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Editorial on the Research Topic

Molecular mechanisms of lung endothelial permeability

Lung endothelium regulates movement of fluid, macromolecules, and leukocytes into

the interstitium and subsequently into the alveolar air spaces. The monolayer of

endothelial cells (ECs) lining the blood vessels are in close contact and tight

association with each other forming a tight barrier (Komarova and Malik, 2010;

Wettschureck et al., 2019). Any breach in the endothelial barrier results in the

uncontrolled movement of fluid, macromolecules and leukocytes into the interstitium

and pulmonary air spaces causing pulmonary edema and inflammation (Ware and

Matthay, 2000; Johnson andMatthay, 2010). Therefore, the integrity of the pulmonary EC

monolayer is a critical requirement for preservation of pulmonary function. Disruption of

lung endothelial barrier occurs during the inflammatory disease states such as acute lung

injury (ALI) and acute respiratory distress syndrome (ARDS), which remain a major

cause of morbidity and mortality with an overall mortality rate of 25%–40% (Rubenfeld

et al., 2005; Maca et al., 2017). The pharmacological treatment of ALI remains non-

specific and relies on supportive care and control of initiating causes (Gonzales et al., 2015;

Huppert et al., 2019). Therefore, novel therapies are urgently sought after to improve the

clinical outcomes. This special issue provides an overview of recent studies in the field of

lung endothelial permeability with the goal to advance our knowledge of the mechanisms

of pulmonary endothelial barrier regulation. We hope that it will help to identify novel

strategies and pharmacologic agonists for therapeutic intervention of ALI/ARDS.

Permeability across endothelial and epithelial cell monolayers can involve

transcellular and paracellular transport or both pathways (Komarova and Malik, 2010;

Wettschureck et al., 2019). However, the majority of trafficking occurs through the

paracellular pathway (Komarova andMalik, 2010; Wettschureck et al., 2019). Paracellular

permeability is determined by equilibrium of the competing contractile forces, which

generate centripetal tension via activation of the actomyosin contractile machinery and

adhesive cell-cell and cell-matrix tethering forces, which depend upon the adhesive
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molecules located at cell-cell and cell-matrix contacts (Dudek

and Garcia, 2001; Bogatcheva and Verin, 2008; Vandenbroucke

et al., 2008). Both competing forces are linked through the actin

microfilaments, which are connected to multiple membrane

adhesive proteins of the zona occludens and zona adherens,

glycocalyx components, functional intercellular proteins, and the

focal adhesion complex proteins. Reorganization of the

endothelial cytoskeleton leads to alteration of cell shape and

provides a structural basis for the increase of vascular

permeability (Dudek and Garcia, 2001; Bogatcheva and Verin,

2008; Vandenbroucke et al., 2008). While many edemagenic

agonists like thrombin and endotoxin (lipopolysaccharide,

LPS) increase endothelial permeability via the activation of EC

contractility, other agonists such as phorbol esters increase EC

permeability without augmenting the contraction, however, all of

them weaken EC barrier through decline or reduction of the

endothelial junctions and cell-matrix contacts (Garcia et al.,

1995; Bogatcheva et al., 2003; Kasa et al., 2015).

The review of Karki and Birukova published in this Research

Topic summarizes the current view on the paracellular

mechanisms of endothelial barrier regulation focusing on the

role of microtubule (MT) network. It is widely accepted that

reorganization of the endothelial cytoskeleton, which is

composed of actin filaments, microtubules, and intermediate

filaments, provides a structural basis for vascular permeability

changes (Dudek and Garcia, 2001; Bogatcheva and Verin, 2008;

Vandenbroucke et al., 2008). However, despite decades of intense

research, the role of microtubules in the regulation of vascular

permeability remains not fully understood. Microtubules are

highly dynamic cylindrical structures, composed of α,β-tubulin
heterodimers, which undergo continuous assembly and

disassembly (Gudimchuk and McIntosh, 2021). The assembly

and stability of microtubules is regulated by 1) the nucleotide

association/binding and reactivity with tubulin (binding and

hydrolysis of GTP by tubulin subunits (Desai and Mitchison,

1997), 2) the interaction with cellular factors like MT-associated

proteins (MAPs) (Bodakuntla et al., 2019), 3) by tubulin covalent

modification like acetylation (Nekooki-Machida and Hagiwara,

2020). It was shown that microtubule depolymerization by the

MT inhibitors or partial disruption of peripheral MT network by

edemagenic agonists such as thrombin or tumor necrosis factor-

α (TNF-α) in the lung EC is associated with dissolution of the

cortical actin cytoskeleton, myosin light chain (MLC)

