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SUMMARY
Human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) hold great promise for cardiac studies, but their structural

and functional immaturity precludes their use as faithful models of adult myocardium. Here we describe engineered heart slices

(EHS), preparations of decellularized porcine myocardium repopulated with hiPSC-CMs that exhibit structural and functional improve-

ments over standard culture. EHS exhibited multicellular, aligned bundles of elongated CMs with organized sarcomeres, positive

inotropic responses to isoproterenol, anisotropic conduction of action potentials, and electrophysiological functionality for more

than 200 days. We developed a new drug assay, GRIDS, that serves as a ‘‘fingerprint’’ of cardiac drug sensitivity for a range of pacing rates

and drug concentrations. GRIDS maps characterized differences in drug sensitivity between EHS and monolayers more clearly than

changes in action potential durations or conduction velocities. EHS represent a tissue-like model for long-term culture, structural, and

functional improvement, and higher fidelity drug response of hiPSC-CMs.
INTRODUCTION

The advancement in cardiac differentiation strategies for

human pluripotent stem cells (hPSCs) (Burridge et al.,

2012) has opened up opportunities for new in vitro studies

of human cardiomyocytes (CMs). However, widespread

and reliable use of hPSC-CMs requires the development

of preparations that can recapitulate essential features of

myocardial structure and function: e.g., elongated CMs in

arrays that mimic myofiber bundles, coordinated contrac-

tion, fast and uniform conduction of action potentials

(APs), and appropriate sensitivity to cardioactive drugs.

To this end, a variety of strategies have been employed to

make tissue-like constructs, including casting hPSC-CMs

in hydrogels (Tzatzalos et al., 2015), seeding them onto

synthetic matrices (Ma et al., 2014), and fabricating cell

sheets (Matsuura et al., 2012). These efforts have resulted

in structurally organized, multicellular preparations that

promote more mature states of cardiac gene expression,

contraction, calcium handling, and conduction. However,

their ultimate usefulness for in vitro studies may be

hampered by the inability tomaintain functionality during

long-term culture and the absence of instructive cues typi-

cally present in the adult myocardium.

An emerging strategy is to use decellularized myocardial

matrix as a source of biochemical, topographical, and

biomechanical cues present in the heart to direct differen-

tiation and maturation of PSC-CMs. Decellularized

myocardial matrix decreases stem cell pluripotency and in-

duces differentiation in iPSCs (Carvalho et al., 2012) and
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early cardiac progenitor cells (Lu et al., 2013). The idea

that multicomponent extracellular matrix (ECM) can

enhance cardiac differentiation has been demonstrated

with hydrogels composed of solubilized acellular porcine

matrix (Duan et al., 2011) or solubilized basement mem-

brane Matrigel preparations (Zhang et al., 2012). Cell cul-

ture coatings made from these solubilized, acellular matrix

sources or from decellularized sheets of supporting cells

enhance the structural organization of CMs (Baharvand

et al., 2005) and temporally advance the expression of car-

diac genes and proteins in cardiac progenitor cells (French

et al., 2012). Acellular matrix can improve the response of

single hiPSC-CMs to cardiac drugs so that theymore closely

resemble that of adult CMs (Feaster et al., 2015). Although

these findings suggest that decellularized matrix may be

uniquely suited to guide cellular organization, promote

CM lineage commitment, accelerate maturation, and

promote better physiological responses to cardiac drugs, re-

seeding decellularized myocardium with hPSCs and differ-

entiating these cells into a dense tissue-like network of

CMs has proven difficult. Furthermore, an important step

toward the creation of a truly tissue-like preparation of

human CMs would be the demonstration of a high degree

of electrophysiological and contractile function in prepara-

tions generated on decellularized matrices.

In this study, we have seeded CMs onto thin decellular-

ized slices of ECM (dECM slices) derived from pig heart.

Our goal was to create tissue-like constructs that would:

support a functional network of hiPSC-CMs, organize and

align CMs, exhibit coordinated contraction and uniform
ors.
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Figure 1. Preparation of EHS
(A) The workflow for preparing slices.
(B) Slices of myocardium before (left) and after decellularization (right).
(C) Slices attached to the edges of a plastic coverslip and placed in the wells of a standard culture dish before cell seeding.
(D) Light micrograph of decellularized slice showing ECM and portion of vasculature (arrow indicates vessel).
See also Figure S1.
AP propagation, maintain functionality during prolonged

culture, have a sufficiently large area to support reentrant

arrhythmia, and exhibit a robust response to cardiac drugs

for a wide range of concentrations and pacing rates. We

find that CM-seeded tissues reliably recapitulate key struc-

tural, functional and electrophysiological features of native

myocardium and proved more sensitive in drug screening

assays where electrical pacing could be varied.
RESULTS

Thin Slices of Decellularized Myocardium Promote

Growth and Global Alignment of hiPSC-CMs

We sectioned 12-mm diameter plugs of left ventricular

myocardium from porcine hearts into 300-mm-thick slices

using a vibratome (Figure 1A). Full decellularization was

achieved after 3.5 h of exposure to detergents (Figure 1B).

The resulting thin dECM slices did not maintain their
shape when removed from liquid, a problem that was

resolved by spreading each slice onto a plastic coverslip.

Under these conditions, the perimeter of the dECM slice

could adhere to the edges of the coverslip (Figure 1C).

The dECM slice exhibited overall alignment of ECMand re-

sidual vasculature (Figure 1D).

