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Photosystem II (PSII) represents the most vulnerable component of the photosynthetic machinery and its response 
in plants subjected to abiotic stress has been widely studied over many years. PSII is a thylakoid membrane-located 
multiprotein pigment complex that catalyses the light-induced electron transfer from water to plastoquinone with the 
concomitant production of oxygen. PSII is rich in intrinsic (PsbA and PsbD, namely D1 and D2, CP47 or PsbB and 
CP43 or PsbC) but also extrinsic proteins. The first ones are more largely conserved from cyanobacteria to higher 
plants while the extrinsic proteins are different among species. It has been found that extrinsic proteins involved in 
oxygen evolution change dramatically the PSII efficiency and PSII repair systems. However, little information is 
available on the effects of abiotic stress on their function and structure.

Highlights

● Intrinsic and extrinsic proteins of PSII help counteract light stress
● Abiotic stressors strongly influence PSII proteins dynamics
● Role of extrinsic proteins in PSII repairing cycle

Introduction

Photosynthesis is the process that converts sunlight into 
chemical energy utilized to synthesize organic compounds. 
It represents the most important process on the Earth 
carried out by higher plants, algae, and cyanobacteria. 
The process exploits solar radiation to induce a charge 
separation from chlorophyll (electron donor) to pheophytin 
(electron acceptor) which represents the key phenomenon 
of the whole process. This chemical event occurs in two 
complexes located inside the thylakoid membranes, 
photosystem II (PSII) and I (PSI). Briefly, a photosystem 
is a supramolecular protein that absorbs the sunlight 
through a light-harvesting complex (LHC), chlorophyll 

(Chl)–protein complex that absorbs light and funnels the 
energy to the reaction centre Chl a molecule(s), using 
Foster resonance energy transfer. The reaction centre is the 
place where light energy is collected and used to power 
photosynthetic redox reactions, leading to the synthesis 
of ATP and NADPH. In higher plants, two photosystems 
show some differences such as (Caffarri et al. 2014):
- location in the thylakoid membranes: PSI is located in 
the non-appressed grana region and stroma lamellae while 
PSII is in the appressed grana region;
- different reaction centre: PSI is an iron–sulphur type 
reaction centre (type I) while PSII has a quinone type 
reaction centre (type II or Q-type). In addition, the core 
complex of PSI is made up of about 15 protein subunits 
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while that of PSII is a multi-subunit complex with about 
25–30 subunits;
- the peak in light absorption: PSI has maximum absorption 
close to 682 nm, while PSII at 677 nm. In addition, due to 
the higher LHC complement of PSI as compared to PSII, 
the PSII supercomplex has a lower Chl a/b ratio and shows 
a higher Chl b peak near 650 nm. Finally, the presence of 
low-energy Chls which absorb at wavelengths above those 
of P700 is unique in PSI (Croce et al. 1996); 
- involvement in water splitting: this process is only 
associated with PSII, as it generates a strong oxidant 
(P680+) necessary to carry out the thermodynamically not 
favoured process of water oxidation.

PSII is a large membrane–protein complex located 
in the thylakoids of the chloroplast of many organisms, 
from cyanobacteria to higher plants. It is a very organized 
complex that contains 20 subunits (17 transmembrane 
subunits and three membrane-peripheral extrinsic subunits) 
(Müh and Zouni 2020). Among the transmembrane 
subunits, proteins D1 and D2 constitute the reaction 
centre core of PSII directly associated with all cofactors 
involved in electron-transfer and water-splitting reactions 
(Ferreira et al. 2004, Umena et al. 2011, Büchel 2015, 
Müh and Zouni 2020). Other subunits surround the D1 
(also known as photosystem A or PsbA) and D2 subunits 
and in particular, CP47 and CP43 in which the acronyms 
CP stands for Chl–protein complex having an important 
role in binding Chl molecules with the function of  
an inner light-harvesting complex. All these intrinsic 
proteins are encoded by chloroplast DNA. The proteins 
D1 and D2 bind Chls, pheophytin, plastoquinones, 
β-carotenes, and Fe whereas CP43 and CP47 bind only 
Chls and β-carotenes (Pospíšil and Yamamoto 2017, Müh 
and Zouni 2020). The other 13 transmembrane subunits 
with low molecular mass are PsbE, PsbF, PsbH, PsbI, PsbJ, 
PsbK, PsbL, PsbM, PsbT, PsbX, PsbY, PsbZ, and Psb30 
(Shen et al. 2008, Umena et al. 2011, Müh and Zouni 
2020). Finally, in plants and algae the three membrane-
peripheral extrinsic proteins (PsbO, PsbP, and PsbQ), 
associated with the luminal side of PSII, are necessary to 

maintain the water-splitting reactions (Roose et al. 2007, 
Enami et al. 2008, Ifuku 2014, Shen 2015). The basic 
structure of PSII is reported in Fig. 1.

