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Abstract 32 

Immunosuppressive and anti-cytokine treatment may have a protective effect for 33 

patients with COVID-19. Understanding the immune cell states shared between COVID-19 and 34 

other inflammatory diseases with established therapies may help nominate immunomodulatory 35 

therapies. Using an integrative strategy, we built a reference by meta-analyzing > 300,000 36 

immune cells from COVID-19 and 5 inflammatory diseases including rheumatoid arthritis (RA), 37 

Crohn’s disease (CD), ulcerative colitis (UC), lupus, and interstitial lung disease. Our cross-38 

disease analysis revealed that an FCN1+ inflammatory macrophage state is common to 39 

COVID-19 bronchoalveolar lavage samples, RA synovium, CD ileum, and UC colon. We also 40 

observed that a CXCL10+ CCL2+ inflammatory macrophage state is abundant in severe 41 

COVID-19, inflamed CD and RA, and expresses inflammatory genes such as GBP1, STAT1, 42 

and IL1B. We found that the CXCL10+ CCL2+ macrophages are transcriptionally similar to 43 

blood-derived macrophages stimulated with TNF-" and IFN-! ex vivo. Our findings suggest that 44 

IFN-!, alongside TNF-", might be a key driver of this abundant inflammatory macrophage 45 

phenotype in severe COVID-19 and other inflammatory diseases, which may be targeted by 46 

existing immunomodulatory therapies. 47 

 48 

 49 

Introduction 50 

Tissue inflammation is a unifying feature across diseases. While tissue- and disease-specific 51 

factors shape distinct inflammatory microenvironments, seemingly unrelated diseases can 52 

respond to the same therapy. For example, anti-tumor necrosis factor (TNF) therapies have 53 

revolutionized treatment for joint inflammation in autoimmune rheumatoid arthritis (RA) 1, while 54 

intestinal inflammation in Crohn’s Disease (CD) and ulcerative colitis (UC), collectively known as 55 

inflammatory bowel disease (IBD), also respond to anti-TNF medications 2. Here, we posit that 56 
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deconstruction and subsequent integration of inflamed tissues at the level of individual cell 57 

phenotypes could provide a platform to identify shared pathologic features across diseases and 58 

provide rationale for repurposing medications in outwardly dissimilar conditions. 59 

 60 

Recent studies have detailed features of local inflammation and immune dysfunction in COVID-61 

19 and related diseases caused by SARS and MERS coronaviruses 3. Consensus is building 62 

that extensive unchecked inflammation involving so-called “cytokine storm” is a driver of severe 63 

late-stage disease. Single-cell studies of bronchoalveolar lavage fluid (BALF) have identified 64 

two inflammatory macrophage subsets characterized by expression of FCN1 and S100A8, and 65 

CCL2, CCL3, and CXCL10, respectively, suggesting these cells might be high-level mediators 66 

of pathology in this late-stage disease 4. These macrophage subsets correlate with elevated 67 

circulating cytokine levels and extensive damage to the lung and vascular tissue. Independently, 68 

reports using peripheral blood from large numbers of COVID-19 patients have consistently 69 

documented lymphopenia (reduced lymphocyte frequency) paired with increased monocytes 70 

and inflammatory cytokines 5–7. Recent data suggest that moderate COVID-19 patients recovery 71 

associates with elevated tissue healing programs and lymphocyte growth factors, where severe 72 

patients maintain increased monocyte levels in blood and specific cytokines such as IFN-", IFN-73 

!, and TNF, which appear ineffective in lowering viral load while possibly contributing to 74 

cytokine release syndrome (CRS) pathology 7. Together, these studies indicate the importance 75 

of uncovering the full extent of cell states present in COVID-19 patients including within affected 76 

tissues, in particular for monocytes and macrophages. Further, the extent to which these cell 77 

states are shared between COVID-19 and other inflammatory diseases and their disease 78 

association may further clarify disease mechanisms and precisely define therapeutic targets. 79 

 80 

Macrophages are pervasive throughout the body and pivotal to tissue homeostasis, where they 81 

tailor their function to the parenchymal needs of each tissue type. In inflammation, tissue-82 

.CC-BY-NC-ND 4.0 International license(which was not certified by peer review) is the author/funder. It is made available under a
The copyright holder for this preprintthis version posted August 5, 2020. . https://doi.org/10.1101/2020.08.05.238360doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.05.238360
http://creativecommons.org/licenses/by-nc-nd/4.0/