We confirmed the removal of cells and nuclei by assaying

slices before and after treatment with detergents. Native sli-

ces contained an abundance of cells, indicated by nuclear

staining and intracellular F-actin (Figure S1A), which

were absent in dECM slices (Figure S1E). Decellularization

left intact the ECM components of collagen I (Figures S1B

and S1F), collagen III (Figures S1C and S1G), and laminin

(Figures S1D and S1H). The organization of collagen fibers

in the dECM slice, as visualized by second-harmonic gener-

ation (SHG) imaging, was not altered by storing sectioned

slices at �80�C before decellularization or by storing ven-

tricular plugs at �80�C before slicing and decellularization

(Figures S1I–S1L). Overall, each component analyzed in the
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dECM slices largely retained the structural alignment

observed in native slices. Our decellularization method

decreased the DNA content of slices more than 160-fold

to approximately 0.12 mg/mg initial dry weight, as reported

previously (Blazeski et al., 2015). Taken together, these data

suggest that the detergent-treated slices are almost

completely devoid of cells and nuclei but retain a mixture

of ECM components that remains structurally organized.

Differentiated progeny from hiPSCs were seeded onto

the dECM slices at d10–12 (Figure 1A) to form engineered

heart slices (EHS). Our cardiac differentiation protocol

yielded a mixture of, on average, �83% cTnT-positive

hiPSC-CMs and �17% cTnT-negative non-CMs (Figures

S2A and S2B). After 16 days of EHS culture (d26–28), these

cells formed multicellular, aligned tissue layers (Figures 2A

and 2B). CM alignment, however, decreased in the apical

cell layers farthest from the surface of thematrix (Figure S3).

Cells, which organized into multicellular strands, were

made up mainly of cardiac troponin I (cTnI)-positive

CMs, with vimentin-positive non-CMs located primarily

in the center of the strands (Figure 2A). CMs also exhibited

striations characteristic of sarcomere structures and stained

positively for Cx43 (Figure 2C) localized along the

periphery of the cells (Figure S3D). Transmission electron

micrographs of hiPSC-CMs on slices showed the presence

of z-lines in sarcomeres thatwere surrounded bymitochon-

dria (Figure 2D).

Comparisons were then made between d55 hiPSC-CMs

seeded at low density to make EHS and those on Geltrex-

coated cell culture dishes to evaluate the effect of the

matrix on cellular shape and organization. CMs grown

on Geltrex were cobblestone-like and had randomly ori-

ented sarcomeres (Figure 2E). Age-matched CMs on EHS

were elongated, with sarcomeres arranged along the

long axis of each cell (Figure 2F). Interestingly, the

morphological trait of elongated cells and aligned sarco-

meres became ingrained with time on the tissue slices.

For example, when hiPSC-CMs were maintained for a

prolonged period of time (139 days) as EHS and subse-

quently dissociated and replated under standard 2D cul-

ture systems, the cultivated cells retained an elongated

morphology and exhibited highly organized sarcomeres

(Figure 2G). Cellular alignment on the dECM slice was as-

sessed by the orientation and elongation ratio (long axis/

short axis) of nuclei fitted by ellipses (Figures 2H and 2I).

In hiPSC-CMs cultured on Geltrex in standard cell culture

dishes, the nuclear elongation ratio was 1.38 ± 1.21

with an SD of 56.6� around the mean angle of orientation

(n = 165 nuclei, Figure 2J). The nuclei of CMs cultured

as EHS were more elongated and more closely oriented

in the same direction, having an elongation ratio of

1.70 ± 1.37 and an SD of 50.1� around the mean angle

of orientation (n = 233 nuclei, Figure 2J).
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EHS Contract Synchronously and Respond to

Isoproterenol

Spontaneous and asynchronous contractions were

apparent in EHS within 24 h of cell seeding, but this tran-

sitioned to synchronous contractions in about 1 week. At

d28 and d74, we evaluated contraction as the change in

EHS area in a region where the slice edge was freed from

the coverslip. The contracting hiPSC-CMs deformed the

ECM, permitting us to monitor the change in area as an

approximation of the degree of contraction. When stimu-

lated at a pacing cycle length (PCL) of 666 ms (1.5 Hz,

n = 8), the EHS area in the field of view decreased, on

average, by 2.0% ± 1.3% from its value at rest (Figures

3A–3C; Video S1). The addition of 1 mM isoproterenol re-

sulted in a 1.5 ± 0.6-fold larger area change, and subsequent

washout of the drug brought the area change back down to

1.1 ± 0.4 times the baseline value (Figure 3). Increasing the

pacing rate from 1.5 Hz (666ms PCL) to 2 Hz (500ms PCL)

resulted in an area change of 0.7 ± 0.1 (negative force-fre-

quency relationship) that was statistically significant,

whereas decreasing the pacing rate from 1.5 to 1 Hz

(1000 ms PCL) resulted in an area change (1.1 ± 0.1) that

was not statistically significant (Figure S4B).

