM RF

MAE/MAPE/RMSE MAE/MAPE/RMSE MAE/MAPE/RMSE

With past one month of training data
NC_A167E1 1.04/0.19/1.27 1.07/0.21/1.35 0.86/0.16/1.19
NC_B1307B1 0.84/0.25/0.96 0.83/0.28/1.01 0.63/0.22/0.78
NC_A695E1 2.40/0.31/2.83 1.80/0.17/2.21 1.59/0.17/1.92
NC_A167B1 1.08/0.23/1.36 1.18/0.26/1.56 0.87/0.20/1.15

NC_A1058C1 1.85/0.22/2.21 1.22/0.14/2.11 0.91/0.11/1.38
GH_A184D1 2.50/0.14/2.99 1.92/0.11/2.39 1.67/0.09/2.11

Average value 1.62/0.22/1.94 1.34/0.19/1.77 1.09/0.16/1.42

With past four months of training data
NC_A167E1 1.34/0.25/1.60 1.38/0.25/1.76 0.94/0.17/1.25
NC_B1307B1 1.12/0.33/1.27 0.66/0.23/0.84 0.56/0.19/0.70
NC_A695E1 2.09/0.29/2.55 1.53/0.16/1.81 1.63/0.18/2.05
NC_A167B1 1.03/0.23/1.31 1.00/0.22/1.32 0.83/0.19/1.03

NC_A1058C1 1.73/0.20/2.11 1.21/0.14/1.70 1.00/0.12/1.50
GH_A184D1 3.24/0.18/3.79 1.71/0.10/2.16 1.61/0.09/1.98

Average value 1.76/0.25/2.10 1.25/0.18/1.60 1.10/0.16/1.42
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Figure 8. Predictions on 2 August 2019 obtained with three tuned models, RF, LSTM and SARIMAX,
using the past four months of training data including four exogenous attributes. Measured traffic
volume constitutes the “ground truth”.
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4.2. Resulting Predictions with Four Nearby CCTVs

Investigations presented hereafter used the RF prediction model, which showed better
consistency than all other models in the previous experiments. Traffic predictions on
2 August 2019 from the experiment including four neighboring CCTV sensors based on the
OD matrix are shown in Figure 9. Prediction models were built using four-month training
datasets and nine exogenous factors. The additional five factors included the time series of
the four closest CCTVs to the target camera (e.g., in Figure 6). Calculated MAE and RMSE
values are illustrated in Figure 10.
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Figure 9. Predictions on 2 August 2019 obtained with the RF tuned model using the past four months
of training data including four (line in red) and nine exogenous attributes, four of which refer to four
nearby cameras (line in green). Measured traffic volume constitutes the “ground truth”.

By inspecting the predicted traffic volume in Figure 9, a few variations between the
two results were observed only for the NC_A695E1 and GH_A184D1 sensors. For instance,
the inclusion of traffic from neighboring locations during modeling improved the prediction
of high peaks at the GH_A184D1 camera at midday. Other than that, RF provided a
consistent prediction regardless of the use of traffic from neighboring locations. This finding
is also depicted in Figure 10, where RMSE and MAE variations lie within a maximum of
0.32 and 0.23, respectively, both at the NC_A695E1 location. MAPE values, estimated after
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taking into consideration four nearby cameras, are not reported here as they did not differ
from those values in Table 5 by more than ±0.02, with an average 0.17 for all sensors.
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Figure 10. MAE and RMSE values calculated per CCTV sensor for RF prediction results shown in
Figure 9. Values in blue and red correspond to RMSE and MAE, respectively.

4.3. Implementation (Stage 5)

4.3.1. Use Case Demonstration

The end-to-end CCTV-based traffic prediction framework was implemented in a six-
day period at the six CCTV locations. Predictions were estimated based on the RF models
fine-tuned on four-month training datasets alongside nine exogenous attributes using
four nearby CCTV locations. The results for 3–9 August 2019 are depicted in Figure 11,
together with the daily accumulated rainfall, as recorded by a weather station located in
Newcastle upon Tyne city center [61].