phosphorylation, increased stress fiber formation, contraction,

and EC barrier dysfunction indicating of importance of the MT-

actomyosin crosstalk in the regulation of EC permeability (Verin

et al., 2001; Birukova et al., 2004a; Tar et al., 2004). These effects

were linked to the activation of small GTPase Rho mediated by

Rho-specific guanine nucleotide exchange factor, GEF-H1, which

bound toMT in the inactive state, but activates upon release from

MTs. Thus, disruption of the MT network may trigger Rho-

dependent contractile mechanisms leading to EC barrier

dysfunction (Birukova et al., 2006). Conversely, MT

stabilization by paclitaxel (taxol) or inhibition of Rho pathway

attenuates or reverses endothelial hyperpermeability induced by

MT disruption (Birukova et al., 2006; Birukova et al., 2010). It

was also reported that other factors that maintain EC barrier such

as increase in cAMP, inhibition of heat-shock protein 90

(HSP90) and p38 mitogen-activated protein kinase

(p38 MAPK), activation of phosphatase 2A reveal their EC

barrier protective effects, at least in part, upon stabilization of

theMT network (Birukova et al., 2004b; Birukova et al., 2005; Tar

et al., 2006; Antonov et al., 2008). Further, EC barrier integrity

preservation is tightly linked to MT-mediated activation of small

GTPase, Rac1 (Tian et al., 2012; Tian et al., 2014a), which in

many cases opposes the EC barrier disruptive effects of Rho

(Wojciak-Stothard and Ridley, 2002). In particular, EC barrier

enhancement induced by the hepatocyte growth factor (HGF), at

least in part, depends upon the activation of specific Rac1 GEF,

Asef, which translocates to the EC membrane and forms a

complex with the MT-binding protein, Adenomatous

Polyposis Coli (APC) and Ras GTPase-activating-like adaptor

protein, IQGAP, after the HGF stimulation (Tian et al., 2015a;

Tian et al., 2015b). Several lines of evidence have implicated other

MAPs, such as Cytoplasmic linker protein 170 (CLIP-170), End

Binding Protein-1 (EB-1), stathmin, MAP4, and adaptor actin-

binding protein, cortactin in the MT-mediated permeability in

various models, highlighting a complex involvement of the MT

dynamics in EC barrier regulation (Tian et al., 2012; Tian et al.,

2014a; Tian et al., 2014b; Li et al., 2015; Karki et al., 2021a).

Emerging evidence indicates that MT stability may be regulated

by post-translational modifications such as acetylation (Nekooki-

Machida and Hagiwara, 2020). Acetylation of tubulin at Lys-40

stabilizes the MT network (Portran et al., 2017). Conversely,

deacetylation of the tubulin catalyzed by histone deacetylases

(HDAC) facilitates disassembly of the MTs (Li and Yang, 2015).

Recent studies have indicated that deacetylatin of tubulin by

specific cytoplasmic HDAC, HDAC6, is involved in the EC

barrier compromise (Karki et al., 2019). Downregulation of

HDAC6 attenuates the EC barrier compromise induced by

several edemagenic agents like Staphylococcus aureus,

thrombin, LPS, and TNF-α in vitro and in vivo highlighting

potential therapeutic value of HDAC6 inhibition in the treatment

of ALI (Yu et al., 2016; Karki et al., 2019; Kovacs-Kasa et al.,

2021). Finally, newly published studies by Karki et al. (2021a) and

Karki et al. (2021b) underscore the importance of cytokine

signaling/MT interaction in the regulation of EC barrier

function.

While the majority of trans-endothelial trafficking of fluids

and leukocytes occurs by the paracellular pathway, growing

evidence has also highlighted the importance of the

transcellular pathway (trancytosis) in mediating the leucocyte

diapedesis and albumin transport (Komarova and Malik, 2010;

Filippi, 2016).While regulating independently both the para- and

trans-cellular pathways are interconnected in the regulation of

tissue fluid homeostasis (Komarova and Malik, 2010). In the
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current Research Topic, Jones and Minshall have discussed a role

of endothelial transcytosis during ALI/ARDS. Trafficking

through endothelial cells happens mainly through the

caveolae-dependent mechanism (Jones and Minshall, 2020).

Caveolae, the lipid raft plasma membrane microdomains,

enriched in the scaffolding proteins, are called “caveolins.”

Caveolin 1 is required for caveola formation in the non-

muscle cells including endothelium (Maniatis et al., 2012).

Early immunocytochemical studies have demonstrated that

transcytosis is primarily responsible for the trafficking of large

molecular weight molecules such as albumin from the luminal to

the basal surface of ECs (Milici et al., 1987). Animal studies have

indicated fivefold increase in tracer transport associated with

active trancytosis in the LPS-induced rabbit ALI model

accompanied by increased abundance and internalization of

caveolae, suggesting that transcytosis significantly contributes

to the development of ALI (Heckel et al., 2004). Furthermore,

LPS increases caveolin 1 phosphorylation via CD14/Src-

mediated mechanism, resulting in subsequent NF-kB

activation and release of pro-inflammatory cytokines

suggesting direct involvement of caveolin1 activation in LPS-

induced ALI (Jiao et al., 2013).