4 

resident macrophages and infiltrating monocytes are activated not only by factors from the 83 

unique tissue microenvironment, but yet additional layer of complexity elicited by disease-84 

associating factors such as deregulated homeostatic byproducts, tissue damage, shifts in gene 85 

expression due to genetic variants, various immune cellular and soluble infiltrates and in some 86 

cases pathogenic microorganisms. The unprecedented plasticity and robust reactivity of 87 

macrophages and monocytes generates a spectrum of phenotypes yet to be fully defined in 88 

human disease that mediate clearance of noxious elements but in some cases, such as in 89 

cytokine storms, aggravates disease pathology. These include a range of pro-inflammatory and 90 

anti-microbial states that secrete key cytokines (e.g. TNF and IL-1#) and chemokines (e.g. 91 

CXCL10 and CXCL11) and other functional states geared towards debris clearance, dampening 92 

inflammation and tissue reconstruction with factors such as MERTK, IL-10 and TGF#, 93 

respectively, as well as a variety of intermediate states 8–10. However, the full extent of shared 94 

immune cell states and secreted cytokines and chemokines, especially within activated 95 

macrophages that fuel inflammation, are so far unclear. Meta-analysis of the reactive 96 

macrophage phenotypes in inflamed tissues across diseases may further refine our 97 

understanding of the complexity of human macrophage function, while identifying inflammatory 98 

macrophage subsets potentially shared across multiple immune disorders and COVID-19, 99 

therein potentially providing a direct route to promising repurposed therapeutic strategies. 100 

 101 

Single-cell RNA-seq (scRNA-seq) has provided an opportunity to interrogate inflamed tissues 102 

and identify pathogenic immune cell types 11. We recently defined a distinct CD14+ IL1B+ pro-103 

inflammatory macrophage population that is markedly expanded in RA compared to 104 

osteoarthritis (OA), a non-inflammatory disease 12,13. Likewise, scRNA-seq studies on inflamed 105 

colonic tissues have identified inflammatory macrophage and fibroblast phenotypes with high 106 

levels of OSM signaling factors that are associated with resistance to anti-TNF therapies 14. 107 

Only very recently, developments in computational methods have made it possible to meta-108 
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analyze an expansive number of cells across various tissue states, while mitigating 109 

experimental and cohort-specific artifacts 15–21, therein assess shared and distinct cell states in 110 

disparately inflamed tissues. 111 

 112 

To define the key shared immune cell compartments between inflammatory diseases with 113 

COVID-19, we meta-analyzed and integrated tissue-level single-cell profiles from 6 114 

inflammatory diseases and COVID-19. We created an immune cell reference consisting of 115 

307,084 single-cell profiles from 125 donor samples from RA synovium, systemic lupus 116 

erythematosus (SLE) kidney, UC colon, CD ileum, interstitial lung disease, and COVID-19 117 

BALF. This single-cell reference represents comprehensive immune cell types from different 118 

disease tissues with different inflammation levels, which can be used to investigate other 119 

inflammatory diseases and their connections with COVID-19 in terms of immune cell responses. 120 

Using our meta-dataset reference, we identified major immune cell lineages including 121 

macrophages and monocytes, dendritic cells, T cells, B cells, NK cells, plasma cells, mast cells, 122 

and cycling lymphocytes. Among these, we found two inflammatory CXCL10+ CCL2+ and 123 

FCN1+ macrophage states that are shared between COVID-19 and inflammatory diseases. To 124 

understand the factors driving these phenotypes, we stimulated human blood-derived 125 

macrophages with eight different combinations of inflammatory disease-associated cytokines 126 

and tissue-associating stromal cells and analyzed it by scRNA-seq. We demonstrated that the 127 

CXCL10+ CCL2+ macrophages from severe COVID-19 lungs share a transcriptional phenotype 128 

with macrophages stimulated by TNF-" plus IFN-!. Most notably the other two conditions 129 

wherein these macrophages are most abundant are RA and CD. This potentially provides a 130 

proof-of-concept regarding the power in identifying shared cellular states in unrelated inflamed 131 

tissues that align with sensitivity to the same medication—as both RA and CD respond to anti-132 

TNF therapies. Furthermore, janus kinase (JAK) inhibitors have also proved effective in RA, in 133 
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likely by targeting IFN-!	responses, which may indicate late-stage cytokine storm COVID-19 134 

disease may involve Type II interferon and TNF responses and blocking these responses in 135 

macrophages may be a plausible treatment approach. 136 

 137 

 138 

Results 139 

A reference of > 300,000 immune single-cell profiles across common inflammatory 140 

diseases and COVID-19  141 

To compare hematopoietic cells across inflammatory diseases and COVID-19 in an unbiased 142 

fashion, we aggregated 307,084 single-cell RNA-seq profiles from 125 healthy or inflammatory 143 

disease-affected donors spanning 6 disorders: (1) colon biopsies from healthy individuals, UC 144 

patients with inflamed or non-inflamed tissues 14; (2) terminal ileum tissue from patients with 145 

inflamed or non-inflamed CD 22; (3) synovial tissue from patients with RA or OA 12,23; (4) kidney 146 