Associated with the core complex, there is a peripheral-
antenna system represented by a trimeric light-harvesting 
complex, the major antenna of PSII, and three monomers, 
the minor light-harvesting complex, named CP29, CP26, 
and CP24. These LHC complexes coordinate Chl a  
and b and several xanthophylls (Xu et al. 2017) and  
are associated with dimeric PSII cores to form PSII  
supra-complexes. Finally, a nucleus-encoded PsbS protein 
is a ∆pH-dependent kinetic modulator of the energy 
dissipation process in the LHCII, namely qE suggested to be 
the major component of NPQ under high-light conditions 
(Li et al. 2000) The supercomplexes PSII–LHCII form 
semi-crystalline arrays in the thylakoid membrane (Dekker 
and Boekema 2005, Rantala et al. 2020) and are abundant 
in the stacked grana, but absent in the unstacked thylakoid 
membranes.

Alteration of PSII components under stress

Light represents the pivotal factor in driving photosynthesis 
but, the irony of fate, an excess of light can also cause 
damage to the photosynthetic apparatus (Barber and 
Andersson 1992). Excess light induces a decline in 
photosynthetic performance, thus resulting in an excess 
of excitation energy at the chloroplast level (Bassi and 
Dall'Osto 2021). Therefore, plants must continuously 
balance the energy absorbed and utilized, basically 
adjusting the leaf light interception and dissipation by 
the photosynthetic pigment. The energy excess leads to  
a reduction in PSII activity and the electron transport  
chain becomes over-reduced (Nishiyama et al. 2001, 
Roach and Kreiger-Liszkay 2014, Alric and Johnson 2017, 
Barbato et al. 2020).

However, plants have evolved several photoprotective 
mechanisms against situations of light excess. One of these 
mechanisms is the nonphotochemical energy dissipation 
associated with the nonphotochemical quenching (NPQ) 

Fig. 1. Simplified structure of photo
system II (PSII) intrinsic and extrinsic 
proteins. Ca-Mn4 – calcium-manganese 
cluster of oxygen evolving complex; 
Cyt b6f – cytochrome b6f; D1 – D1 
protein; D2 – D2 protein; LHC II – light-
harvesting complex of photosystem II; 
protein TyrZ – tyrosine-161 of D1 
protein; Phe – pheophytin; PQH2 – 
mobile plastoquinone molecule; QA, QB – 
primary and secondary plastoquinone 
electron acceptors; P680 – core of 
photosystem II reaction center; A, B, C, 
D – intrinsic proteins of photosystem II; 
E, F, H, O, P, Q, R – extrinsic proteins of 
photosystem II.
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of Chl fluorescence, which absolves the key role of 
reducing the amount of excited PSII Chl molecules under 
stressful conditions (Cazzaniga et al. 2013, Gururani 
et al. 2013, Murchie and Ruban 2020). NPQ consists of 
three components, described by the relaxation kinetics in 
dark conditions following an illumination period (Horton  
et al. 1996, Kress and Jahns 2017). The major and fast-
released (within seconds to minutes) component is 
qE, which is related to the increase in the ∆pH across 
the thylakoid membrane in the presence of PsbS and 
zeaxanthin (Horton et al. 1996, Ruban and Wilson 2021). 
The second component that relaxes slower than qE, qT, 
is attributable to the reversible phosphorylation of the 
LHCII that determines the state transition II–I (Quick 
and Stitt 1989, Kress and Jahns 2017). Finally, the 
third component, qI, relaxes very slowly in time due to 
photoinhibition (Matsubara and Chow 2004, Nawrocki 
et al. 2021). There is another component, the long-lasting 
zeaxanthin-dependent quenching that occurs under certain 
environmental conditions (Demmig-Adams et al. 1998). 
This component, named qZ, has been directly attributed to 
zeaxanthin accumulation and in particular to its binding 
to LHC protein specifically LHCb5 (Dall'Osto et al. 
2005, Bassi and Dall'Osto 2021) and this component  
does not require a low lumen pH nor PsbS and thus does 
not represent a zeaxanthin-dependent qE component 
(Nilkens et al. 2010, Kress and Jahns 2017).