It is generally accepted that trancytosis includes three stages:

1) endocytosis, 2) vesicular trafficking, and 3) exocytosis

(Simmons et al., 2019; Jones and Minshall). Recent studies

have identified several key proteins involved in specific stages

of transcytosis. For example, plasmalemmal vesicle-associated

protein (PLVAP, PV1) apparently controls the internalization of

caveolae (Jones et al., 2020). EH domain-containing protein 2

(EHD2), a member of dynamin family proteins, restricts fission

and vesicle trafficking (Stoeber et al., 2012). Fractionation studies

have suggested that several groups of proteins such as

N-ethylmaleimide-sensitive factor (NSF), Soluble NSF

Attachment Proteins (SNAPs) and SNAP receptor (SNARE)

proteins are involved in the fusion of vesicles to the abluminal

membrane by exocytosis of the vesicular content into the sub-

endothelial space (Predescu et al., 2001; Yamakuchi et al., 2008).

Similar to the paracellular permeability, transcytotic mechanisms

are critically dependent upon the cytoskeletal dynamics.

Electronic microscopy studies have revealed that caveolae are

localized near the cortical actin filaments (Rohlich and Allison,

1976; Singer, 1979). Early studies by Shasby et al. (1982) have

shown that the depolymerization of actin filaments increases

albumin transport across lung ECs in vivo resulting in pulmonary

edema. In contrast to the actin filaments, depolymerization of

MTs results in an increase of the number of membrane-bound

caveolar vesicles (Mundy et al., 2002), suggesting negative effect

on the vesicle trafficking. In addition, caveolae recruit and

activate Rho family GTPases and several other signaling

molecules involved in the cytoskeletal dynamics (Ellis and

Mellor, 2000; Hetmanski et al., 2019). Therefore, both para-

and trans-cellular permeability pathways are ultimately involved

in the cytoskeletal remodeling, resulting in the onset/

development of ALI/ARDS. Thus, elucidating the mechanisms

of lung endothelial transcytosis may hasten the development of

new therapies towards attenuating the vascular leak associated

with these debilitating pulmonary diseases.

Among other pro-inflammatory cytokines, TNF-α is a well-

known mediator of inflammatory tissue damage, which plays an

important role in ALI/ARDS (Malaviya et al., 2017). However,

due to the TNF-α molecular complexity harboring spatially

distinct domains, TNF-α can function either in the damaging

or protective manner in ALI (Lucas et al.). In the review for the

current Research Topic, Lucas et al. have further discussed the

complex role of TNF-α domain organization and signaling in the

regulation of pulmonary EC barrier and alveolar fluid clearance

(AFC). Impairment of the EC barrier and AFC is a cardinal

feature of ALI/ARDS (Ware and Matthay, 2000; Johnson and

Matthay, 2010; Vadasz and Sznajder, 2017). TNF-α exists in both
soluble andmembrane-bound forms, which binds to two types of

membrane-associated receptors: TNF receptor 1 (TNFR1) and 2

(TNFR2). TNFR1, but not TNFR2 contains a death domain,

which can signal for either apoptosis, necroptosis or

inflammation (Wajant and Siegmund, 2019). In contrast,

while TNFR2 can exacerbate TNFR1-mediated apoptosis by

decreasing the expression of anti-apoptotic molecules (Wajant

et al., 2003), its stimulation can protect against the ventilation-

induced lung injury (VILI) (Wilson et al., 2007). Collectively,

while TNFR1 and 2 engage different pathways, they are

interconnected in the regulation of TNF-α-mediated complex

signaling network (Wajant and Siegmund, 2019). In addition to

the TNFR binding sites, TNF-α carries a lectin-like domain

(Yang et al., 2010), which is spatially and functionally distinct

from the receptor binding domains. The lectin-like domain can

be mimicked by the 17 amino acid TIP peptide (a.k.a. AP301,

Solnatide) (Lucas et al.). This peptide has been shown to exert

potent protective activities in several animal models of ALI

(Braun et al., 2005; Hartmann et al., 2013a; Hartmann et al.,

2013b). Apparently, TIP peptide-mediated protection against

ALI depends upon its direct binding and activation of the

epithelial sodium channel (ENaC), a key enzyme regulating

AFC (Czikora et al., 2014; Lucas et al., 2016; Czikora et al.,

2017). Importantly, the TIP peptide does not impair the anti-

bacterial activities of TNF-α (Lucas et al., 1997) nor its receptor

1 or 2 binding capacity (Hribar et al., 1999). TIP peptide is

currently evaluated in the clinical trials in ARDS and COVID-19

(Lucas et al.).