biopsies from patients with SLE or healthy controls 24, (5) lung tissue from patients with 147 

interstitial lung disease 25 and (6) BALF from healthy individuals, mild or severe COVID-19 148 

infection 4 (Figures 1a-b, Supplementary Figure 1a, Supplementary Table 1). We developed 149 

a pipeline for multi-tissue integration at the single-cell data (Figure 1a, Methods). First, we 150 

obtained and aggregated raw count matrices into a uniform matrix, and performed consistent 151 

quality control (QC) and normalization and scaling (Methods). To account for different cell 152 

numbers from different datasets, we performed weighted principal component analysis (PCA) by 153 

assigning higher weights to the cells from the dataset with a relatively small number of cells and 154 

vice versa. Then, we used our batch-correction algorithm Harmony 15 to integrate these diverse 155 

datasets, accounting for variation due to different levels of technical and biological effects that 156 

confound cell type identification (Methods). To quantify the integration of the datasets, we 157 

employed the local inverse Simpson’s Index (LISI) 21. A LISI score of 1.0 means that there is no 158 

mixing, and higher scores indicate better mixing of donors and tissue sources (Methods). We 159 
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observed that applying Harmony increased mixing among donors (LISI increasing from mean 160 

2.9 to 6.1) and tissue sources (LISI increasing from mean 1.0 to 1.8, Supplementary Figure 161 

2a).  162 

 163 

This approach enabled broad cell type categorization in the hematopoietic cell lineage. We 164 

performed graph-based clustering 26 on the integrated principal components (PCs) and 165 

dimensionality reduction using UMAP (Uniform Manifold Approximation and Projection) to 166 

project cells into two-dimensional space 27. We identified T cells (marked by CD3D expression), 167 

NK cells (NKG7), B cells (MS4A1), plasma cells (MZB1), macrophages (FCGR3A) and 168 

monocytes (CD14), dendritic cells (DCs)(CD1C), mast cells (TPSAB1), and cycling lymphocytes 169 

(MKI67) (Figure 1c-e, Supplementary Figure 1b).  170 

 171 

Our cross-tissue integration pipeline successfully identified previously reported disease-specific 172 

patterns. This included the presence of germinal center B cells in the inflamed UC colon and 173 

age-associated B cells in RA synovium (Supplementary Figure 1c). Furthermore, we observed 174 

that the majority of variance (>60% in PC1 and PC2) derived from gene expression patterns are 175 

explained by major cell types (Figure 1f, Supplementary Figure 1d). In contrast, variables 176 

such as tissue type, technology, or donor sample accounted for <1% of the variation in PC1 and 177 

PC2 after batch effect correction. We note that prior to Harmony batch effect correction, the 178 

same cell types from different tissues fail to integrate together (Supplementary Figure 2b).  179 

 180 

The integration of single-cell data across tissues from multiple diseases provided a means to 181 

quantify the contribution of distinct immune cell types to the various inflammatory conditions 182 

(Figure 1g). Proportions of major immune cell types residing in different tissue sources are 183 

different. Overall, samples obtained from lung tissues, whether from healthy controls or patients 184 

with different conditions, contained the highest proportion of macrophages (~73.2% of total 185 
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hematopoietic cells). The RA synovium, SLE kidney, and CD ileum were dominated by T 186 

lymphocytes (57.3%), while the UC colon samples had a distinctively high abundance of plasma 187 

cells (43.3%) (Figure 1g). Severe COVID-19 bronchoalveolar lavage samples in comparison to 188 

mild COVID-19 also contained a higher proportion of macrophages similar to other lung tissues 189 

(Figure 1g). The large number of cells across multiple disease and tissue contexts positioned 190 

us to precisely characterize cell states (Figure 1b-c).  191 

 192 

Identification of shared inflammatory macrophage states across inflammatory disease 193 

tissues and COVID-19  194 

Macrophages represented a dominant cell type across all affected target tissues 12,14,22–25. 195 

Therefore, we performed a fine clustering analysis on these cells to define shared and distinct 196 

macrophage states and phenotypes across these inflammatory diseases and COVID-19 197 

(Figure 2a). To this end, we applied the same integrative pipeline on 74,373 macrophages and 198 

monocytes from synovium, ileum, colon, lung, and BALF from 108 individuals (Supplementary 199 

Table 2). We identified a total of four states: CXCL10+ CCL2+ CD14+ FCGR3A+ inflammatory 200 

macrophages, FCN1+ CD14+ FCGR3A+ inflammatory macrophages, M2-like anti-inflammatory 201 

MRC1+ FABP4+ macrophages, and non-inflammatory macrophages (Figure 2a-b, 202 

Supplementary Figure 3a). The two inflammatory macrophage states correspond to the 203 

previously identified CXCL10+ and FCN1+ macrophages in COVID-19 BALF, respectively 4. 204 