EHS Exhibit Anisotropic Electrical Conduction and

Retain Functionality during Long-Term Culture

EHS at d54–58 could be pace-captured starting from a PCL

of 1000 ms to 425 ± 51 ms (n = 6) and exhibited propaga-

tion of APs throughout the entire preparation (Figure 4A;

Video S2). Action potential durations (APDs) showed phys-

iological rate dependence: APD30 and APD80 decreased

during incremental increases in pacing rate (incremental

decreases in PCL from 1000 to 400 ms, n = 4–6) (Figure 4C;

Table S1). Both transverse and longitudinal conduction

velocity (CV) showed physiological rate dependence,

decreasing with increasing pacing rate (Figure 4D). The

resultant CV anisotropy ratio remained relatively constant

around 1.4 over the range of PCLs from 500 to 1000 ms

(Figure 4E), suggesting that the increases in pacing rate

primarily affected sodium channel availability (i.e., excit-

ability) and did not cause significant changes in gap junc-

tional conductance (de Diego et al., 2011).

The high degree of electrophysiological function in EHS

was applicable to other hiPSC lines. This was demonstrated

through the analyses of EHSmadewith hiPSC-CMs derived

from a patient with confirmed LQT2. LQT2 is a cardiac dis-

order characterized by prolonged ventricular repolarization

arising from mutations in the rapid delayed potassium

channel (HERG) that increases the incidence of arrhyth-

mias (Tester and Ackerman, 2014). As with wild-type

(WT) EHS, LQT2 EHS cells were aligned and organized

into multicellular strands (Figures S5A and S5B), in which

non-CMs were in contact with the ECM, while the CMs



Figure 2. Morphology of hiPSC-CMs on EHS
(A) Immunostaining for cardiac troponin I (green), DAPI (blue), and vimentin (magenta) in EHS. Scale bar, 50 mm (inset).
(B) Staining for F-actin in EHS.
(C) Staining for a-actinin (green) and Cx43 (red) in EHS. Scale bar, 20 mm (inset). Higher-magnification view in the insets correspond to
region outlined by white rectangle. hiPSC-CMs were cultured in EHS for either 16 or 48 days (d26 or d58 of differentiation, respectively).
(D) Transmission electron micrograph of hiPSC-CMs in EHS showing myofilaments and mitochondria.
(E and F) Staining for a-actinin in hiPSC-CMs cultured at a low density on Geltrex (E) or on decellularized slices (F).
(G) Staining for a-actinin in hiPSC-CMs seeded on slices at d13, dissociated after prolonged culture (139 days) and replated on Geltrex.
(H and I) DAPI staining of nuclei (blue, delineated by white outline) in hiPSC-CMs (green, a-actinin immunostaining) on Geltrex (H) and
on EHS (I).
(J) Analysis of d24 hiPSC-CM nuclear shape and orientation in EHS and on Geltrex. Radial distances of data points reflect elongation ratios
(long axis/short axis) of nuclei that were fitted by white ellipses in (H) and (I). Solid blue and red lines indicate mean nuclear elongation
ratios for cells on Geltrex (n = 165 nuclei) or in EHS (n = 233 nuclei), respectively, while arc lengths correspond to standard deviation from
the mean angle of orientation.
See also Figures S2 and S3.
were organized on top of these cells (Figures S5C and S5D).

Like our previous observations in WT EHS, LQT2 EHS ex-

hibited anisotropic propagation of APs throughout the

slice (Figure S5E). APDs in LQT2 EHS were prolonged

compared with those in WT EHS (Figure S5F), recapitu-

lating the hallmark of LQT (Figure S5G, n = 3 LQT2 EHS

and n = 5 WT EHS).
In addition to having structurally elongated and orga-

nized CMs (Figure 2G), EHS in long-term culture retained

cell-connectivity and paceable, coordinated AP activity.

Samples that were maintained in culture for more than

2 months (d62–82) exhibited isotropic propagation of

APs, typical of thicker cell layers where cells become more

randomly oriented (Figure S3), and had CVs ranging from
Stem Cell Reports j Vol. 12 j 982–995 j May 14, 2019 985



Figure 3. Contraction of EHS and
Response to Isoproterenol
(A and B) EHS in relaxed state (A) and
at peak contraction (shortening) (B) in
response to 666 ms pacing. Black line in (A)
and (B) delineates edge of EHS when fully
relaxed and red line (B) delineates edge of
EHS at maximum contraction.
(C) Percent change in area during contrac-
tion (contraction amplitude) in response to
pacing at 666 ms normalized to area at rest,
plotted at baseline, after the addition of
1 mM isoproterenol, and after washout of the
drug.
(D) Percent change in EHS area during
isoproterenol and after washout (n = 8 EHS
for each group). NS indicates not signifi-
cantly different from control values.
See also Figure S4 and Video S1.
13.9 ± 1.9 cm/s at 700ms PCL to 18.4 ± 1.8 cm/s at 1900ms

PCL (Figure 5A; Table S2). The proportion of non-CMs in

EHS at d68 increased from that at the time of seeding (Fig-

ure S2). EHS using the same batch of cells but cultured for

more than 200 days, exhibited lower CVs, which at 1300

and 1500 ms PCL reached statistical significance when

compared with d62–82 CVs at the same PCL (Figure 5A;

Table S2). Notably, d201 EHS could be paced over a wider

range of cycle lengths (CLs), from 2000 ms (now possible

because of their lower spontaneous beating rates) to

400 ms (now possible because of their shorter APDs),

than that for d62–82 EHS, from 1900 ms PCL to 700 ms.

Mean APD80 and APD30 of d201 EHS were significantly

shorter at all PCLs than those of d62–82, respectively (Fig-

ure 5C; Table S2), reflecting net increase in inward and/or

net decrease in outward AP current in older EHS.