As above reported, the nuclear-encoded PsbS protein 
plays a crucial role in the dissipation of excess light energy 
absorbed by PSII–LHCII into heat and, in this way, in the 
formation of nonphotochemical quenching qE (Li et al. 
2000, Bassi and Dall'Osto 2021). Kereïche et al. (2010) 
reported that this role is induced by the ability to control 
the macro-organization of the grana membranes in the 
chloroplast of higher plants. It has been also reported 
that PsbS, with the location of this protein in thylakoid 
membranes, is a mobile protein in the membranes (Teardo 
et al. 2007) and that its location is due to a reversible 
dimerization (Bergantino et al. 2003). However, Nicol 
et al. (2019) using an Arabidopsis mutant lacking LHCII 
trimers (NoLHCII), observed a decrease in NPQ of around 
60% but the authors did not observe significant changes 
to the levels of PsbS, zeaxanthin or grana stacking and 
attributed the decrease in NPQ to the observed lack 
of upregulation of the minor antenna complexes and  
the absence of LHC trimers in the NoLHCII plants. From 
their results, the authors concluded that the majority of 
NPQ occurs in LHCII, but there is an additional site of 
PsbS-dependent quenching in the PSII core, most likely in 
the core antenna complexes CP43 and/or CP47.

During abiotic stress conditions, when the absorbed  
light exceeds that utilized by the biosynthetic pathways, 
another negative process is the generation of reactive 
oxygen species (ROS) in the chloroplasts because the 
electron transport chain (ETC) fails to generate NADPH, 
whilst directing electrons towards dioxygen in the 
photorespiration and the Mehler peroxidase reaction 
(Baker 2008, Bhattacharjee 2019). ROS induces lipid 
peroxidation and damages PSII proteins at the reaction 

centre, antenna, and in the membrane near lipid molecules 
(Sasi et al. 2018). One of the most important adverse 
effects of ROS generation (and in particular of singlet 
oxygen) is the damage to the D1 protein; in particular, ROS 
may not directly damage PSII, but inactivate the repairing 
mechanisms of PSII (Allakhverdiev and Murata 2004, 
Nishiyama et al. 2004, Pinnola and Bassi 2018, Zavafer 
2021). Indeed, in addition to the NPQ photoprotective 
mechanism, plants have developed an efficient PSII 
repairing mechanism aimed to preserve PSII from 
irreversible damage in conditions of excessive excitation 
energy (Nath et al. 2013a, Weisz et al. 2019). The PSII 
repairing cycle is a process in which the D1 protein is 
phosphorylated, dephosphorylated, and degraded by  
the action of a specific kinase (STN8; Nath et al. 2013b), 
phosphatase (PBCP; Samol et al. 2012), and protease 
(FtsHs and DEGs; Sun et al. 2007, Edelman and Mattoo 
2008), respectively, and finally D1 is newly resynthesized 
and reassembled in the PSII (Tikkanen and Aro 2014, 
Weisz et al. 2019). 

In addition to excess light, other environmental stresses 
can lead to photoinhibition, even though not directly, but 
rather by facilitating the inhibition of the PSII repairing 
mechanisms (Murata et al. 2007, Nishiyama and Murata 
2014, Li et al. 2018). It has been widely reported as both 
photoinhibition and ROS, such as superoxide anion and 
singlet oxygen, induced by different abiotic stresses,  
e.g., high or low temperature (Allakhverdiev and Murata 
2004, Takahashi et al. 2009, Mattila et al. 2020), salinity 
(Allakhverdiev and Murata 2004, He et al. 2021, Pan  
et al. 2021), and constrained CO2 fixation (Wang et al. 
2014, Foyer 2018), can inhibit the translation of psbA 
mRNA and inactivate in this way the PSII repairing 
process. Finally, ROS can irreversibly alter the protein 
structure through the carbonylation process (Johansson 
et al. 2004, Akagawa 2021). Although photoprotective 
mechanisms can scavenge ROS, when the stress overcomes 
the protection mechanisms, protein oxidation can induce 
PSII protein cleavage and aggregation (Kale et al. 2017, 
Pospíšil and Yamamoto 2017).

