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Abstract

Motivation: Polygenic risk score (PRS) has been widely exploited for genetic risk prediction due to its accuracy and
conceptual simplicity. We introduce a unified Bayesian regression framework, NeuPred, for PRS construction, which
accommodates varying genetic architectures and improves overall prediction accuracy for complex diseases by
allowing for a wide class of prior choices. To take full advantage of the framework, we propose a summary-
statistics-based cross-validation strategy to automatically select suitable chromosome-level priors, which demon-
strates a striking variability of the prior preference of each chromosome, for the same complex disease, and further
significantly improves the prediction accuracy.

Results: Simulation studies and real data applications with seven disease datasets from the Wellcome Trust Case
Control Consortium cohort and eight groups of large-scale genome-wide association studies demonstrate that
NeuPred achieves substantial and consistent improvements in terms of predictive r2 over existing methods. In add-
ition, NeuPred has similar or advantageous computational efficiency compared with the state-of-the-art Bayesian
methods.

Availability and implementation: The R package implementing NeuPred is available at https://github.com/shuang
song0110/NeuPred.

Contact: houl@tsinghua.edu.cn or jliu@stat.harvard.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Genome-wide association studies (GWAS) of human complex dis-
eases have identified tens of thousands of associated genetic variants
(Jostins and Barrett, 2011), providing novel insights about disease
mechanisms and revealing extensive polygenic genetic architectures.
In clinical translation of GWAS discoveries, polygenic risk score
(PRS), which quantifies genetic risks via aggregation of risk alleles,
has emerged as a promising tool to stratify patients for precision pre-
vention, screening and diagnosis and treatments (Allen et al., 2010;
Consortium et al., 2009; Ripke et al., 2011). PRS calculates a
weighted sum of the number of risk alleles carried in a personal gen-
ome, and finding a good weighting strategy is key to the success of a
PRS tool.

PRS methods differ by their selection of risk loci and estimation
of effect sizes. An early PRS approach, Pruning and Thresholding
(PþT), first selects a subset of significant and approximately inde-
pendent single nucleotide polymorphisms (SNPs) via linkage dis-
equilibrium (LD) clumping and P-value thresholding, and then

calculates PRS based on the selected SNPs. Instead of using
individual-level genotype data, PþT only requires GWAS summary
statistics to construct PRS, which is attractive because of the data
sharing concerns and privacy policies. However, this simple con-
struction discards potentially useful information due to the ad hoc
nature of their aggregation of marginal effects of the selected SNPs,
which hurts its prediction accuracy. A main challenge in construct-
ing a good PRS lies in the high dimensionality of genetic variants
and the complex LD structure between them, which complicates
risk variant selection and effect size estimation. Advanced statistical
techniques in high-dimensional data analysis are particularly helpful
in this respect.

A recent trend in PRS research is to leverage high-dimensional
techniques in variable selection and shrinkage estimation. Some
methods leverage the marginal estimator of variant effect sizes and
infer the posterior distribution of true effect sizes through Bayesian
[LDpred (Vilhjálmsson et al., 2015) and the updated version
LDpred2 (Priv�e et al., 2021)] or empirical Bayes methods [EB-PRS
(Song et al., 2020)]. Both approaches enforce sparsity and shrinkage
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in effect size estimation by utilizing spike-and-slab priors. Other
methods employ high-dimensional regression analysis to jointly esti-
mate the effect sizes of risk variants, and incorporate various penalty
terms to shrink the linear coefficients. For example, PANPRS (Chen
et al., 2020) use L1 penalty, TlpSum takes a truncated LASSO pen-
alty (Pattee and Pan, 2020), and LassoSum (Mak et al., 2017) and
ElastSum (Pattee and Pan, 2020) use a combination of L1 and L2

penalties. In comparison to penalized regression approaches,
Bayesian high-dimensional regression methods bring additional
flexibility by allowing for a wide range of priors to model the poly-
genic structure of complex diseases. Specifically, RSS (Zhu and
Stephens, 2017) and SBayesR (Lloyd-Jones et al., 2019) employ fi-
nite normal mixture distributions as the prior, while PRS-CS (Ge
et al., 2019) uses the Strawderman-Berger prior (Berger, 1980;
Strawderman, 1971), to characterize the distribution of genetic
effects. DBSLMM assumes that all SNPs have non-zero effects on
the phenotype, but that some SNPs have larger effect sizes than the
others (Yang and Zhou, 2020).

Existing methods have unambiguously demonstrated benefits of
high-dimensional statistical methods in PRS construction. However,
there is a lack of guidance on how to determine the optimal penalties
or the class of prior distributions for a trait of interest. Intuitively,
the relative performance of different PRS methods depends on how
well their internal model assumptions match the underlying genetic
architectures. The true effect size distributions of human diseases
are diverse and complex (Park et al., 2010; Zhang et al., 2018), and
most importantly, unknown. The genetic architecture of a certain
disease may also vary from chromosome to chromosome (Moser
et al., 2015). Moreover, subtle tweaks in penalty terms and prior
distributions could raise completely new computational challenges
in the corresponding optimization algorithms and Markov chain
Monte Carlo (MCMC) sampling strategies.