EHS Differ from Standard Monolayer Cultures in their

Response to Ion Channel-Modulating Drugs, when

Evaluated Using GRIDS Analysis

Based on the improved adult-like cellular morphology,

more ventricular-like APs (Figures S6A and S6B) and

increased expression levels of numerous ion channel tran-

scripts of hiPSC-CMs after culture on EHS (Figure S6C), we

hypothesized that cells on EHSwould exhibit differences in

drug responses in comparison with standard culture. To

test the responsiveness of EHS to ion channel modulators,

we developed an assay, called GRIDS (grid of responses
986 Stem Cell Reports j Vol. 12 j 982–995 j May 14, 2019
indicating drug sensitivity), that characterizes the ability

of a cardiac preparation to respond to pacingwhen exposed

to a range of drug concentrations. We used it to compare

EHS with age-matched monolayer cultures. APs of EHS

andmonolayers were evaluated at each drug concentration

in the absence of pacing and when subjected to electrical

stimulation at PCLs ranging from 2000 to 500ms. By incor-

porating a range of pacing rates, GRIDS manifests the

distinct sensitivities of different ion currents (Ravens and

Wettwer, 1998) and their rate dependencies, and provides

a ‘‘fingerprint’’ of drug sensitivity. We observed several

types of responses: no spontaneous activity (Figure 6A, i),

spontaneously generated APs when no pacing was applied

(Figure 6A, ii), extra APs between pacing stimuli (Figure 6A,

iii), one AP generated for each pacing stimulus––i.e., 1:1

pace-capture (Figure 6A, iv), and failure to maintain 1:1

pace-capture (lost beats) (Figure 6A, v).We evaluated the ef-

fects of each drug on augmenting paced activity by count-

ing the proportion of EHS and monolayers that exhibited

extra beats between paced beats (‘Fraction With Extra

Beats’, exemplified in Figure 6A, ii–iii) and on the ability

to retain capture by counting the proportion of EHS and

monolayers that lost beats during pacing (‘Fraction With

Lost Beats’ exemplified in Figure 6A, v). Further, if applica-

tion of a drug resulted in spontaneous activity, the EHS or

monolayers were counted as having extra beats and

included in the ’Fraction With Extra Beats’ visualized in

the bottom row of each GRIDS analysis.



Figure 4. Optical Mapping of EHS
(A) A sample activation map of EHS paced at 500 ms cycle length.
Black lines indicate isochrones at 10 ms intervals. Rectangular
symbol indicates pacing site.
(B) Sample voltage trace is shown from the site indicated by the
magenta point in (A).
(C–E) APD30 and APD80 as function of pacing cycle length (PCL) (C),
CVs in the longitudinal and transverse directions (D), and anisot-
ropy ratios at different pacing rates for d54–58 EHS (E) (n = 4 in-
dependent EHS for PCL = 400 ms, and n = 6 independent EHS for PCL
>400 ms). *p < 0.05 for difference compared with anisotropy ratio
at PCL = 1000 ms. Error bars denote SD.
See also Table S1, Video S2, and Figure S5.
We superfused EHS andmonolayers with the rapidly acti-

vating potassium current (IKr) blocker, E-4031, at concen-

trations ranging from 1 nM to 10 mM (Figure 6A). At

increasingly shorter PCLs, a greater fraction of monolayers

than EHS lost capture during rapid pacing at concentra-

tions of E-4031 greater than 50 nM, indicating a lower

sensitivity of EHS to E-4031 under these conditions.

Next, we evaluated the sensitivity of EHS and monolayers

to IK1 block by superfusing them with BaCl2 (Figure 6B).

The spontaneous rate of both EHS and monolayers

increased in a concentration-dependent manner (not

shown), and this effect was greater inmonolayers. At a con-

centration of 500 mM BaCl2, monolayers were spontane-

ously beating at rates up to 1 Hz and could be partially

pace-captured only at CLs of 1000 ms and less (light blue,

yellow, and red squares), while at a concentration of

1 mM nearly all monolayers were spontaneously beating

faster than 2 Hz, so only a small fraction could be partially

pace-captured at a CL of 500 ms (Figure 6B, bottom, me-

dium blue square). EHS could be overdrive paced at 700

and 1000ms PCL for all concentrations of BaCl2 (Figure 6B,

top). At 1 mM BaCl2, all of the EHS tested lost capture at
500 ms PCL. Taken together, these results suggest that

EHS are less sensitive to BaCl2 than monolayers.

We then blocked the slow delayed rectifier K+ current (IKs)

with chromanol 293B to test its effects on EHS and mono-

layer cultures (Figure 6C). The fraction of monolayers ex-

hibiting spontaneous activity when no pacing was applied

was non-zero and constant at all concentrations except for

5 mM, when it was zero, and 60 mM, when all monolayers

exhibited spontaneous activity (Figure 6C, bottom). How-

ever, at all concentrations tested, both EHS andmonolayers

could be pace-captured at all PCLs from 2000 to 500 ms

(Figure 6C). Therefore, chromanol 293B had a limited ef-

fect on either preparation, suggesting that IKs is poorly ex-

pressed or not functionally active in both monolayers and

EHS. Aside from differences in potassium channels, we

tested whether L-type calcium channels might also be

differentially expressed in EHS and in monolayers, so the

channel blocker nifedipine was applied (Figure 6D). As

the drug concentration was increased, monolayers lost

pace-capture over a wider range of PCL, whereas EHS never

lost pace-capture (Figure 6D), indicating that EHS were

insensitive to nifedipine in this regard.