That week, a lot of missing data were observed. Data gaps are caused by a possible
sensor malfunction (e.g., abrupt shutdown of the sensor), but are often due to poor weather
conditions. Vehicle counts were not recorded mostly during rain on the morning of
9th of August, hence, the zero values shown in blue. Data gaps were also observed at
NC_B1307B1 on 3rd of August, but not because of the poor weather in this case, as there
was zero rainfall observed. However, RF predictions were able to provide a continuous
time series of traffic conditions for the whole week with a sufficient overall performance.
In a few cases, RF predictions overestimated abrupt zero peaks, as seen at NC_A695E1,
for example. On the other hand, abrupt high traffic peaks were correctly captured at
NC_A167E1, NC_A695E1 and NC_A1058C1, 50% of the CCTV locations.

Due to missing data, there are not sufficient ground truth references to calculate
evaluation metrics in this case. However, the results in Figure 11 highlight the potential use
of the CCTV-based RF prediction framework even with the traffic data gaps. As explained
in stage 4—Prediction model parameterization, 24 h of traffic data was used as the past
sequence for the vehicle count prediction for the following 30 min. Even though there
was a long data gap between 8th and 9th of August, the RF could still predict the traffic
volume during the evening on 9th of August with sufficient level of accuracy. A few
discrepancies between the measured and the predicted values can be seen at NC_A695E1
and NC_A1058C1 around sudden traffic peaks. This investigation has provided confidence
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that the presented CCTV-based traffic RF prediction constitutes an effective end-to-end
framework with practical usage and simple implementation.
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Figure 11. Predictions on 3–9 August 2019 obtained with the RF tuned model using the past four
months of training data including nine exogenous attributes, four of which refer to four nearby
cameras. Measured traffic volume constitutes the “ground truth”. Daily accumulated rainfall is
illustrated in gray.

4.3.2. Integration with Online Platforms

Integration of the framework is explored on two online platforms: The UO and the
Flood-PREPARED project [62]. Regarding the current traffic volume, the frozen inference
graph of the Faster R-CNN model developed in the presented study is currently running
on the UO platform for vehicle detection. Time series of vehicle counts are stored by the
UO and updated daily and are freely available through the UO API. Regarding traffic
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predictions, the RF prediction results at NC_A167E1 are currently visualized on the Flood-
PREPARED dashboard [55] as a single past event (https://www.nismod.ac.uk/fp/traffic_
disruption). The Flood-PREPARED framework is currently under development though it
aims to provide a warning mechanism for fast-evolving, short, extreme rainfall events and
visualize the impacts of such events, including on traffic in Newcastle upon Tyne city center.
The Flood-PREPARED dashboard is intended to: (a) Retrieve real-time series of CCTV-
based vehicle counts from UO; (b) store the fine-tuned RF prediction model, which would
be updated on a two-week basis; (c) predict and visualize traffic on specified time horizons
in real time (e.g., for the next three hours, or for daily and weekly peak hours).

5. Discussion

In terms of assessing three different prediction approaches, the presented experiments
have demonstrated that the SARIMAX model failed to accurately capture the traffic condi-
tions in all six CCTV locations, despite the ease of its implementation. However, LSTM and
RF provided predictions closer to the “ground truth” data but required demanding prepa-
rations to implement their algorithms. With regard to computational efficiency, RF does not
require GPU and runs faster compared to LSTM. This is advantageous for the deployment
in real-time visualization platforms such as the Flood-PREPARED architecture/web-based
dashboard. Currently, the RF algorithm can build multiple prediction models for different
locations at once, when the model parameters per CCTV sensor are identified in a previous
step. Moreover, future work to include weather conditions, social events and holidays as
additional exogenous attributes will be investigated. This would enable traffic volume
predictions to ultimately be associated with more realistic contextual information, provid-
ing a better understanding of the impact on the city’s road infrastructure before, during
and after a disruptive event.