Notably, in this clustering, previously described inflammatory macrophages identified in inflamed 205 

RA synovium and in inflamed UC and CD intestinal tissue clustered along with the majority of 206 

the severe COVID-19 macrophages, which spanned across these two inflammatory CXCL10+ 207 

CCL2+ and FCN1+ states (Figure 2c, Supplementary Figure 3b-c). The LISI score that 208 

evaluates dataset mixing decreased with respect to previously described macrophage 209 

annotations, and increased with respect to donor- and tissue-specific effects after batch 210 

correction (Supplementary Figure 3d), indicating that the shared macrophage subsets were 211 
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driven primarily by macrophage biology-related gene expression patterns rather than tissue or 212 

donor source.  213 

 214 

To further explore how the CXCL10+ CCL2+ and FCN1+ macrophages are involved in tissue 215 

inflammation, we examined key inflammatory features 14 that were expressed in these two 216 

states. A high proportion of inflammatory macrophages in severe COVID-19, RA, UC, and CD 217 

expressed inflammation-associated factors including CXCL10, CXCL11, CCL2, CCL3, STAT1, 218 

IFNGR1, IFNGR2, NFKB1, TGFB1, and IL1B (Figure 2d, Supplementary Figure 4a). The 219 

gene signature for the CXCL10+ CCL2+ inflammatory macrophage state was found in a higher 220 

proportion of macrophages in severe COVID-19 than in the other inflamed tissues (Figure 2d). 221 

Applying PCA to the two inflammatory macrophage states, we found that PC1 captured a 222 

gradient from the FCN1+ state to the CXCL10+ CCL2+ state (Figure 2e), suggesting a potential 223 

continuum with intermediates between the inflammatory FCN1+ and CXCL10+ CCL2+ states. 224 

While the majority of inflammatory macrophages in RA, UC, and CD align more closely with the 225 

FCN1+ state, in severe COVID-19 we observed a shift in cell frequency, corresponding to a 226 

higher abundance of CXCL10+ CCL2+ macrophages compared to other inflammatory diseases 227 

(Figure 2e, Supplementary Figure 4b).  228 

 229 

To more extensively define markers for the two inflammatory tissue macrophage states shared 230 

across COVID-19, RA, UC and CD, we performed pseudo-bulk differential expression analysis 231 

(Methods, Supplementary Table 3, AUC > 0.6, Bonferroni-adjusted P < 10'(). The CXCL10+ 232 

CCL2+ inflammatory macrophages displayed significantly higher expression of CXCL10, 233 

CXCL11, CCL2, CCL3, GBP1, and IDO1 in severe COVID-19, inflamed RA, and CD compared 234 

to FCN1+ macrophages (Figure 2f). The FCN1+ macrophages show high expression of FCN1 235 

(Ficolin-1) and alarmins S100A8 and S100A9 in most of the inflamed tissues compared to 236 

CXCL10+ CCL2+ inflammatory macrophages (Figure 2f). Both inflammatory macrophage 237 
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states show high expression of M1 macrophage-related transcription factors, STAT1 and IRF1, 238 

in inflamed RA, UC, CD, and COVID-19 BALF relative to healthy or non-inflamed tissues 239 

(Figure 2f). Within the CXCL10+ CCL2+ state, we noted heterogeneity that correlates with IL1B 240 

expression (Supplementary Figure 4c-d). Moreover, when we examined the effect size of all 241 

genes by comparing CXCL10+ CCL2+ and FCN1+ macrophages with MRC1+ FABP4+ 242 

macrophages within each tissue, inflammatory genes indeed demonstrated the greatest fold 243 

change differences (Supplementary Figure 5). We further examined these inflammation-244 

associated genes using CD45+ CD14+ flow sorted bulk RNA-seq samples from inflamed 245 

(leukocyte-rich) RA, non-inflamed (leukocyte-poor) RA, and OA 12; we see the CXCL10+ CCL2+ 246 

state-specific genes (CXCL10, CXCL9, CCL3, GBP1, and IDO1), FCN1+ state-specific genes 247 

(FCN1, S100A9, CD300E, IFITM3, and CFP), and genes (IRF1, BCL2A1, and STAT1) 248 

associated with both states are significantly enriched in the macrophages from inflamed RA 249 

compared to non-inflamed RA and OA (Supplementary Figure 6). By integrating macrophages 250 

across multiple inflamed tissues, we show that inflammatory subsets identified in COVID-19 251 

may share common phenotypes with macrophages from other inflammatory conditions.  252 