In addition to the GRIDS analysis, we evaluated the

occurrence of drug-induced prolongations of repolariza-

tion, which is an index of liability for acquired long-QT

syndrome (Wood and Roden, 2004), as well as conduction

slowing, which can be an early sign of conduction block.

At a PCL of 1500 ms, E-4031 prolonged APD80 (Figure 7A,

i–iii) and slowed CV (Figure 7A, iv) in both EHS andmono-

layers in a concentration-dependent manner over a range

of 50 nM to 10 mM. For concentrations up to 150 mM,

BaCl2 increased APD80 and decreased CV in both prepara-

tions in a concentration-dependent manner (Figure 7B),

although the decrease in CV reached statistical significance

only in EHS. Chromanol 293B (Figure 7C) had no effect on

APD80 or on CVat concentrations ranging from 1 to 60 mM

in either EHS or monolayers. Nifedipine did not affect

APD80 of EHS and monolayers (not shown), but shortened

the plateau phase of the AP in EHS, an effect that was quan-

tified by APD30. At 1500ms PCL, 0.1 and 0.3 mMnifedipine

decreased APD30 to a greater extent in EHS than in mono-

layers (Figure 7D, i–iii), suggesting that EHS have more

developed ICa,L current. Nifedipine does not cause conduc-

tion slowing in healthy adult myocardium (Mitchell et al.,

1982) and did not significantly decrease CV in our prepara-

tions, except at a concentration of 0.01 mM in monolayers

(Figure 7D, iv). We further modulated ICa,L in EHS by

applying Bay K 8644, an L-type calcium channel activator,

over a range of 0.3 mM–100 mM, and found that it increased

APD and decreased CV in a concentration-dependent

manner (Figures S7A–S7D). Finally, we found that EHS re-

mained responsive to ion channel-modulating drugs even

after long-term culture (d201), as in the case of Bay K
Stem Cell Reports j Vol. 12 j 982–995 j May 14, 2019 987



Figure 5. Optical Mapping of EHS after Prolonged Culture
(A) CVs plotted for day 62–82 EHS and day 201 EHS (*p < 0.05 for comparisons between day 62–82 and day 201 at each PCL).
(B) Sample AP traces at 1000 ms PCL in younger and older EHS.
(C) APD30 and APD80 values at 1900, 1000, and 700 ms PCL for day 62–82 and day 201 EHS. Error bars denote SD. n = 3 independent EHS for
day 62–82, and n = 5 independent EHS for day 201.
See also Table S2.
8644 and cromakalim, an activator of the ATP-dependent

potassium current (IK,ATP) (Figures S7E–S7G).
DISCUSSION

In this study, we repopulated dECM slices with hiPSC-CMs

to make EHS with coordinated and syncytial contractile

and electrophysiological function. On EHS, reseeded

hiPSC-CMs organize in a similar manner to the ordered ar-

rays of fibers found in the nativemyocardium (Veeraragha-

van et al., 2014), becoming elongated and aligned in bun-

dles, with elongated and oriented nuclei, and well-defined,

aligned sarcomeres. This is an improvement from the

morphology seen in standard cultures, whereby hiPSC-

CMs appear more cobblestone-like and have randomly

oriented sarcomeres. However, gap junction staining for

Cx43 was observed around the periphery of cells in the

EHS and does not localize at intercalated discs, reflecting

a level of structural immaturity that has also been found

in other studies of hPSC-CMs (Zhang et al., 2013). Never-

theless, our EHS are a well-connected and reproducible

functional syncytium of CMs that exhibits uniform con-

duction and coordinated contraction over an area of about

1 cm2. This overcomes the problem of variable and patchy

conduction that occurs in other preparations using decellu-

larized myocardium caused by non-uniform cell seeding

(Guyette et al., 2016; Lu et al., 2013; Oberwallner et al.,

2015).

The cellular organization of EHS and the resultant aniso-

tropic conduction of APs is guided by the retention of the

native oriented matrix in the dECM slice. This strategy to

utilize the topographical cues of the ECMdiffers from those

used in other studies to align CMs, including microcontact

printing (Wang et al., 2014), hydrogel compaction in

the presence of non-myocytes (Liau et al., 2011), and
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fabricated microgrooved (Rao et al., 2013), nanogrooved

(Macadangdang et al., 2015), electrospun (Wanjare et al.,

2017), and wrinkled (Wang et al., 2013) substrates. The

use of decellularized matrix may confer benefits not pre-

sent in the other approaches, as there ismounting evidence

that the complex chemistry of the matrix can promote

stem cell differentiation (Ng et al., 2011) and electrophysi-

ological maturation of CMs (Herron et al., 2016). Our

study of EHS demonstrates the suitability of this platform

to study electrophysiological function over long-term

culture.

Our experimental approach involves the routine produc-

tion of batches of 10–20 thin tissue slices from ventricular

plugs that are subsequently decellularized in parallel. This

decellularization method leaves behind a scaffold that re-

tains an organized and aligned structure, made up of mul-

tiple ECM components. While various decellularization

methods have been developed (Badylak et al., 2011), we

chose the method of Ott and colleagues because it pre-

serves non-collagen proteins (particularly, fibrillin, heparin

sulfate, and laminin; Guyette et al., 2016), with a trade-off

of decreased retention of collagen (Akhyari et al., 2011).

