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are present throughout the brain at early
stages of Alzheimer’s disease
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Protein aggregation likely plays a key role in the initiation and spreading of Alzheimer’s disease pathology through the brain.

Soluble aggregates of amyloid beta are believed to play a key role in this process. However, the aggregates present in humans are

still poorly characterized due to a lack of suitable methods required for characterizing the low concentration of heterogeneous

aggregates present. We have used a variety of biophysical methods to characterize the aggregates present in human Alzheimer’s dis-

ease brains at Braak stage III. We find soluble amyloid beta-containing aggregates in all regions of the brain up to 200 nm in

length, capable of causing an inflammatory response. Rather than aggregates spreading through the brain as disease progresses, it

appears that aggregation occurs all over the brain and that different brain regions are at earlier or later stages of the same process,

with the later stages causing increased inflammation.
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Abbreviations: Ab ¼ amyloid beta; AFM ¼ atomic force microscopy; HPC ¼ hippocampus; PEG ¼ polyethylene glycol; PVC

¼primary visual cortex; SiMPull ¼ single-molecule pull-down; VAC ¼ visual association cortex

Introduction
Alzheimer’s disease is a progressive neurodegenerative dis-

ease characterized by memory loss and cognitive decline.

It is the leading cause of dementia, which is currently the

leading cause of death in the UK.1 The aggregation of

the amyloid beta 42 peptide (Ab42) is believed to play a

key role in the initiation and development of the disease.2

It is widely accepted that small soluble Ab42 aggregates

are toxic, likely through a variety of mechanisms, includ-

ing the permeabilization of cell membranes through non-

specific binding and by specific binding to pattern-recog-

nizing membrane receptors.3–6 This can lead to microglial

activation and inflammation,7 a key player in Alzheimer’s

disease pathology.6,8,9 Microglial activation increases as

the disease progresses, and they become dystrophic at

late stages.10 Activated microglia have been shown to in-

duce astrocytes into releasing neurotoxic factors.11

Through these toxic mechanisms, Ab42 aggregates have

been shown to cause neuronal cell death, synaptic dys-

function, as well as cognitive impairment in Alzheimer’s

disease patients and animal models of the disease.12–22

Despite only being a small subset of the overall protein

aggregates found in brain tissue, it is believed that the

soluble aggregates are responsible for most of the tox-

icity.23 This is supported by the fact that insoluble amyl-

oid plaque counts do not correlate well with cognitive

function,24–27 and soluble Ab levels correlate better with

cognition than insoluble Ab levels.28–32 Soluble aggregates

have been found in the brain lysates of Alzheimer’s

disease patients.33–35 However, these soluble aggregates

occur at low concentrations and hence have been poorly

characterized due to a lack of sensitive methods, with

many more studies performed on aggregates formed from

synthetic Ab42, since they are available in higher concen-

trations.36 It is still unclear how comparable endogenous

aggregates from Alzheimer’s disease patients are to syn-

thetic aggregates or to those from animal models.37,38

Far less research has been done on the aggregates in

human CSF or extracted from post-mortem brain. Brain

samples are generally homogenized and hence include

large amounts of insoluble aggregates, which are largely

inert, as well as soluble aggregates potentially complicat-

ing the interpretation of any analysis.

To address these issues, there has been a recent effort

to selectively extract the soluble aggregates from human

brain tissue using minimally perturbative methods.23,39

We have developed a suite of sensitive methods with the

potential to characterize aggregates and measure their

properties.7 These include correlating changes in the ag-

gregate size distribution with changes in the mechanism

of toxicity as demonstrated by experiments on CSF from

Alzheimer’s disease patients.40 In the literature, soluble

aggregates from Braak stage VI AD brain have been

found to contain Ab42 aggregates as identified through

western blotting and ELISAs. These samples have also

been shown to cause neurite length retraction on iPSC-

derived neurons, and can block synaptic long-term po-

tentiation.23,41 Furthermore, they induce neuronal hyper-

activation in mouse CA1 hippocampal neurons, as seen
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with two photon Ca2þ imaging.42,43 Toxicity caused by

soluble aggregates is believed to be mediated partly by

prion protein.44 Experiments have shown that soluble

aggregates extracted from soaking brain tissue are as

toxic as homogenized brain samples but contain signifi-

cantly less Ab42 aggregates making them an ideal sample

for characterization. This toxicity appears to be Ab-de-

pendent, as evidenced by Ab-immunodepleted samples

being significantly less toxic.23 However, there is no in-

formation about the size or structure of these aggregates

extracted by soaking post-mortem brain nor how the

aggregates differ between different brain regions.