 253 

Tissue inflammatory conditions drive distinct macrophage phenotypes 254 

To define the factors within tissues that collectively shape disease-associated macrophage 255 

states, we generated human blood-derived macrophages and activated them with eight 256 

mixtures of inflammatory factors, with particular interest in antiviral interferons (IFN-# and IFN-!) 257 

and pro-inflammatory cytokines such as TNF that mediate CSR and mediates RA and IBD 258 

pathology (Figure 3a, Supplementary Figure 7a-c, Methods). We added fibroblasts in some 259 

conditions to mimic exposure to the stromal factors found within tissues. To experimentally 260 

minimize confounding batch effects during scRNA-seq barcode labeling, we used a single-cell 261 

antibody-based hashing strategy 28 to multiplex samples from different stimulatory conditions in 262 

one sequencing run. We used 9 hashtag antibodies on 4 donor samples (Supplementary 263 
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Table 4, 5), and obtained 25,823 post-QC cells after applying to 10X Genomics droplet-based 264 

single-cell assay (Supplementary Figure 7b-c, Methods). 265 

 266 

We produced single-cell expression profiles for stimulated blood-derived macrophages and 267 

labeled them by their conditions (Figure 3b-c). Consistent with well-established effects, 268 

macrophages stimulated by IL-4 show increased expression of CCL23, MRC1, and LIPA, 269 

markers of the M2-like anti-inflammatory state (Figure 3d). Differential expression analysis 270 

revealed that all conditions containing IFN-! (Type II Interferon) resulted in macrophages with 271 

high levels of the transcription factor STAT1, interferon-stimulated genes CXCL9 and CXCL10 272 

and inflammatory receptors such as FCGR1A 29 (Figure 3d).  273 

 274 

Using linear models, we identified genes with the greatest response to each stimulation and 275 

estimated their effect sizes (Methods). We found 403 genes (Fold change > 2, FDR < 0.05) that 276 

were significantly enriched in the TNF-" and IFN-! stimulation compared to untreated 277 

macrophages. Furthermore, a group of genes including CCL2, CXCL9, CXCL10, SLAMF7, and 278 

STAT1 had a significantly higher induction in macrophages exposed to TNF-" and IFN-! 279 

stimulation compared to TNF-" alone (Figure 3e left). We observed similar effect sizes for 280 

these genes when we stimulated macrophages with TNF-" and IFN-!, TNF-" and IFN-! with 281 

fibroblasts, IFN-!, and IFN-! with fibroblasts compared to untreated macrophages (Figure 3f 282 

left). Other stimulatory conditions with TNF-" only or TNF-" with fibroblasts show no or 283 

substantially less expression induction of these genes (Figure 3f left, Supplementary Figure 284 

7d). We consider these genes to reflect a specific IFN-!-driven signature. We also observed a 285 

modest induction of TNF-"-driven genes such as CCL2, CCL3, IL1B, and NFKBIA enriched in 286 

TNF-" and IFN-! stimulation compared to IFN-! alone (Figure 3e right). Additionally, we 287 

identified 400 genes (Fold change > 2, FDR < 0.05) including inflammatory regulators such as 288 
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FCN1 and PLAUR that are most highly induced in response to TNF-" stimulation with 289 

fibroblasts compared to no treatment (Figure 3f right). Overall, these findings indicated that 290 

TNF-"-driven responses appeared more malleable when combined with other factors, for 291 

example, wherein co-cultured fibroblasts enhanced TNF-"-induced MMP9, PLAUR, and TGFBI, 292 

while IFN-! repressed this TNF-" effect. Notably, TNF-" and IFN-! generated a macrophage 293 

phenotype with preserved expression of NF-kB targets such as IL1B, NFKBIA, and HLA-DRA 294 

together with STAT1 targets such as CXCL9 and CXCL10, and GBP1 and GBP5 (Figure 3e-f). 295 

 296 

Identification of a TNF-" and IFN-! synergistically driven inflammatory macrophage 297 

phenotype expanded in severe COVID-19 and other inflamed disease tissues  298 

Our cross-tissue integrative analysis revealed two shared inflammatory macrophage states 299 

(Figure 2). To further understand these cell states and the in vivo inflammatory tissue factors 300 

driving them, we integrated the single-cell transcriptomes of the tissue macrophages with the 301 

experimental multifactor-stimulated macrophages. After correcting for tissue source and donor 302 

effects, we identified 7 distinct macrophage clusters (Figure 4a). The tissue CXCL10+ CCL2+ 303 

inflammatory macrophages from UC colon, CD ileum, RA synovium, and COVID-19 BALF were 304 

transcriptionally most similar to macrophages stimulated by the combination of TNF-" plus IFN-305 

! in cluster 1 (Figure 4b-c, Supplementary Figure 8a-c). The blood-derived macrophages in 306 

cluster 1 include macrophages stimulated by four different conditions all including IFN-!, of 307 

which 37.5% are macrophages stimulated by TNF-" and IFN-! together (Figure 4c, d, 308 