In photoinhibition conditions, slight phosphorylation 
of PSII results in efficient photochemistry of LHCII and 
slower damage to PSII (Tikkanen et al. 2010, Tikkanen 
and Aro 2014, Wu et al. 2021a). In fact, in these conditions, 
no net damage to PSII occurs and a moderate amount 
of energy is transferred to PSI because phosphorylated 
LHCIIs move to the grana margins. However, when light 
is in excess and PSII proteins are phosphorylated at a very 
high rate, the PSII–LHCII supercomplex loses its structural 
integrity and the energy transfer toward PSI is unregulated 
(Tikkanen et al. 2010, Tikkanen and Aro 2014, Grinzato 
et al. 2020). 

In addition, the PSII photoinhibition represents also  
a mechanism by which PSII can protect PSI from irre
versible damage; Tikkanen et al. (2014) proposed that the 
regulation of PSII photoinhibition is the ultimate regulator 
of the photosynthetic electron transfer chain and provides 
a photoprotection mechanism against the formation of 
ROS and photodamage in PSI. In a general way, it is 
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possible that slowing down PSII photochemistry but also 
the redox chemistry can function as a protection system 
for the photosynthetic machinery against photodamage 
(Tikkanen et al. 2012).

An important aspect is a balance between the damage 
and repair of PSII, which represents the most dynamically 
regulated part of the light reactions in the thylakoid 
membrane (Tikkanen et al. 2008, Rantala et al. 2020). 
In addition to the phosphorylation process of LHCII,  
the PSII core proteins D1, D2, CP43, PsbH, and TSP9 can 
also be subjected to dynamic phosphorylation (Rochaix 
2007, Johnson and Wientjes 2020), strictly related to the 
regulation of PSII turnover upon photodamage (Aro et al. 
1993, Longoni and Goldschmidt-Clermont 2021). Even 
in moderate light conditions, the high oxidant power of 
P680+ can induce photodamage to the D1 protein; so,  
the dynamic degradation of the damaged D1 protein and 
its de novo synthesis and insertion in the PSII core is one 
of the prerequisites for aerobic organisms (Aro et al. 2005, 
Chen et al. 2020). In the past, it was postulated that the 
phosphorylation of the damaged D1 protein represents in 
plants a signal for migration of the damaged PSII from 
the grana to stroma lamellae where D1 is degraded, 
resynthesized, and inserted in the PSII (Aro et al. 1993). 
More recently it has been reported that the processes of 
phosphorylation and dephosphorylation in plants are not 
a key element for the D1 turnover (Bonardi et al. 2005) 
even though the PSII core phosphorylation facilitates 
the disassembly of the PSII–LHCII supercomplexes 
(Tikkanen et al. 2008, Fristedt et al. 2009) to increase  
the mobility of the PSII from grana to stroma lamellae 
under photoinhibition conditions (Rantala et al. 2020). 

Using the Arabidopsis mutants with impaired capa
city (stn8) or complete lack (stn7 stn8) in phosphorylation 
of PSII core proteins, Tikkanen et al. (2008) concluded 
that after the migration towards stroma thylakoids of  
the phosphorylated PSII core, a phosphatase, activated 
by the release of the CYP38 protein, dephosphorylates 
the damaged D1. In turn, D1 resulted as more susceptible 
to the degradation operated by a D1-specific protease. 
The protease FtsH (Adam and Sakamoto 2014) and 
DEG (Sun et al. 2007, Kato et al. 2012) are the two 
possible candidates for degradation of the D1 protein. 
Opposing this view, Fristedt et al. (2009) argued that the 
PSII core phosphorylation instead induces macroscopic 
rearrangements to the thylakoid membrane and allows the 
PSII repair cycle by decreasing the membrane cohesion. 
The different hypotheses on the roles of PSII core protein 
phosphorylation are not necessarily mutually exclusive.

PSII repair cycle: the role of extrinsic proteins PsbO, 
PsbP, PsbQ, and PsbR

The extrinsic proteins PsbO, PsbP, PsbQ, and PsbR (33, 23, 
18, and 10 kDa, respectively) play a key role in maintaining 
the cluster of oxygen-evolving complex (OEC) represented 
by four Mn atoms, one Ca atom and five oxygen atoms 
(CaMn4O5). This structure is evolutionary conserved and 
identical from cyanobacteria to various algae and higher 