These non-collagen components may be particularly bene-

ficial for promoting the differentiation andmaintenance of

hPSC-CMs (Nakayama et al., 2014). However, because the

composition and mechanical properties of the ECM

change during development of the heart from the post-

natal to adult stage (Gershlak et al., 2013), further work

needs to be done to identify the developmental stage that

will yield ECM best suited for growth and maintenance

of hPSC-CMs. Our method for decellularizing slices is

amenable to the use of native myocardium from a variety

of sources and can be used to compare the effect of different

species, chamber locations, and developmental states of

the ECM source on CM electrophysiology and contraction.

Automation of the process of anchoring the dECM slice to a



Figure 6. Effect of Cardioactive Drugs on Paced Beats
(A) GRIDS maps of EHS and monolayer responses to E-4031. Sample traces of optical recordings from EHS (right, i–v, top black traces) and
corresponding pacing stimuli (right, i–v, bottom blue traces) for examples of: (i) spontaneous activity, (ii) spontaneous activity when no
pacing stimuli were applied, (iii) extra beats during pacing, (iv) capture of each paced beat, and (v) lost beats during pacing. PCL and
concentration of E-4031 applied during the sample traces is indicated by the squares labeled i–v in the color grid (left). Color bars indicate
the fraction of total monolayers or EHS which lost beats illustrated in (v) or gained extra beats illustrated in (iii). n = 5–10 independent
EHS and n = 5–18 independent EHS.
(B) GRIDS maps for BaCl2. n = 3 independent monolayers and n = 3–6 independent EHS.
(C) GRIDS maps for chromanol 293B. n = 3 independent monolayers and n = 3–6 independent EHS.
(D) GRIDS maps for nifedipine. n = 3 independent preparations each of monolayers and EHS.
See also Figures S6 and S7.
support will be necessary if large numbers of ECM scaffolds

are needed to make EHS for drug discovery and screening.

While EHS exhibited a positive inotropic response to

isoproterenol, their fractional shortening (around 2%)

was much lower than the 30% fractional shortening
reported in adult hearts (Colan et al., 1984), and they also

exhibited a negative force-frequency relationship. Further

improvements, such as increasingly rapid pacing during

culture, can be used to improve contractility and achieve

the positive force-frequency relationship found in adult
Stem Cell Reports j Vol. 12 j 982–995 j May 14, 2019 989



Figure 7. Effect of Cardioactive Drugs on Action Potentials and Conduction Velocities
Action potential recordings from EHS (i) and monolayers (ii) for increasing concentrations of (A) E�4031, (B) BaCl2, (C) chromanol 293B,
and (D) nifedipine. Changes in APD80 (A–C, iii), APD30 (D, iii), and CV (A–D, iv) are plotted for each drug. EHS and monolayers were paced at
1500 ms cycle length for E-4031 and nifedipine and at 1000 ms cycle length for BaCl2 and chromanol 293B. Baseline values of APD and CV
before the application of drug are indicated in red for EHS and blue for monolayers in (iii) and (iv) for each drug. Error bars denote standard
deviation. Red *, p < 0.05 when comparing the percent change for EHS with 0. Blue *, p < 0.05 when comparing the percent change for
monolayers with 0. #p < 0.05 when comparing baseline values for EHS with baseline values for monolayers. n values for EHS and monolayers
exposed to each drug are the same as in Figure 6. See also Figure S7.
myocardium (Ronaldson-Bouchard et al., 2018). EHS also

exhibited rate-dependent decreases of APD and CV, as

well as anisotropic conduction, as is found in the adult hu-

man heart (Yue et al., 2005). However, the CV in EHS was

less than half of that measured in the adult ventricle (Dur-

rer et al., 1970), and the anisotropy ratio of conductionwas

substantially less than that in the adult ventricle (Peters
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and Wit, 1998). The loss of CM alignment in layers of cells

farther from the matrix surface likely contributed to a

diminished anisotropy ratio.

Amenability to long-term culture is a powerful feature of

EHS, because prolonged culture advances the structural or-

ganization, cardiac gene expression, and contractile and

electrophysiological function of hPSC-CMs (Lundy et al.,



2013). Maintaining multilayers of hiPSC-CMs in standard

culture plates for periods of weeks is difficult, because

they can detach from the underlying substrate, although

individual hiPSC-CMs have been maintained for up to

120 days (Lundy et al., 2013), and multicellular embryoid

bodies of hiPSC-CMs have been maintained for up to

360 days (Kamakura et al., 2013). In our study, EHS allowed

for stable, long-term culture of a functional syncytium of

hiPSC-CMs. Electrophysiological functionality was main-

tained for more than 200 days––EHS could be pace-

captured at PCLs as short as 400 ms, and APs continued

to propagate as before throughout the entirety of the prep-

aration, although with some loss of CV that may occur as

non-myocytes proliferate over time in EHS culture.

Remarkably, hiPSC-CMs cultured long-term within EHS re-

tained their elongatedmorphology and aligned sarcomeres

even after removal from the dECM slice, suggesting that

the ECMmay have durable effects on cell phenotype. Aside

from cues from the ECM, additional steps may be required

to optimize the structural organization and function of

EHS in long-term culture.