Supplementary Figure 8b). 309 

 310 

To elucidate cell states that were phenotypically associated, we tested the association of each 311 

cluster with severe COVID-19 compared to healthy BALF using a logistic regression model 312 

accounting for technical cell-level and donor-level effects 30 (Methods). We observed two 313 
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clusters abundant in severe COVID-19 compared to healthy BALF: CXCL10+ CCL2+ (cluster 314 

1), which is transcriptionally similar to the TNF-" and IFN-! induced phenotype and cluster 4, 315 

which most closely matches a TNF-" with fibroblasts induced phenotype (Figure 4e). The 316 

CXCL10+ CCL2+ inflammatory macrophages are significantly more abundant in severe COVID-317 

19 (23.7%) compared to healthy BALF (3.7%), and express high levels of the genes that 318 

synergistically respond to TNF-" and IFN-! stimulation (Figure 4d-e, Supplementary Figure 319 

8d-e). We examined other diseases also, and observed that the CXCL10+ CCL2+ inflammatory 320 

macrophages are expanded in inflamed CD compared to non-inflamed CD, RA compared to 321 

non-inflammatory OA, and inflamed UC compared to healthy colon, respectively (Figure 4f). 322 

Taken together, these results indicate that TNF-" and IFN-! drive the synergistic inflammatory 323 

response in the CXCL10+ CCL2+ inflammatory macrophage phenotype that is expanded not 324 

only in COVID-19, but also in inflamed tissues from other diseases, which suggests this 325 

inflammation-associated macrophage state may present a viable target for these diseases. 326 

 327 

Discussion 328 

Our study demonstrates the power of a multi-disease reference dataset to interpret cellular 329 

phenotypes and tissue states, while placing them into a broader context that may provide 330 

insights into disease etiology and rationale for repurposing medications. Such meta-datasets 331 

can increase the resolution of cell states and abet understanding of shared cellular states found 332 

in less well-understood diseases such as COVID-19. Amassing diverse tissues from > 120 333 

donors with a wide range of diseases, we built a human tissue inflammation single-cell 334 

reference. Applying powerful computational strategies, we integrate > 300,000 single-cell 335 

transcriptomes and correct for factors that interfere with resolving cell-intrinsic expression 336 

patterns. In particular, we have identified a CXCL10+ CCL2+ inflammatory macrophage 337 

phenotype shared between tissues affected in autoimmune disease (RA), inflammatory 338 

diseases (CD and UC), and infectious disease (COVID-19). We observed that the abundance of 339 
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this population is associated with inflammation and disease severity. With integrated analysis of 340 

an ex vivo dataset, we elucidated its potential cytokine drivers: TNF-" together with IFN-!. 341 

 342 

Macrophages are ideal biologic indicators for the in vivo state of a tissue due to their dynamic 343 

nature, robust responses to local factors and widespread presence in most tissues. Through our 344 

cross-disease analysis, we defined two inflammatory macrophage states that can be found in 345 

selected groups of seemingly unrelated tissues and diseases. Most notably, the CXCL10+ 346 

CCL2+ inflammatory macrophages predominate in the bronchoalveolar lavage of patients with 347 

severe COVID-19, and are also seen in synovial tissue affected by RA and inflamed intestines. 348 

These cells are distinguished by high levels of CXCL10 and CXCL11, STAT1, IFNGR1 and 349 

IFNGR2, as well as, CCL2 and CCL3, NFKB1, TGFB1, and IL1B. This gene expression pattern 350 

of the JAK/STAT and nuclear factor-κB (NF-kB) dependent cytokines implicates induction by an 351 

intriguing combination of both the IFN-induced JAK/STAT and TNF-induced NF-kB pathways 352 

and, in conjunction, the overall transcriptome program most closely aligns with macrophages 353 

stimulated by IFN-! plus TNF-". As both JAK inhibitors and anti-TNF medications have 354 

outstanding efficacy in treating RA and anti-TNFs are the most common medications treating 355 

inflammatory bowel disease including Crohn’s Disease 2, these therapies may target the 356 

inflammatory macrophages in severe COVID-19 lung during the phase involving a cytokine 357 

release syndrome 31. 358 

 359 

Infection with SARS-CoV2 triggers local immune response and inflammation in the lung 360 

compartment, recruiting macrophages and monocytes that release and respond to inflammatory 361 

cytokines and chemokines 6. This response may change with disease progression, in particular 362 

during the transition towards cytokine storm associated with severe disease. Intriguingly, our 363 

cross-disease tissue study strongly suggests that IFN-! is an essential component in the 364 

inflammatory macrophage phenotype in severe COVID-19. Most studies on the interferons and 365 