In light of the aforementioned limitations, we propose NeuPred,
a Bayesian PRS framework that selects prior classes and hyper-
parameters in a data adaptive and computationally effective fashion.
Our main contributions are two: (i) a general Bayesian framework
built upon the recently introduced ‘neuronized prior’ for Bayesian
regression (Shin and Liu, 2021); (ii) a flexible summary-statistics-
based cross-validation (CV) strategy to select suitable priors. With a
unified formulation and efficient MCMC computations, neuronized
priors cover diverse types of sparse and shrinkage priors commonly
used in Bayesian linear regressions, such as continuous and discrete
spike-and-slab priors, Laplace priors, Cauchy priors, horseshoe pri-
ors, etc. NeuPred searches in a wide class of tunable priors, ranging
from conjugate to non-conjugate, from discrete mixture to continu-
ous hierarchical, and from heavy-tailed to light-tailed, and uses the
proposed CV strategy to select a suitable one. Note that it is
straightforward to conduct CV when individual data are available,
but is not obvious how to do CV when only summary statistics for
associations are available.

Simulations and real data applications on seven Wellcome Trust
Case Control Consortium (WTCCC) traits and another eight groups
of large-scale GWAS datasets demonstrate that NeuPred achieves
substantial and consistent improvements in prediction accuracy
compared to existing approaches due to its adaptability to varying
genetic architectures. Furthermore, NeuPred is robust when the LD
matrices are externally estimated based on genotype data of a refer-
ence panel with relevant ancestry, and is also computationally more
efficient than many existing Bayesian PRS algorithms.

2 Materials and methods

2.1 Method overview
We provide two algorithms: NeuPred, which targets cases when
only GWAS summary statistics are provided, and NeuPred-I, which
works with individual-level genotype data. Due to potential privacy
and data sharing concerns, NeuPred can be more extensively applied
than NeuPred-I. As the key innovations are similar in the two

methods, our discussions focus on NeuPred in the main text.
NeuPred is based on the Bayesian linear regression model:

y ¼ Xbþ e; (1)

where y denotes the vector of phenotypes of the n individuals and X,
an n�p matrix, denotes genotypes of the n individuals at p SNPs.
The regression coefficient vector b is of p-dimensional, and the error
term e � Nð0;r2

� InÞ accounts for environmental effects. We assume
that both y and X are standardized. When only GWAS summary sta-
tistics are provided, we only have access to b̂marg ¼ X>y=n. Let the
in-sample linkage-disequilibrium (LD) matrix be R ¼ XTX=n,
which may be available in some cases or estimated from other sour-
ces. Multiplying XT=n to both sides of Equation (1) we obtain

b̂marg ¼ Rbþ n�1XTe: (2)

Consider the eigen-decomposition R ¼ UDUT , where U and D
are orthogonal and diagonal matrices, respectively. Multiplying

both sides of (2) by
ffiffiffi
n
p

D�
1
2UT , we obtain a new regression equation

y0 ¼ X0bþ e0; (3)

where the error term satisfies the i.i.d. Gaussian condition, i.e.
Varðe0Þ ¼ r2

� Ip. If R is known exactly, the OLS estimate based on (3)
is exactly the same as that based on (1). But (3) enables conduction
of regularized regression when only R is available and the feature
matrix X is not.

To overcome the winner’s curse in high-dimensional analysis,
Bayesian approaches resort to a specific class of shrinkage priors,
such as point-normal or normal mixtures (LDpred, RSS, SBayesR
and EB-PRS), and Strawderman-Berger prior (PRS-CS) to induce
shrinkage estimation in linear coefficients. However, choosing a
prior that can lead to optimal prediction accuracy is a non-trivial
task. NeuPred is based the neuronized prior introduced by Shin and
Liu (2021), which postulates that each regression coefficient can be
represented a priori as

bj :¼ Tðaj � a0Þxj; (4)

where T is a non-decreasing activation function, aj � Nð0; 1Þ, and
xj � Nð0; s2

xÞ, for j ¼ 1; . . . ;p. The hyperparameter a0 can be either
specified to a fixed value or updated with Gibbs sampling (Liu and
Sabatti, 2000; Shin and Liu, 2021). This formulation enables a uni-
fied implementation of various classes of shrinkage priors by simply
changing the activation function. This is desirable when coping with
genetic data of a specific disease with unknown genetic architec-
tures, as it can be implemented efficiently via one common MCMC
algorithm. Details about the MCMC algorithm and the selection of
hyperparameters are provided in Supplementary Note S1.1.

To take full advantage of the neuronized priors, we design a
summary-statistics-based CV strategy to automatically select a suit-
able prior for each chromosome (see Section 2.2). PRS is estimated
subsequently as the posterior mean effect size under the selected
prior. Three built-in neuronized priors are considered in our R pack-
age NeuPred, including the spike-and-slab Laplace (Neu-SpSL-L),
spike-and-slab Cauchy (Neu-SpSL-C) and horseshoe (Neu-HS) pri-
ors, which appear to be sufficient for most genetic data applications
we have tested.

For all reported simulation experiments and real data applica-
tions, we trained summary-statistics-based methods with only
GWAS summary statistics, and evaluated the performances of PRS
in an independent validation dataset. The prediction accuracy is
evaluated with respect to the predictive r2 and the area under the re-
ceiver operating characteristic (ROC) curve (AUC) in the validation
dataset.

2.2 A cross-validation strategy for prior selection
To adapt to varying genetic architectures, we wish to implement CV
to select an appropriate neuronized prior for each chromosome. If
individual-level genotype data are available, we can directly apply
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fivefold CV to the training data and choose the best performing neu-
ronized prior according to the predictive r2. When only GWAS sum-
mary statistics are provided, we design the following two-step CV
procedure based on the post-transformation data, D0 ¼ ðy0;X0Þ as in
(3) of Section 2.1.