The EHS preparation holds promise for preclinical cardi-

otoxicity testing, where accurate prediction of arrhythmia

risk is essential to remove hazardous drugs from the devel-

opment pipeline. Currently, drugs are tested for their abil-

ity to inhibit HERG and cause QT prolongation, a marker

for risk of developing Torsades de Pointes, a tissue-level

arrhythmia (Farkas and Nattel, 2010). Most studies of this

kind are performed on heterologous expression systems

that lack the full complement of cardiac ion channels (Fer-

mini et al., 2016). Such assays also do not account for off-

setting mechanisms from non-HERG ion channels that

may render a drug safe (Redfern et al., 2003). The EHS prep-

aration addresses these shortcomings as a functional syncy-

tium of human CMs and allows for a multitude of mecha-

nisms by which drugs can affect excitability, including

effects on ion currents and electrical coupling.

The GRIDS assay we developed provides a new tool for

evaluating drug sensitivity in the context of cellular auto-

maticity and excitability. Changes in spontaneous beating

rates are often used to evaluate drug sensitivity of hiPSC-

CMs (Gilchrist et al., 2015) and can be altered by drugs

that act on ICa,L or IKr (Blazeski et al., 2012). However, elec-

trophysiological measurements at variable spontaneous

beat rates fail to control for the rate dependence of the

various ion currents. On the other hand, GRIDS evaluates

the effect of drugs during electrical pacing at different

fixed rates. These periodic stimuli introduce controlled,

dynamic changes into the system, and the resulting

beating patterns are an integrated effect of automaticity,

excitability, and refractoriness. The GRIDS map for a given

drug is comprised of pace-capture responses acrossmultiple

dosing and electrical pacing regimes, and it can serve as a
fingerprint of the drug sensitivity. The lowermost row of

the GRIDS map reflects the effect of drug on spontaneous

rate in the absence of electrical stimulation, while the re-

maining rows delineate the range of pace-capture across

drug dosages. The leftmost column of the map delineates

the range of pace-capture under drug-free conditions, while

the remaining columns are at different drug dosages. The

localization of red blocks in the upper right of the maps

for E-4031 and nifedipine (monolayer only) indicates loss

of capture of paced beats in the presence of high concentra-

tions of the drug and short PCLs. Localization of blue

blocks in the lower right of the maps for BaCl2 indicates a

higher fraction of samples with spontaneous activity as

drug concentration increased, and the large area of green

for chromanol 293B and nifedipine (EHS only) indicates

very little response to the drug. Further, across the four

drugs tested, in the GRIDS maps the regions of red or

blue blocks tended to be smaller, and the region of green

tended to be larger, for EHS than for monolayers, revealing

that EHS are comparatively less sensitive to these drugs

when evaluated for effects on their excitability and ability

to capture during pacing. This suggests that EHS express

relatively more of the repolarizing currents IKr and IK1,

which are responsible formaintaining the resting potential

in adult ventricular cells (Doss et al., 2012), than mono-

layers. On the other hand, the absence of a chromanol

293B effect supports the notion that both EHS and

monolayers have low levels of IKs, as has been previously

described for hPSC-CMs (Ma et al., 2011). The GRIDS

maps also indicate that EHS remain excitable at all PCLs

and concentrations of nifedipine, whereas monolayers

are unable to be pace-captured for every beat for some com-

binations of PCL and nifedipine concentrations. Increased

ICa,L in EHS would explain why, for the same level of ICa,L
block at a given concentration of nifedipine, EHS would

retain enough residual ICa,L to remain excitable while

monolayers would not. Alternatively, the excitability of

EHS may be governed more by INa than by ICa,L (as in

more mature ventricular tissue) compared with that of

monolayers (either due to differences in ion channels or

because hiPSC-CMs in EHS are less depolarized), so that

block of ICa,L does not decrease excitability.

Our GRIDS maps were able to differentiate the responses

of EHS and monolayers to the panel of drugs tested even

though measurements of a single electrophysiological

parameter, APD prolongation, did not provide a clear snap-

shot of relative drug sensitivity. In both EHS and mono-

layers, E-4031 and BaCl2 prolonged APD, chromanol

293B did not change APD, and nifedipine shortened

APD. Further, we did not detect differences in drug re-

sponses between EHS and monolayers with respect to

APD for E-4031(Figure 7A, i–iii) and chromanol 293B

(Figure 7C, i–iii), but we did detect them for high
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concentrations of BaCl2 (Figure 7B, i–iii) and nifedipine

(Figure 7D, i–iii). One limitation of the GRIDS assay is the

spontaneous rate of the cells, which dictates the lower

bound on the pacing rates that can be applied.

Differences in drug responses of EHS, which tend to be

less sensitive but more robust in their ability to be electri-

cally paced over a wider range of rates and drug concentra-

tions when compared with monolayers, can be attributed

to a variety of factors. One possibility is that cells in EHS

are a more densely packed, thicker syncytium that experi-

ences a lower effective drug concentration than cells in

monolayers where diffusion is not limited. Also, differ-

ences in the mechanical and biochemical environment

in EHS compared withmonolayers can result in differences

in cell phenotype and AP morphology seen in EHS (more

elongated cells with organized sarcomeres), which can

affect drug responses. In addition, EHS experience an in-

crease in non-myocytes over time, and this modulation

of cell-cell interactions in the preparation could also affect

drug responses. Multicellular preparations with large areas,

such as EHS, will be needed in future studies to assess the

risk for reentrant arrhythmias, which require room for

circuitous wavefront propagation to occur. Further, EHS

are tissue-like models that can be used in studies aimed at

treatment discovery and at creating clinically relevant dis-

ease models.