.CC-BY-NC-ND 4.0 International license(which was not certified by peer review) is the author/funder. It is made available under a
The copyright holder for this preprintthis version posted August 5, 2020. . https://doi.org/10.1101/2020.08.05.238360doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.05.238360
http://creativecommons.org/licenses/by-nc-nd/4.0/


15 

coronaviruses have focused on Type I Interferons, such as IFN-#, due to their robust capacity to 366 

interfere with viral replication 32. Indeed, ongoing research into the administration of recombinant 367 

IFN-# has shown promise in reducing the risk of severe COVID-19 disease 33. However, other 368 

studies have indicated that targeting IFN-! may be an effective treatment for cytokine storm, a 369 

driver of severe disease in COVID-19 patients 34,35. Additionally, recent research has indicated 370 

that targeting IFN-! using JAK inhibitors such as ruxolitinib, baricitinib, and tofacitinib offers 371 

effective therapeutic effects in treating severe COVID-19 patients 31,36,37. Clinical trials of Type II 372 

interferon inhibitors in COVID-19 are under way (NCT04337359, NCT04359290, and 373 

NCT04348695) 31. In agreement with these studies, our findings may indicate that IFN! is an 374 

important mediator of severe disease, in part through activating the inflammatory CXCL10+ 375 

CCL2+ macrophage subset. We hypothesize that anti-Type II interferon treatment, including 376 

JAK inhibitors, might prove effective at inhibiting the cytokine storm driving acute respiratory 377 

distress syndrome in patients with severe COVID-19. Of course, the presence of an IFN-! and 378 

TNF-" phenotype is an association may not be causal. Whether targeting these cytokines is 379 

reasonable or not, will depend on additional clinical investigation. 380 

 381 
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Figure legends 469 

Figure 1. Integrative transcriptomic analysis of >300,000 single-cell profiles from 6 inflammatory 470 

disease tissues and COVID-19 reveals shared immune cell populations. a. Overall study design 471 

and single-cell analysis, including the integrative pipeline, a single-cell reference dataset, and ex 472 

vivo stimulated macrophage dataset. Shared states, specifically macrophages, are identified 473 

across disease tissues, and then compared to the ex vivo cells to identify the stimuli driving their 474 

phenotype. b. Number of cells and donor samples from each healthy and disease tissue. SS 475 

lung denotes systemic sclerosis lung; HP lung denotes hypersensitivity pneumonitis lung. c. 476 

Integrative clustering of 307,084 cells reveals common immune cell types from different tissue 477 

sources. Cells from the same cell types are projected together in UMAP space. d. Immune cells 478 

from separate tissue sources in the same UMAP coordinates as in c. e. Expression of cell type 479 

lineage marker genes in the UMAP space. f. Percent of variance explained in the gene 480 

expression data by pre-defined broad cell types, donor samples, tissue sources, and 481 

technologies for the first and second principal component (PC1 and PC2) after batch effect 482 

correction. g. Proportions of identified immune cell types within each disease tissue or healthy 483 

control. 484 

 485 

Figure 2. Integrative analysis of macrophages reveals shared CXCL10+ CCL2+ and FCN1+ 486 

inflammatory macrophage states across inflammatory disease tissues and COVID-19. a. 487 

Integrative clustering of 74,373 macrophages and monocytes from 108 individuals from BALF, 488 

lung, kidney, colon, ileum, and synovium reveals four distinct macrophage states. Two 489 

inflammatory macrophage states are observed: CXCL10+ CCL2+ and FCN1+ inflammatory 490 

macrophages. b. Density plot of cells with non-zero expression of cluster marker genes in 491 

UMAP space. c. Previously defined inflammatory macrophages from different inflammatory 492 

disease tissues are clustered together with the majority of the macrophages from severe 493 

COVID-19 in the integrative embeddings. Inflammatory macrophages are separated into the 494 
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CXCL10+ CCL2+ and FCN1+ inflammatory states. d. Proportion of expressing (non-zero) 495 

inflammatory cytokines and genes from inflammatory macrophages in inflamed RA, CD, and UC 496 

compared to those in severe COVID-19. Genes that are highly expressed in the CXCL10+ 497 

CCL2+ inflammatory macrophages are highlighted in orange. e. PCA analysis on the identified 498 

inflammatory macrophages. The first PC captures a gradient from the FCN1+ state to the 499 

CXCL10+ CCL2+ state. Two distributions are shown to represent the density of the 500 

macrophages mapping to PC1. Macrophages from inflamed tissues are mapped to PC1 501 

coordinates. A shift on PC1 loadings between inflammatory macrophages from inflamed UC and 502 

severe COVID-19 (Wilcoxon rank-sum test P < 2.2e-16), inflamed RA and severe COVID-19 (P 503 

= 0.001), and inflamed CD and severe COVID-19 (P = 1.4e-07) are displayed, respectively. f. 504 