Step 1: For each prior choice (i.e. Neu-SpSL-L, Neu-SpSL-C and

Neu-HS) and each chromosome, we calculate the

Pearson correlation coefficient (PCC) between the

observed y0 and its prediction ŷ 0 derived from fivefold CV

based on data D0; we test whether the prediction accuracy

of a prior is significantly higher than the other two (one-

tailed test, P-value < 0.05) after the Fisher transform-

ation of the PCC values and choose the one if it is signifi-

cantly better than the other two. If no prior significantly

outperforms the other two in terms of PCC, we conduct

Step 2 focusing on the robustness and similarity between

y0 and ŷ 0.

Step 2: We compute the Kolmogorov–Smirnov (KS) test statistic

between empirical distributions of the observed y0 and

the predicted ŷ 0, and choose the prior with the minimum

KS statistic if we have not made a decision in Step 1.

We stress that the proposed CV procedure only requires GWAS
summary statistics and a LD reference panel, and does not need any
external information from a validation dataset.

2.3 Simulation settings
2.3.1 Neuronized priors for varying genetic architectures

We first conducted simulations based on generated genotypes to ex-
plore the performances of NeuPred under three neuronized priors
for varying genetic architectures. The minor allele frequencies
(MAF) were sampled from Unif½0:1; 0:5�. The numbers of SNPs p
and individuals n were fixed at 1000 and 2000, respectively. The
genotypes with correlated LD structures were generated from bino-
mial distributions with AR(1) correlation matrix, under which the
correlation decreases with increasing spatial distances, using the R
package CorBin (Jiang et al., 2021), and the correlation coefficient
was fixed at 0.1. The proportion of causal SNPs j took values in
f0:01; 0:05;0:1;0:3; 1g, the true effect sizes for causal SNPs were
sampled from Nð0; h2

jp Þ. The quantitative phenotypes were generated
by Equation (1), and the error term e � N

�
0; ð1� h2ÞIn

�
:

2.3.2 Effectiveness of the cross-validation strategy for prior selection

We fixed the number of SNPs to be 1000 and the heritability to be
0.5, and let the proportion of causal SNPs take values from
f0:01; 0:05;0:1;0:3; 1g. We considered three scenarios: n is smaller
than p (n¼500); n is equal to p (n¼p¼1000); and n is larger than
p (n¼2000). The block size was set to be 50. In each block, we ran-
domly sampled MAF from Unif½0:1; 0:5�, and generated genotypes
under an AR(1) correlation structure. The correlation coefficient in
each block was randomly sampled from Unif½0:1; qmax�, where qmax

is the Prentice constraint imposed on marginal expectations and cor-
relation coefficients (Prentice, 1988). We used the two CV proce-
dures (fivefold) to tune parameter k in LASSO regression to
minimize the MSEs, and compared their estimates including and the
sets of variables selected, and the MSEs and predictive r2 in an inde-
pendent test dataset of sample size 1000. The Jaccard index was
employed for comparing two sets A and B, which is defined as
JðA;BÞ ¼ jA \ Bj=jA [ Bj.

2.3.3 Comparison between NeuPred and other PRS methods

We conducted a simulation study based on the real genotype data of
chromosome 22 (4097 SNPs) from the WTCCC rheumatoid arth-
ritis (RA) study on 4685 individuals. Markers with MAF smaller
than 0.005 or genotyping failure rate larger than 0.05 or significant
Hardy–Weinberg equilibrium (HWE) with P < 10�5 in PLINK 1.9
(Chang et al., 2015) were removed. Samples with more than 10%
missing were also removed. A method’s performance is evaluated by

the fivefold CV: four-fifths of the samples were used to calculate the
GWAS summary statistics to train PRS models and the remaining
one-fifth were reserved as test data.

We also performed simulations with WTCCC genotypes at a
larger scale, corresponding to 15 860 individuals and 260 243 SNPs
after overlapping with HapMap 3 SNPs and quality control. The ef-
fect sizes were simulated from a point-normal distribution
ð1� jÞd0 þ jNð0; h2

jp Þ, with j ¼ 0:1%; 1%; 10% and 100%. Four
scenarios representing different effective sample sizes were consid-
ered: (i) all SNPs (chromosomes 1–22, 260 243 SNPs), (ii) chromo-
somes 1–4 (78 067 SNPs), (iii) chromosomes 1 and 2 (42 984 SNPs)
and (iv) chromosome 1 (21 007 SNPs). The effective sample sizes
are defined as the sample size that maintains the same n/p ratio if all
SNPs are used, i.e. neff ¼ ðn=psimÞpall. Here psim is the actual number
of SNPs used in each simulation, and pall is the number of all auto-
somal SNPs (Vilhjálmsson et al., 2015).

2.4 Compared methods
We compared NeuPred with 12 state-of-the-art summary-statistics-
based PRS methods, including unadjusted PRS (unadj PRS), PþT,
LDpred-inf, LDpred (Vilhjálmsson et al., 2015), SBayesR (Lloyd-
Jones et al., 2019), SBayesC (Habier et al., 2011), RSS (Zhu and
Stephens, 2017), PRS-CS-auto, PRS-CS (Ge et al., 2019), LDpred2-
inf, LDpred2-auto and LDpred2-grid (Priv�e et al., 2021) (detailed in
Supplementary Note S1.2), and an individual-level-data-based
method, BayesR (Moser et al., 2015) was used as benchmarks. For
each compared method, we used the default setting in its provided
software. For RSS, we set the number of MCMC iterations to be 106

with 2� 105 burn-in iterations. There were cases that long MCMC
chains of RSS encountered computational instabilities; and we
halved the number of iterations in such cases.