Conclusion

EHS take advantage of the complex biochemical and struc-

tural cues of themyocardial ECM to guide the alignment of

CMs. Seeded hiPSC-CMs organize as multicellular, aniso-

tropic bundles that contract the EHS and propagate APs

uniformly throughout the preparation. EHS can be used

for long-term culture of hiPSC-CMs to interrogate pro-

cesses of cell maturation and response to drugs over time.

Drug sensitivity can be evaluated for a range of concentra-

tions and under different pacing rates using the GRIDS

assay, which has revealed differences in drug sensitivity

between EHS and cell monolayers. In conclusion, EHS are

tissue-like models that can be used in long-term electro-

physiology and drug studies.
EXPERIMENTAL PROCEDURES

An extended description of the methods can be found in the Sup-

plemental Information.

Preparation of EHS
Slices of porcine myocardium 12 mm in diameter and 300 mm in

thickness were sectioned and decellularized as described previ-

ously (Blazeski et al., 2015). The dECM slices were spread on plastic

12-mm-diameter coverslips, with the perimeter of each slice wrap-

ped around the edges of the coverslip. Coverslips with slices were
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placed in wells of standard 24-well culture plates and kept in PBS

with antibiotics for up to 2 weeks before reseeding.

hiPSC Differentiation and Culture
WTand LQT2 hiPSC lines with a heterozygous A422Tmutation in

the potassium voltage-gated, subfamily H, member 2 channel

(KCNH2), which is commonly referred to as the HERG channel

(Spencer et al., 2014) were gifts from Dr. Bruce Conklin. Both

hiPSC lines were differentiated using a monolayer-based protocol

(Boheler et al., 2014; Wang et al., 2015). The age of the EHS

(d26–d201) is given as the time in days from the start of hiPSC-

CM differentiation (d0). On d9, the medium was switched to

RPMI 1640 containing B-27 with insulin, and this medium was

used for the remainder of time both before and after seeding on

the dECM slices.

On d10–12, hiPSC-CMmonolayers were dissociated using 0.05%

trypsin-EDTA and plated on dECM slices affixed to coverslips at a

density of 0.8–1.3 million cells/cm2. EHS were maintained in cul-

ture for 16–191 days before evaluation by optical mapping or

contraction measurements.

Imaging of ECM and EHS
Standard fixation and immunostaining techniques were applied to

slices before and after decellularization to label F-actin, nuclei,

collagen I, collagen III, and laminin. Unstained dECM slices were

also imaged by SHG. EHS were fixed and stained using standard

techniques for cTnI, a-actinin, connexin 43 (Cx43), vimentin, fila-

mentous actin (F-actin), and nuclei (DAPI). All samples were

imaged by confocal microscopy. Nuclear elongation and orienta-

tion were analyzed in confocal images of EHS and monolayers

using custom MATLAB scripts. Cellular structures in EHS were

imaged by transmission electron microscopy.

Contraction Measurements
WT d24–78 EHS were placed in a 35-mm tissue culture dish filled

with Tyrode’s solution and maintained at 31�C ± 0.1�C for the

duration of the experiment. A section of each EHS was detached

from the edge of the coverslip so that it could move freely. Each

EHS was paced at 1, 1.5, and 2 Hz while the free region was imaged

with a CCD camera. A customMATLAB script was used to segment

the image and calculate the change in EHS area over time, which

was used as a measure of contraction.

Electrophysiological Studies
Each EHS was placed in Tyrode’s solution and stained with 10 mM

di-4-ANEPPS for 10 min at 37�C. The EHS was rinsed several times

in a dish with warm Tyrode’s solution, and then immersed in

Tyrode’s solution containing 10 mM blebbistatin to suppress

contraction. The dish was placed on a 37�C heated stage for the

duration of the experiment. At least 5 min after adding blebbista-

tin, the EHS was stimulated with a point electrode and optically

mapped using a CMOS camera (MiCAM Ultima-L, SciMedia).

The EHS was paced by 5 ms monophasic rectangular pulses at

stepwise increasing rates starting at 0.5 Hz. For some samples,

E-4031, chromanol 293B, nifedipine, Bay K 8644, BaCl2, or croma-

kalim were added for 7 min before mapping. Mapping data were

analyzed using custom MATLAB scripts (details provided in



Supplemental Information). APDs at 30% and 80% repolarization

(APD30 and APD80) were calculated from the optical voltage signal.

For drug studies, APD andCVmeasurements at each concentration

were plotted as a percentage of APD and CV measured at baseline,

with no drug present.
Statistics
All data are presented as mean ± SD. A Wilcoxon rank-sum test

was used to determine statistical significance between control

and drug groups for WT EHS contraction experiments, and be-

tween WT and LQT2 EHS. Paired, unequal variance, two-tailed t

tests were used for statistical tests of significance between experi-

mental groups in all other drug studies, and unpaired, unequal

variance, two-tailed t tests were performed to determine the statis-

tical significance between experimental measurements of d62–82

and d201 EHS. Differences were considered statistically significant

at p < 0.05.

SUPPLEMENTAL INFORMATION

Supplemental Information can be found online at https://doi.org/

10.1016/j.stemcr.2019.04.002.
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