Heatmap of Z-score of the average expression of top marker genes for the CXCL10+ CCL2+ 505 

and FCN1+ inflammatory macrophage states. Rows include genes and columns show pseudo-506 

bulk expression per condition within each state. Gene signatures were selected based on 507 

AUC > 0.6 and Bonferroni-adjusted P < 10'( comparing cells from one cluster to the others 508 

using pseudo-bulk analysis.  509 

 510 

Figure 3. Human blood-derived macrophages stimulated by eight mixtures of inflammatory 511 

factors present heterogeneous macrophage phenotypes. a. Schematic representation of the 512 

single-cell cell hashing experiment on human blood-derived macrophages stimulated by eight 513 

mixtures of inflammatory factors from 4 donor samples. A diagram of the single-cell antibody-514 

based hashing strategy used to multiplex samples from different stimulatory conditions in one 515 

sequencing run. Here fibro denotes fibroblasts. b. Condition labels of the stimulated 25,823 516 

blood-derived macrophages from 4 donor samples are colored and labeled in UMAP space. c. 517 

Proportion of different stimulatory conditions for each donor sample are calculated. d. Log-518 

normalized expressions of genes that are specific to different conditions are displayed in violin 519 

plots. Mean of normalized gene expression is marked by a line and each condition by individual 520 
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coloring. CPM denotes counts per million. e. Fold changes in gene expression after TNF-" 521 

stimulation vs. TNF-" and IFN-! stimulation (left), and IFN-! vs. TNF-" and IFN-! stimulation 522 

(right) for each gene. Genes in red have fold change > 2, Bonferroni-adjusted P <10'), and a 523 

ratio of TNF-" and IFN-! fold change to TNF-" fold change greater than 1 (left) or a ratio of 524 

TNF-" and IFN-! fold change to IFN-! fold change greater than 1. Genes that are most 525 

responsive to either IFN-! (left) or TNF-" (right) are labeled. f. Stimulation effect estimates of 526 

genes that are most responsive to conditions with IFN-! or TNF-" with fibroblasts comparing 527 

each condition to untreated macrophages using linear modeling. Fold changes with 95% CI are 528 

shown. 529 

 530 

Figure 4. Identification of TNF-" and IFN-! driven CXCL10+ CCL2+ inflammatory macrophages 531 

expanded in severe COVID-19 and other inflamed disease tissues. a. Integrative clustering of 532 

stimulated blood-derived macrophages with tissue-level macrophages from COVID-19 BALF, 533 

UC colon, CD ileum, and RA synovium. b. The previously identified tissue-level CXCL10+ 534 

CCL2+ state corresponds to cluster 1 (orange), and the FCN1+ inflammatory macrophage state 535 

corresponds to cluster 2 (yellow). Macrophages from each tissue source are displayed 536 

separately in the same UMAP coordinates as in a. c. Heatmap indicates the concordance 537 

between stimulatory conditions and cluster assignments. Z-score of the number of cells from 538 

one stimulatory condition to each of the clusters is shown. d. For the blood-derived stimulated 539 

macrophages, the proportion of CXCL10+ CCL2+ macrophages per stimulated donor sample of 540 

total macrophages are shown. e and f. For each tissue source, we show the proportion of 541 

CXCL10+ CCL2+ macrophages per sample of total macrophages from healthy BALF (n = 3), 542 

mild (n = 3) and severe (n = 6) COVID-19 BALF, non-inflamed CD (n = 10) and inflamed CD (n 543 

= 12), OA (n = 2) and RA (n = 15), and healthy colon (n = 12), non-inflamed (n = 18) and 544 

inflamed UC (n = 18). Medians of proportions for each group are shown. P is calculated by 545 
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Wilcoxon rank-sum test within each tissue source. For each tissue source, the association of 546 

each cluster with severe/inflamed compared to healthy control was tested. 95% CI for the odds 547 

ratio (OR) is given for each cluster. MASC P is calculated based on one-sided F tests 548 

conducted on nested models with MASC 30. The clusters above the dashed red line (MASC P 549 

threshold after Bonferroni correction) are statistically significantly associated with 550 

inflammation/severity compared to non-inflammatory/healthy status. Clusters that have less 551 

than 30 cells are removed from association testing.  552 

 553 

Statistical analysis  554 

For all the analysis and plots, sample sizes and measures of center and confidence intervals 555 

(mean ± SD or SEM), and statistical significance are presented in the figures, figure legends, 556 

and in the text. Results were considered statistically significant when P < 0.05 by Bonferroni 557 

correction and indicated in figure legends and text. 558 

 559 

DATA AVAILABILITY 560 

Upon acceptance, all single-cell sequencing data will be made available on GEO. Upon 561 

acceptance, source code to reproduce analyses will be made available on GitHub. 562 

 563 
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