Four methods, PþT, LDpred, PRS-CS and LDpred2-grid, need
further parameter calibrations when applied to a new dataset.
However, reporting the highest accuracy with post hoc parameter
tuning makes comparisons with other methods unfair. To alleviate
the concern, in simulations and WTCCC studies, we carved out one-
fifth of the test data to tune parameters and evaluated prediction ac-
curacy on the remaining four-fifth (this is still a bit unfair to other
methods). For real data applications with independent test datasets,
we tuned the parameters with an external validation dataset (see
Supplementary Table S1). We also provide the results with the best
post hoc tuning parameters for the four methods in Supplementary
Materials.

2.5 Reference LD matrix construction
The in-sample LD matrix was estimated from GWAS samples. An
external LD matrix was estimated via a non-linear shrinkage
method (Ledoit and Wolf, 2015, 2017) based on the reference panel
of the 1000 Genomes Project (1000G, henceforth), which contains
489 Europeans with 9 997 231 SNPs after quality control. We parti-
tioned the genome into 1703 independent blocks using LDetect
(Berisa and Pickrell, 2016), based on the 1000G reference panel
with European ancestry (https://bitbucket.org/nygcresearch/ldetect-
data/src/master/), and performed Bayesian regression in each LD
block. For SBayesR and RSS, we used the gctb software (https://
cnsgenomics.com/software/gctb/) to shrink the off-diagonal entries
of the sample LD matrix toward zero. The gctb software is imple-
mented by SBayesR (Lloyd-Jones et al., 2019), which is also a Cþþ
port from that provided with the RSS software (Zhu and Stephens,
2017). We also used an LD matrix estimated from the UK Biobank
(UKBB) samples of European ancestry, which is available at https://
pan.ukbb.broadinstitute.org with Pan-UKB Team (2020). Note
that, several methods have built-in options to use UKBB LD matri-
ces, namely, SBayesR, SBayesC, PRS-CS and LDpred2. For these
methods, we directly downloaded and used their internal LD
estimation.

2.6 Computation time
We compared the CPU time of the Bayesian PRS methods including
NeuPred, LDpred, SBayesR, SBayesC, RSS, PRS-CS and LDpred2.
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Numbers of MCMC iterations for these methods were chosen
according to their respective default settings, i.e. 104, 60, 104, 104,
106, 103 and 500, with the corresponding burn-in iterations
2� 103, 5, 2� 103; 2� 103; 2� 105, 500 and 103, respectively.
LDpred, PRS-CS and LDpred2 all require grid search for finding the
best tuning parameters. The time we reported is only for one specific
parameter setting, and the computation time for estimating LD
matrices is negligible. The computation time for each of the seven
methods is for simulations based on the WTCCC RA dataset, with
an Intel Xeon processor with 2.50 GHz and 48 cores. Among the
methods, NeuPred, RSS, PRS-CS and LDpred2 were run with all 48
cores, while SBayesR, SBayesC and LDpred did not have parallel
computing capacity and used 1 CPU core only.

2.7 Genetic datasets analyzed
The WTCCC datasets on seven complex diseases (Wellcome Trust
Case Control Consortium, 2007) were used in both simulations and
real data analysis. As for the large-scale GWAS studies, we trained
models with 4533 individuals with celiac disease (CEL) and 10 750
controls from Dubois’ study (Dubois et al., 2010). The test dataset is
from the National Institute of Diabetes and Digestive and Kidney
Diseases (NIDDK) CEL study (1716 cases and 530 controls, dbGaP:
phs000274) (Garner et al., 2014). For Crohn’s disease (CD), we
trained models using summary statistics from the International
Inflammatory Bowel Disease Genetics Consortium (IIBDGC;
15 056 cases and 6333 controls) (Franke et al., 2010). Individuals
from the WTCCC were removed from the meta-analysis and used as
the test dataset (2891 cases and 1689 controls). For RA, we used
summary statistics from the Stahl et al. (2010) (5539 cases and
20 169 controls), removing WTCCC samples for training, and used
the WTCCC data as the test data. For type 2 diabetes (T2D), we
trained models using summary statistics from the Diabetes Genetics
Replication and Meta-analysis consortium (DIAGRAM, 56 862
cases and 12 171 controls) (Morris et al., 2012), and tested the
model on samples from the Northwestern NUgene Project (517
cases and 662 controls, dbGaP: phs000237).

We also trained PRS with the UKBB GWAS summary statistics,
downloaded from Neale lab GWAS round 2 (http://www.nealelab.
is/uk-biobank), and tested with the Genetic Epidemiology Research
on Aging (GERA) summary statistics for asthma (ATH) (dbGaP:
phs000674.v3.p3, http://cg.bsc.es/gera_summary_stats/), and with
the WTCCC data for hypertension (HT). We tested with the GWAS
summary statistics on 449 899 Europeans in Turcot et al. (2018) for
body mass index (BMI) and 253 288 individuals of European ances-
try in Wood et al. (2014) for height (HGT). As for the post hoc par-
ameter tuning for PþT, LDpred, PRS-CS and LDpred2-grid, we
used UKBB summary statistics for CD, CEL, RA, T2D, BMI and
HGT; GWAS data from GABRIEL consortium for ATH (Moffatt
et al., 2010); and the FinnGen GWAS data for HT. More details
about the datasets are provided in Supplementary Table S1.