The mechanisms that govern the highly clinically relevant

process of increased EC permeability are under intense

investigation, however, the information about the processes

that determine barrier enhancement or preservation are

limited. Next three research articles in the Research Topic

uncovered some new molecular mechanisms of EC barrier

protection in ALI setting.

Endothelial cell-matrix tethering forces, controlled, at least in

part, by the transmembrane cell adhesion receptors, called
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integrins, are critically involved in the endothelial barrier

regulation (Malinin et al., 2012; Ou et al., 2021). In their

study for the current Research Topic, Chen et al. have

reported that the truncated splice variant of Integrin Beta 4,

ITB4E, specifically upregulated by the HMG-CoA reductase

inhibitor, simvastatin. Simvastatin is a statin family member

and FDA-approved drug for lowering the level of low-density

lipoprotein cholesterol in the blood (Fox et al., 2007). Published

reports from the same group demonstrated barrier-protective

role in EC barrier regulation (Jacobson et al., 2004; Chen et al.,

2008). Ectopic expression of ITB4E in human pulmonary artery

ECs (HPAECs) leads to attenuation of the LPS-induced pro-

inflammatory MAPKs (ERK and JNK) activation and reduction

of pro-inflammatory cytokine (IL-6 and IL-8) expression,

suggesting an anti-inflammatory role of ITB4E. Further,

expression of ITB4E has been shown to attenuate the HPAEC

barrier compromise induced by the edemagenic agonist,

thrombin. These findings implicate ITB4E expression in the

endothelial barrier protection induced by statins and may

facilitate the development of novel and effective pathway-

specific anti-edemagenic agents that will restore endothelial

function in ALI.

It is widely accepted that increase in cAMP and activation of

Rac1 GTPase are involved in the preservation of EC barrier

integrity (Birukov and Karki, 2018). Published reports indicate

that edemagenic conditions reduce cAMP level and

Rac1 expression resulting in vascular leak (Schlegel and

Waschke, 2009; Xia et al., 2019). Previous studies have

demonstrated that agonists of bitter taste receptors (T2Rs), a

family members of G-protein-coupled receptors (GPCRs), are

effective against lung inflammation in asthma (Devillier et al.,

2015), however, the role of T2Rs in EC barrier regulation has not

been described. The study of Kertesz et al. for the current

Research Topic have demonstrated that T2Rs are expressed in

HPAECs. Furthermore, the T2Rs agonists, denatonium (for

T2R10) and phenylthiourea (for T2R38), attenuate the

HPAEC barrier compromise via cAMP- and cAMP/Rac1-

dependent mechanisms, respectively. However, phenylthiourea

alone does not protect lung endothelium in the bacterial model

(P. Aeruginosa) of ALI, therefore, barrier protective role of T2Rs

in vivo requires further investigation.

Recently published data (Beumer et al., 2019; Chen et al.,

2020) suggests that combined bacterial infection in the lung

exacerbates ARDS and multiple organ failure induced by

COVID-19 infection. COVID-19-induced vascular

inflammation and compromise of the EC function relies on

the binding of surface spike glycoprotein (S protein, SP) to

angiotensin-converting enzyme 2 (ACE2) in the endothelium

(Lei et al., 2021). S protein comprised of two functional subunits,

namely S1 and S2, activated by protease cleavage, mediate

attachment and membrane fusion, respectively (Banerjee et al.,

2022). Published literature indicates that S protein alone can

damage EC in vitro and in vivo (Lei et al., 2021). Recent report

from Catravas’s group (Colunga Biancatelli et al., 2021) has

demonstrated that cleaved S1 (S1SP) is capable to

compromise human lung microvascular ECs (HMVECs)

barrier function and induce ALI in mice. In their article

(Colunga Biancatelli et al.) for the current Research Topic,

this group further has evaluated the mechanisms of S1SP-

mediated HMVEC barrier dysfunction with a focus on the

protective action of inhibition of HSP90. HSP90 belongs to

the family of chaperons, which assists with protein folding

and stabilization (Schopf et al., 2017). Previous studies have

demonstrated that HSP90 inhibitors protect and restore the EC

barrier integrity in vitro and in vivo (Antonov et al., 2008;

Chatterjee et al., 2008). Studies reported by Colunga

Biancatelli et al. have revealed that the protective effects of

HSP90 inhibitors are attributed to the attenuation of

activation of IKBα and protein kinase B (PKB, AKT) induced

by S1SP and accompanied by restoration of VE cadherin

expression. While additional studies are required on the effect

of HSP90 inhibitors in the in vivo models of COVID-19, the

results from this current study may pave the way to the novel

approach for treatment of COVID-19-associated ALI.
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