plants and dates back to 2.4 billion years ago (Vinyard 
et al. 2013). An important role of the extrinsic protein 
PsbO, PsbP, and PsbQ, located at the luminal side, is  
the protection of the OEC under stress (Roose et al. 2007). 
For example, salinity harms the Mn cluster of OEC which 
induces a reduction of PSII activity (Allakhverdiev and 
Murata 2004). PsbO is very important in stabilizing the 
OEC (Popelkova and Yocum 2011) while the PsbP protein 
plays a role in optimizing Ca2+ and Cl− availability for 
maintaining the Mn–Ca2+–Cl− cluster of OEC (Bricker  
et al. 2013). In addition, the correct functioning of PsbQ 
requires the presence of Cl– ions at low concentrations  
(< 3 mM) (Tomita et al. 2009). In addition to PsbO, PsbP, 
PsbQ, another protein, the 10-kDa PsbR protein, has 
been found in green algae structures and plant PSII and is 
involved in the protection of OEC in high-light conditions 
maintaining the standard rate of oxygen evolution (Suorsa 
et al. 2006). Its absence induces a strong decrease in 
oxygen evolution particularly in plants grown in low-light 
conditions (Suorsa et al. 2006).

In both high and low-temperature conditions, the PSII 
complex is the most susceptible part of the photosynthetic 
apparatus and in these stressed conditions, the extrinsic 
proteins PsbP, PsbQ, and PsbR disassociate from the OEC 
complex of PSII (Gupta et al. 2021). 

Many other stresses can alter the structure and 
functionality of PSII proteins. For example, Wu et al. 
(2021b) recorded the inhibition of the photosynthetic 
process in plants of Phragmites australis grown at high 
Cu concentrations related to a reduction in both Chl a  
and b contents but also a downregulation in the expression 
of PsbD, PsbO, and PsaA. Other trace elements such as Cd 
and Cr at toxic concentration induced negative effects on 
the structure of thylakoid complexes in Chlorella variabilis 
attributable to the generated oxidative stress (Zsiros et al. 
2020). However, the mechanisms involved for the two 
elements are different: Cd induced the inhibition of PSII 
activity via degradation of PsbO (and also PsbA) proteins 
while the negative effects of Cr were due to the inhibition 
on the PSII side.

In addition, in the repair cycle of PSII, i.e., in the D1 
turnover, a key role is played by the extrinsic PSII proteins 
PsbO, PsbP, and PsbQ (Bricker et al. 2012). The mutation 
and absence of the PsbO subunit render PSII more 
vulnerable to photoinhibition (Henmi et al. 2004, Sasi  
et al. 2018), and Yamamoto et al. (2008) reported that 
PsbO is of utmost importance in protecting the structure of 
D1 from ROS production. 

Some plant species only possess one PsbO isoform 
(Oryza sativa and Pisum sativum) whereas other species 
such as potato and Arabidopsis have two isoforms of 
PsbO (Sasi et al. 2018). The role of PsbO protein against 
photodamage during different abiotic stress has been 
reported. In particular, PsbO preserved and stabilized the 
PSII during drought stress (Pawłowicz et al. 2012) but 
this protein was partially degraded during cold treatment 
(Kosmala et al. 2009). Many researchers used PsbO 
mutants under abiotic stress conditions and sometimes  
they obtained contrasting results (Murakami et al. 
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2005, Dwyer et al. 2012, Gururani et al. 2012, 2013); 
in addition, there were also contrasting results between 
PsbO expression and plant growth under stress conditions 
(Pawłowicz et al. 2012, Gururani et al. 2013) likely 
attributable to the presence of different isoforms of PsbO 
in different plant species (Sasi et al. 2018). PsbO has also 
a function as a putative enzymatic GTPase regulating 
the phosphorylation state of the D1 process, the event 
associated with an efficient turnover of the D1 protein 
during the repairing mechanism (Bricker and Frankel 
2011).In addition to PsbO, the other extrinsic proteins, 
PsbP and PsbQ play an important role in stabilizing  
the architecture of LHCII supercomplexes in higher 
plants; in particular, PsbO and PsbP under normal growth 
conditions (Ifuku et al. 2005, Che et al. 2020) and PsbQ 
during growth at low light intensity (Yi et al. 2006).  
The protein PsbP is important to maintain the Mn–Ca2+–Cl– 

cluster within PSII (Seidler 1996, Ifuku and Nagao 2021) 
and some homologs of this protein are present in the 
thylakoid lumen (e.g., the PsbP-like proteins PPL1 and 2) 
(Ishihara et al. 2007, Matsui et al. 2013). These PPL1 and 
2 of PSII are involved in the response of photosynthesis 
under stress conditions. For example, Ishihara et al. (2007) 
reported that a ppl1 mutant of Arabidopsis was more 
sensitive to high-intensity light than the wild type, and the 
recovery of PSII activity after photoinhibition was delayed 
in ppl1 plants. On the other hand, Ishihara et al. (2007) 
also demonstrated that PPL2 is a novel thylakoid lumenal 
factor required for the accumulation of the chloroplast 
NADH dehydrogenase complex.