3 Results

3.1 Simulation experiments
3.1.1 Neuronized priors for varying genetic architectures

We simulated datasets to investigate performances of NeuPred
under different types of priors for various genetic architectures. The
simulated genetic architectures vary in three aspects: LD structure,
heritability and the sparsity of causal SNPs. Scenarios with both in-
dependent SNPs and arbitrary LD structures were tested
(Supplementary Figs S1 and S2), with heritability level h2 at 20%,
50% and 80%.

NeuPred with either Neu-SpSL-L or Neu-SpSL-C obtained simi-
lar predictive r2, but performed worse under the Neu-HS prior when
causal signals are sparse, regardless of the LD structures and herit-
ability settings. On the other hand, the Neu-HS prior worked the
best under more polygenic architectures. The results highlight that
different underlying genetic architectures prefer different priors,
often strongly, and thus the prediction accuracy can be potentially
much improved with a proper selection of prior distributions.

3.1.2 Effectiveness of the cross-validation strategy for prior selection

When individual-level genotype data are available, it is straightfor-
ward to use CV for prior and other tuning parameter selections.
When only GWAS summary statistics are provided, however, the
standard individual-data-based CV is no longer applicable. In
Section 2.2, we detail a summary-statistics-based CV approach use-
ful for selecting prior for each chromosome. To demonstrate its ef-
fectiveness, we used LASSO as the regression tool and simulations
to compare the new CV procedure with the standard one. Similar
results are expected to hold true for more time-consuming Bayesian
procedures.

We observed that MSEs and predictive r2 reported by the two
CV procedures were similar (Supplementary Fig. S3), especially
when the prediction accuracy was high (under sparser settings). We
further evaluate the similarity between the sets of variables selected
by the two CV procedures by the Jaccard index (JI). We observed
that JI between the two selected sets ranged from 0.725 to 0.885,
under sparse settings (i.e. j ¼ 0:01;0:05; 0:1), indicating a strong
consistency between the two CV procedures. In polygenic cases
(j ¼ 0:3), JI was reduced to 0.37 when n¼500, reflecting a high un-
certainty in variable selection (Supplementary Table S2).

3.1.3 Prediction accuracy

We first applied all the considered PRS methods to a small-scale
simulation based on the observed genotypes chromosome 22 on the
WTCCC data (Section 2). Quantitative phenotypes were generated
with three genetic models: (i) a point-normal distribution with 1%
causal SNPs; (ii) a point-normal distribution with 10% causal SNPs;
(iii) equal effect sizes for 1% causal SNPs. The heritability was fixed
at 0.5. Two full individual-level-data-based methods, NeuPred-I and
BayesR were also applied and their performances are listed as bench-
marks. For summary-statistics-based methods, we evaluate their per-
formances under both in-sample and external LD matrices. Since
PRS-CS-auto and PRS-CS have built-in LD matrices estimated from
the 1000G reference panel, their corresponding results with in-
sample LD matrices are not available. For PþT, in-sample LD
matrices were used to clump SNPs.

For setting (i) where the simulated genetic signals are sparse,
NeuPred achieved a high prediction accuracy compared with other
summary-statistics-based methods (Supplementary Fig. S4). In par-
ticular, NeuPred had performed comparably to NeuPred-I and
BayesR, which used the full individual-level data. LDpred2-grid had
the best performance among the summary-statistics-based methods
in simulation setting (ii) where the genetic architecture were relative-
ly polygenic (j ¼ 0:1). We note that the generating models of set-
tings (i) and (ii) are consistent with the underlying models of
LDpred2-auto, LDpred2-grid and SBayesC, and LDpred2-grid fur-
ther tunes parameters among a grid size of 126. The setting (iii)
assumes equal contribution from each causal SNP, which violates
the normal assumption and results in less optimal performances for
methods assuming point-normal or normal mixture priors. In con-
trast, NeuPred remained robustness and showed a better perform-
ance in this case.

We then applied the methods to whole-genome-scale simulations
with a larger sample size, with varying proportion of causal SNPs
(Section 2). We omitted the comparison with unadjusted PRS,
LDpred and RSS since their performances were demonstrated to be
inferior to the others in the literature (Priv�e et al., 2021) and the
small-scale simulation studies. Note that, the generating models in
the simulation settings are the same as the underlying models
(including priors) of LDpred2-auto, LDpred2-grid and SBayesC,
and are similar to that of SBayesR. These four methods performed
well in these simulations, especially LDpred2-auto and LDpred2-
grid (Supplementary Fig. S5). LDpred2-inf had good performances
under polygenic scenarios (j¼1), but became less competitive under
sparse settings. Even employed priors are different from that of the
generating models, NeuPred remained to perform robustly under all
sparse and polygenic simulation settings, especially when the effect-
ive sample sizes were large. This high robustness is consistent with
our findings in the small-scale simulations and is likely due to its
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ability in choosing one from three distinctive classes of priors adap-
tively via our new CV strategy.

In addition, we assessed the calibration of polygenic prediction
methods by regressing the true phenotype onto the PRS predictor
and inspecting the regression slope. A slope close to one often indi-
cates the predictor is correctly calibrated (Vilhjálmsson et al., 2015).
We note that the usage of the calibration slope is being debated
(Stevens and Poppe, 2020; Vach, 2013; Wang, 2020) and we suggest
to interpret this statistic with caution. In general, the Bayesian
approaches had calibration slopes closer to one than PþT, especial-
ly when the predictive accuracy was high (Supplementary Table S3).
NeuPred was well calibrated under sparse settings with large effect-
ive sample sizes.