Regarding the three predictors’ performance, RF delivered the most consistent results
across various experiments. The inclusion of a four-month time series for training signif-
icantly improved LSTM predictions. In addition, RF predictions became more accurate,
especially in capturing traffic peaks. The further inclusion of detected vehicle counts from
four neighboring CCTV locations showed a general consistency in RF outputs and the
model worked sufficiently well when missing data were observed due to CCTV camera
shutdowns. A combination of other approaches, such as KNN, with the OD matrix in
the RF model, could potentially improve the current selection process of nearby CCTVs
and include only correlated spatio-temporal information in the traffic prediction. Overall,
it was shown that the RF machine learning method constitutes a simple and fast method
for a real-time application, requiring less computational demand, while also not requiring
a GPU as in other deep learning methods.

Regarding the overall prediction accuracy, a validation process was applied at two
different stages of the framework. Firstly, the vehicle detection outcome, modeled with the
fine-tuned Faster R-CNN, was evaluated with 50 NECA CCTV images, in which manually
identified vehicles were used as ground truth. This is a common procedure for object
detection evaluation, while the ideal scenario would be to have a number of vehicles as
ground truth measured by other means, such as inductive loops. This setup was not feasible
at the time the experiments took place. However, after experimentation with different
numbers of images and epochs for training, the fine-tuned Faster R-CNN Inception V2
model provided a harmonic mean greater than 90% with the highest number of detected
vehicles (Table 1). This was indicative of a successful vehicle detection performance,
sufficient to be used for the next phase of prediction. A second validation step was then
applied to evaluate predicted values of the three approaches based on results produced
by the chosen fine-tuned Faster R-CNN Inception V2 model. That way, even in the case
of a poor vehicle detection result, the following prediction accuracy would still be high,
under the condition of a well-performed prediction algorithm like the RF or LSTM models.
In the case of the SARIMAX model, a poor prediction would not be attributed to the low
vehicle detection accuracy but to the underperformance of the prediction model itself.

https://www.nismod.ac.uk/fp/traffic_disruption
https://www.nismod.ac.uk/fp/traffic_disruption
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In other words, a poor vehicle detection accuracy does not adversely affect the overall
prediction outcome in the developed framework.

Regarding future directions, the end-to-end prediction framework can be potentially
implemented at any CCTV location on the region’s IoT infrastructure, providing a useful
tool for the traffic management bureau. Through providing real-time data to decision mak-
ers prior and during a disruptive event (e.g., flood) it could enable more effective responses
to such events. To that end, the integration with a web-based visualization platform such
as the Flood-PREPARED dashboard will allow users to easily access up-to-date data on
current traffic volume as well as predictions ahead of time, along with other contextual
information, providing detailed data for city traffic managers, emergency planners and oth-
ers responding to an event to better inform response decisions. It should be mentioned that
for real-time web-based applications, it is important to find the balance between prediction
accuracy, computational capacity and cost. Hence, a simple machine learning method
could be implemented more easily than a more complex deep learning method provided
that accuracy levels are sufficient and the web-based integration follows a low-cost solution
to ensure the longevity of the real-time application.

6. Conclusions

The research presented here has demonstrated an end-to-end practical machine learn-
ing framework for CCTV-based urban traffic analysis and prediction. The framework has
exploited the open-source pre-trained Faster R-CNN models to generate vehicle count
series across the arterial road network in the North East region, UK, which are now freely
available to the public through the UO API. The framework has investigated the perfor-
mance of three approaches (SARIMAX, RF and LSTM) to predict traffic volume based on
a vehicle count time series. The results have shown that RF and LSTM outperform SARI-
MAX, with RF providing consistency and time efficiency across all experiments. The entire
framework has been demonstrated in the use case of a six-day period with missing data,
showing that the RF predictions were sufficiently accurate across all six CCTV locations.
Overall, it can be concluded that CCTV image series can be used for both vehicle detection
and the prediction of traffic conditions with a great level of confidence to support the
development of cost-effective real-time traffic management infrastructure.
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