PsbP with PsbQ proteins are strictly involved in the 
association of peripheral antennae to PSII, a process 
extremely dynamic that adjusts the photosynthetic light 
reactions to environmental changes (Cao et al. 2018). In 
particular, PsbP protein represents an assembly and/or 
stability factor for PSII in cyanobacteria (Knoppová et al. 
2016) but also in higher plants (Bricker et al. 2012, 2013).

Extrinsic protein PsbQ, together with PsbP, are 
responsible for the interactions with both PSII intrinsic 
and light-harvesting complex (Ido et al. 2014, Cao et al. 
2018) and other studies revealed that PsbQ can replace 
the N-terminal PsbP functional defect and in this way 
is involved in the PsbP stabilization in PSII (Ifuku et al. 
2005). On the other hand, the PsbQ is required at low Cl− 
concentrations (< 3 mM) for oxygen evolution (Miyao  
and Murata 1985, Gupta 2020). 

In conclusion, the extrinsic proteins in PSII play  
a major role to protect the oxygen-evolving complex and, 
until now, few reports have indicated the possible role of 
abiotic stresses on these proteins. It is, however, underlined 
as changes in the expression of these extrinsic proteins 
dramatically decrease the PSII efficiency or change the 
repair PSII mechanisms (Sasi et al. 2018).

In addition, it has been proposed that PsbP is involved in 
binding manganese which is essential for photoactivation 
(Bondarava et al. 2007, Schmidt and Husted 2019) and, 
together with PsbQ protein, participates in grana stack 
formation (Anderson et al. 2008). Finally, the removal 
of PsbP protein induces defects at the reducing side of 

the PSII because significantly slows the rate of electron 
transport from QA to QB (Roose et al. 2010).

Other low-molecular-mass proteins associated with 
PSII

In addition to the above reported in the PSII, there is a 
large number of proteins for which not much information 
about their role has been reported. Close to D2 protein,  
the PsbE and PsbF, α- and β-subunits of Cyt b559, function 
as a safety valve to remove the excessive oxidative hole 
from the PSII donor side (Shevela et al. 2021). Cyt b559 
plays a protective role for the donor and acceptor side of 
PSII reaction centres against photoinhibition as evidenced 
by Chu and Chiu (2016) in site-direct mutagenesis 
studies that provide evidence for a possible physiological 
role of Cyt b559 in the assembly and stability of PSII, 
protecting PSII against photoinhibition and modulating 
photosynthetic light harvesting. 

Another plastome-encoded protein PsbH is reported in 
higher plants; it contributes to Chl-binding protein 43 kDa 
(CP43) in the formation of the inner LHC (Barber et al. 
1997). This protein is a determinant of PSII activity but 
plays also a role in regulating PSII assembly/stability and 
repair of photodamaged PSII (Shi and Schröder 2004) and 
in protecting the PSII core and the thylakoid membrane 
from oxidative damage (Huang et al. 2016).

The PsbI protein, again a plastome-encoded protein, 
is located at the periphery of the reaction centre and 
strictly related to the core antenna protein CP43, is close 
to ChlZ(D1) and binds to D1 (Nield and Barber 2006, 
Pagliano et al. 2013). Studies with tobacco plants, in  
which the PsbI gene was deleted, demonstrated the 
importance of the PsbI protein for PSII functioning and 
the stabilization of PSII dimers and supercomplexes 
(Schwenkert et al. 2006). This seems to indicate that this 
subunit can play a role in the connection between the inner 
antenna CP43 and the outer antenna CP29 (Dekker and 
Boekema 2005).

Adjacent to the PsbE and PsbF proteins of Cyt b559 is 
located also the PsbJ protein; altogether these proteins 
form a channel for the diffusion of PQ/PQH2 involved in 
the PQ pool (Guskov et al. 2009).

Concluding remarks

Photosynthetic light absorption generates the P680+,  
a strong oxidant able to oxidize water in the OEC,  
a complex that is protected and stabilized by extrinsic 
proteins. These proteins play a key role in stabilizing the 
PSII that represents the most vulnerable components in the 
photosynthetic machinery. Nevertheless, little information 
is on the role of these proteins in the plant abiotic stress 
responses. In this review, the state of the art about  
the information on the effects of abiotic stresses on PSII 
protein is reported in an attempt to summarize existing 
information on the topic and stimulate further research on 
the matter.
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