3.1.4 Robustness to external LD information

We conducted simulations based on the RA data of WTCCC
(Section 2), to evaluate robustness of NeuPred with respect to the
LD information input under three prior choices. For each chromo-
some, we simulated the SNP effect sizes from a point-normal distri-
bution, fixed the heritability at 0.5 and varied the proportion of
causal SNPs. The LD matrices were either estimated from the simu-
lated samples (in-sample LD) or from the 1000G reference panel
with European ancestry (external LD). We can see that the influence
of the LD input varies among chromosomes and prior choices,
whereas the Neu-SpSL-L prior enabled the most robust performance
under varying genetic architectures (Supplementary Fig. S6 and
Supplementary Table S4). Therefore, we recommend to always use
Neu-SpSL-L as the default setting when the LD information is from
an external source, and to employ a shrinkage method to estimate
the LD matrices (Ledoit and Wolf, 2015, 2017). The robustness of
NeuPred is also evident in Supplementary Figure S4. Although per-
formances of all methods modeling LD information deteriorated
when external LD estimates were used in the place of the in-sample
LD matrices, NeuPred appeared to be least affected.

3.2 Real data applications
3.2.1 Adaptability to varying genetic architectures

We tested NeuPred with the WTCCC datasets of seven complex dis-
eases, including bipolar disorder (BD), coronary artery disease (CAD),
T2D, HT, CD, RA and type 1 diabetes (T1D). To assess the added
value of prior selection, NeuPred was implemented in two ways: (i)
using one of the three default neuronized priors, namely, Neu-SpSL-L,
Neu-SpSL-C and Neu-HS, versus (ii) using a data-adaptive prior
selected (among the three) by the summary-statistics-based CV proced-
ure. We used the in-sample LD information and conducted fivefold CV
to evaluate predictive r2 and AUC for each method and disease. In terms
of predictive r2, we observe that for the three immune-related diseases,
CD, RA and T1D, using either Neu-SpSL-C or Neu-SpSL-L gave similar
results and was superior to using Neu-HS (Fig. 1). In contrast, the Neu-
HS prior was strongly favored by BD. The three priors worked compar-
ably well for CAD, T2D and HT. Similar patterns were observed with
respect to AUC (Supplementary Table S5).

Because the major histocompatibility complex region explains a
large amount of the overall variance of autoimmune-related traits
(Moser et al., 2015; Vilhjálmsson et al., 2015; Zhang et al., 2018),
the favorable performance of Neu-SpSL-C and Neu-SpSL-L in auto-
immune diseases echos the simulation results that these priors are
advantageous for less polygenic traits. Regardless of the underlying
genetic architecture, the approach with adaptive prior selection con-
sistently outperforms any single-prior approach. The selected prior
for each chromosome is marked for CAD and HT (Fig. 1b) and
others (Supplementary Fig. S7). For most cases, our CV strategy
selected the best performing prior for each chromosome, which
explains the substantial improvement in the overall prediction ac-
curacy. For scenarios where Neu-SpSL-L and Neu-SpSL-C had bet-
ter performance compared with Neu-HS, our CV strategy showed a
slight preference to Neu-SpSL-L, which shrinks more strongly and is
more conservative than Neu-SpSL-C. Although in general Neu-
SpSL-L and Neu-SpSL-C are preferred by autoimmune diseases and
Neu-HS is favored by polygenic genetic architectures, Figure 1b

shows a significant variability among the chromosome-level prior
preferences, which further highlights the importance of using data-
adaptive priors. We also provide a comparison between our
summary-statistics-based CV strategy and the pseudo-validation
strategy proposed in the lassosum method (Mak et al., 2017). Even
if we gave an advantage to the pseudo-validation method by allow-
ing it to use the test genotype data, our summary-statistics-based CV
strategy showed more improvement in six of the seven traits
(Supplementary Note S1.3 and Supplementary Table S6).

3.2.2 Prediction accuracy

To assess the performance of NeuPred and other summary-statistics-
based PRS methodologies, we analysed seven WTCCC complex dis-
eases and eight large-scale GWAS studies with independent test
datasets (Section 2). For calibration, we provide the results of
NeuPred-I and BayesR as benchmarks when possible as they lever-
age full individual-level genotype information. We also estimated
the SNP-based heritability (on the observed scale) of each of the
seven WTCCC traits using LDSC (Bulik-Sullivan et al., 2015),
which provides a theoretical upper bound for the predictive r2

(Supplementary Table S7).
For the seven WTCCC traits based on CV, we observe that

NeuPred consistently outperformed all other summary-statistics-
based methods in terms of both predictive r2 and AUC criteria (see
details in Supplementary Note S1.4, Supplementary Fig. S8 and
Supplementary Tables S8–S11). We note, however, that the extent
of improvement by CV may not be extensible to other studies, due
to the limited sample sizes of the WTCCC datasets and potential
over-fitting problems. We further validated the predictors trained
with the WTCCC data on the independent samples from the
Northwestern NUgene Project of T2D. Although the prediction ac-
curacy diminished for all tested methods, NeuPred still achieved the
best performance, showcasing that the model fitted by NeuPred gen-
eralizes well in independent datasets (Supplementary Table S12).

We applied all the methods to four large-scale GWAS studies on
CD, CEL, RA and T2D, and evaluated their performance with four
independent test datasets (Fig. 2a, Table 1 and Supplementary Table
S13). The hyperparameters for PþT, LDpred, PRS-SC and
LDpred2-grid were tuned with UKBB GWAS data, which is inde-
pendent of our training and test datasets. We also provide the results
for the four methods with the best post hoc tuned parameters in test
data in Supplementary Table S14. LDpred was relatively robust
with parameters either optimized post hoc or tuned with external
validation datasets, while the other three all performed much worse
on two or more of the four traits without post hoc optimizing. We
also notice that SBayesR and SBayesC had convergence issues and
suboptimal performances on traits such as CEL and RA, which were
also reported in other studies (Zhou and Zhao, 2021). Therefore,
we used a shorter chain length (5000) if the two methods encoun-
tered a convergence problem. If the convergence issue remained, we
substituted LD matrices with that estimated from the UKBB LD ref-
erence panel. We can see that NeuPred still consistently outper-
formed the others in terms of both predictive r2 and AUC on all
compared traits. We also provide the calibration slope results in
Supplementary Table S15, showing that it was challenging for all
methods to derive PRS with slope close to one with an independent
test cohort.

We further evaluated prediction accuracy of NeuPred, PþT,
SBayesR, SBayesC, PRS-CS and LDpred2 with UKBB GWAS datasets
on two binary traits, ATH and HT, and two quantitative traits, BMI
and HGT. The LD matrices were estimated with UKBB individuals
(Section 2). The evaluation is based on the square of the (quasi-) cor-
relation in an independent test dataset (see Supplementary Note S1.5).
We tuned parameters for PþT, PRS-CS and LDpred2-grid with an
external validation dataset for ATH and HT, but used the optimal
parameters in the training data for BMI and HGT (as no independent
validation cohort was available). We also provide the results under
the optimal post hoc tuned parameters (i.e. the parameter set that
leads to the best testing result) for the four methods in Supplementary
Table S16. Overall, NeuPred and LDpred2-auto performed
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comparably and better than other methods (Fig. 2b), both requiring
no post hoc tuning. LDpred2-grid performed competitively.

3.2.3 Computational efficiency

Supplementary Figure S9 and Supplementary Table S17 show the
computation time of NeuPred (under three prior choices), LDpred,
SBayesR, SBayesC, RSS, PRS-CS and LDpred2 for analyzing the
simulated datasets based on chromosome 1 (26 799 SNPs) and
chromosome 22 (4097 SNPs) of the WTCCC dataset. Compared
with the other six Bayesian methodologies, NeuPred is very competi-
tive in terms of time efficiency. NeuPred under the Neu-SpSL-L
prior has the shortest mean running time with about 30-folds im-
provement over PRS-CS at the default setting.

4 Discussion

As GWAS sample sizes continue to grow, PRS methods are becom-
ing more and more powerful in predicting complex diseases, and
offer potentials for applications in clinical care and precision medi-
cine (Chatterjee et al., 2013; Dudbridge, 2013). Several Bayesian

PRS methods have been developed to improve the prediction accur-
acy, each focusing on a specific class of priors, such as point-normal,
normal mixtures and the Strawderman–Berger distributions.
However, a unified framework is still lacking for accommodating di-
verse and unknown genetic architectures of complex traits. NeuPred
described in this article fills in this gap by providing a unified treat-
ment of priors, which allows one to test out, tune and combine mul-
tiple types of prior classes to accommodate different genetic
architectures. NeuPred takes GWAS summary statistics and a LD
matrix as input, and employs an efficient computational strategy to
entertain a wide range of prior choices such as point-normal, horse-
shoe, Cauchy and point-Laplace. As a consequence, NeuPred sub-
stantially improves the prediction accuracy and computational
stability compared with existing Bayesian PRS methods. In particu-
lar, NeuPred allows one to test out, tune and combine diverse classes
of priors to accommodate different genetic architectures at chromo-
some level with no need of information from an external validation
dataset, which is useful and flexible as a validation dataset is not al-
ways available in clinical applications.

We provide three candidate neuronized priors for consideration
by default: Neu-SpSL-L, Neu-SpSL-C and Neu-HS, which should
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Fig. 1. Comparison of three neuronized priors applied to the seven WTCCC complex diseases. (a) The predictive r2 is estimated from fivefold CV. The orange solid and dashed

lines indicate the mean predictive r2 and standard deviations, respectively, estimated by NeuPred with priors automatically selected. (b) The predictive r2 of NeuPred under

three neuronized priors for each chromosome for CAD and HT. In each CV, NeuPred automatically selected a prior, and the prior that is most frequently selected is marked

with a star, which varies greatly among diseases and chromosomes
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have covered most genetic structures in our experiments. We also
propose a novel CV strategy for choosing the best performing prior
when only the GWAS summary statistics are available in the train-
ing dataset, and show that its performances are comparable to the
same CV-procedure applied to the corresponding individual-level
genotypes when such data are available, especially when dimension
p is high. Empirically, users may also specify a proper prior based
on our knowledge about the target disease and use our software to
derive posterior effect size estimates.

We observe that the Neu-HS prior performed the best for poly-
genic genetic architectures, in which a large number of SNPs are
disease-associated but with very small effects. This is also consistent
with the findings in Moser et al. (2015). The Neu-SpSL-C prior is
powerful for capturing strong signals as its heavy tail helps keep
large effects unaffected, while its spike part shrinks small coeffi-
cients to zero. Equipped with the CV procedure, NeuPred automat-
ically selects the most appropriate prior for each chromosome.
When estimating PRS with an external LD matrix, however, we

recommend to use Neu-SpSL-L, since it is lighter-tailed, shrinks
more strongly, and is more robust than Neu-SpSL-C to a potential
mismatch between the target population and the LD reference
panel.

In real data applications, we found that although sample sizes of
GWAS studies were larger, the prediction accuracy on an independ-
ent test dataset was not as high as that for the WTCCC studies with
in-sample LD reference. There are several reasons: (i) The genetic
signals across training and test cohorts in the WTCCC studies are
well matched, whereas there could be differences in sample ascer-
tainment in an external validation dataset; (ii) The bias in an exter-
nal LD reference may have also led to the decrease in prediction
accuracy, especially for the 1000G reference panel, which contains
only 489 individuals after quality control; (iii) The disparity of case/
control ratios further made the predictive r2 not comparable across
cohorts. In theory, optimizing CV (for predictive likelihood) is
equivalent to optimizing AIC asymptotically, thus tends to lead to a
larger model than the true one (i.e. is not model consistent, whereas

Large meta-GWAS summary statistics + 1000G LD reference

Methods without post hoc tuning

CD CEL RA T2D

NeuPred
Unadj

P+T

LDpred−inf
LDpred

SBayesR
SBayesC
RSS

LDpred2−inf
LDpred2−auto

LDpred2−grid

PRS−CS−auto
PRS−CS

ATH HT BMI HGT

P
re

di
ct

iv
e

r2

UKBB GWAS summary statistics + UKBB LD reference

0.00

0.05

0.10

0.00

0.01

0.02

0.03

0.04

0.00

0.05

0.10

0.00

0.02

0.04

0.06

0.000

0.005

0.010

0.015

0.020

0.00

0.02

0.04

0.06

0.08

0.00

0.05

0.10

0.15

0.20

0.00

0.05

0.10

0.15

0.20

P
re

di
ct

iv
e

r2

Methods with post hoc tuning

A

B

Fig. 2. Comparison of prediction accuracy among NeuPred and other 12 methods on real data experiments. (a) Predictive r2 on the four diseases (CD, CEL, RA and T2D) with
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Table 1. AUC of summary-statistics-based PRS methods for four diseases with large-scale GWAS studies and independent test data

Trait Without post hoc tuning With post hoc tuning

NeuPred Unadj

PRS

LDpred-

inf

SBayesR SBayesC RSS PRS-

CS-auto

LDpred2-

inf

LDpred2-

auto

PþT LDpred PRS-

CS

LDpred2-grid

CD 0.712 0.632 0.623 0.692 0.698 0.584 0.584 0.631 0.633 0.679 0.661 0.707 0.632

CEL 0.630 0.594 0.585 0.618 0.617 0.508 0.587 0.571 0.607 0.572 0.606 0.584 0.625

RA 0.710 0.645 0.625 0.598 0.608 0.636 0.706 0.654 0.656 0.688 0.662 0.704 0.596

T2D 0.632 0.587 0.581 0.604 0.619 0.523 0.616 0.575 0.565 0.567 0.614 0.584 0.614

Note: The four diseases are Crohn’s disease (CD), celiac disease (CEL), rheumatoid arthritis (RA) and type 2 diabetes (T2D). The LD matrix was externally

estimated from the 1000G. The UKBB data were used for post hoc parameter tuning for PþT, LDpred, PRS-CS and LDpred2-grid. The highest AUC is high-

lighted in boldface.
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the BIC procedure is model-selection consistent). However, for
training a proper model and in the lack of future test data, the CV
procedure still appears to be one of the best available general
methods.

As mentioned earlier, the calibration slope should be used with
caution. Vach (2013) commented that a calibration can look perfect
even if all regression coefficients are underestimated, and introduced
the concept of ‘bias slope’ (b̂bias), which is the slope for regressing
the predicted scores against the true phenotype. Clearly, the product
bcalib�b̂bias is equal to predictive r2. In a clinical context, the bias
perspective is more relevant as the aim of a prediction rule should be
to inform a patient about the prognosis, while the calibration slope
focuses on whether patients with a certain estimated probability can
expect on average to experience an event rate equal to this value.
Therefore, it is hard to tell whether a calibration slope close to one
really comes from a well calibrated model, or from a sacrifice of the
bias slope, especially when the predictive r2 does not reach the level
of SNP-based heritability. In real data applications, if calibration is
really desired, a post-training adjustment could be adopted, such as
multiplying the estimated regression vector by a constant, to make a
better calibration.

For future directions, it is conceptually advantageous to jointly
model multiple genetically correlated traits and functional annota-
tions to further improve the prediction accuracy (Hu et al., 2017a,b;
Turley et al., 2018). We believe that the concise and unified form of
neuronized priors can also be used in such an attempt to bring in
additional gains. An additional direction for further exploration is
to discern small effects from the noise by taking further advantage
of existing genetic knowledge. Similar to most PRS studies, we cur-
rently removed markers with MAF smaller than 0.005 and focused
on the common variants. A better way to model rare variants awaits
for a future careful investigation. Our current work imposes inde-
pendence among the bj’s a priori. It may be of interest to induce cor-
relations among the bj’s based on our genetic knowledge. This can
be achieved in our NeuPred framework by, say, modeling the aj’s in
Equation (4) as a Markov chain.
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