Alzheimer’s disease has a typical pathological progres-

sion, starting in the hippocampal/entorhinal cortex

regions and spreading to the temporal, parietal and front-

al lobes before affecting the occipital lobe.45,46 For our

initial experiments, we decided to study soluble aggre-

gates from Braak stage III, which is at the early stages of

pathological progression and therefore before the appear-

ance of global pathology, to assess regional variability be-

tween different regions of the same patient and between

patients.47,48 After establishing that our assays have suffi-

cient sensitivity to detect the aggregates present, we char-

acterized the soluble aggregates from eight brain regions,

from three Alzheimer’s disease patients. We then chose to

compare in more detail the soluble aggregates from two

distinct regions, the hippocampus (HPC), which is signifi-

cantly affected early in the disease, and the visual associ-

ation cortex (VAC), a region affected later in the disease,

with the latter acting as an internal control for each

brain.

In this pilot study, we applied our methods (Fig. 1) to

characterize soluble aggregates from Braak stage III

(Table 1). We have identified the similarities and differen-

ces between the soluble aggregates in eight different

regions by providing a detailed characterization of their

size, morphology, structure, neurotoxicity, inflammatory

potential and capability to permeabilize a lipid mem-

brane. These data show that soluble aggregates of a

range of sizes and morphologies, capable of causing in-

flammation, are already present in all brain regions at

Braak stage III and that aggregation is occurring by the

same processes all over the brain to a greater or lesser

extent.

Materials and methods

Alzheimer’s disease brain tissue

Fresh frozen brains from three Alzheimer’s disease

patients (Table 1) were received whole from the

Addenbrooke’s post-mortem room, or from other centres

around the country. Transport and consent details were

reviewed and handled by the Cambridge Brain Bank.

Processing of tissue was carried out in Addenbrooke’s

hospital, where regions of interest were removed from

the left cerebral hemisphere and frozen at �80�C. The

brains used for the following experiments were diagnosed

as being at Braak stage III by histopathologists, based on

tau protein pathology.

Extraction of soluble aggregates
from human brain tissue

Soluble aggregates were obtained by following a previ-

ously established protocol with a few adaptations.23

Briefly, human brain tissue was chopped into 300 mg

pieces using a razor blade and incubated with gentle agi-

tation in 1.5 ml of artificial cerebrospinal fluid (aCSF)

buffer (124 mM NaCl, 2.8 mM KCl, 1.25 mM NaH2PO4,

26 mM NaHCO3; pH 7.4, supplemented with 5 mM

EDTA, 1 mM EGTA, 5 lg/ml leupeptin, 5 lg/ml aprotinin,

2 lg/ml pepstatin, 20 lg/ml Pefabloc, 5 mM NaF) at 4�C

for 30 min. Samples were centrifuged at 2000 g at 4�C

for 10 min and the upper 90% of the supernatant was

collected and centrifuged at 14 000 g for 110 min at 4�C.

The upper 90% of the supernatant was extracted and

dialyzed using Slide-A-LyzerTM cassettes (Thermo

Scientific, Cat. 66330) with a 2 kDa molecular weight cut

off, against 100-fold excess of fresh aCSF buffer with

gentle agitation at 4�C. Buffer was changed three times

over the course of 72 h dialysis. The prep was carried

out under sterile conditions, using autoclaved LoBind

Eppendorf tubes and pre-sterilized pipette tips to reduce

endotoxin contamination. Samples were aliquoted into

small volumes, snap frozen and stored in a �80�C freezer

and thawed only once prior to experimentation.

Neuroinflammation assay

BV-2 cells derived from immortalized murine neonatal

microglia (European Collection of Authenticated Cell

Cultures) were grown in T25 flasks in Dulbecco’s modi-

fied eagle medium (DMEM) (Gibco, Life Technologies,

Cat. 21063-029) with 10% (v/v) foetal bovine serum

(FBS) (Sigma-Aldrich, St. Louis, MO, Cat. F0926), 100 U/

ml penicillin/100 lg/ml streptomycin (Gibco, Life

Technologies, Cat. 15140-122), 2 mM L-glutamine

(Gibco, Life Technologies, Cat. 25030-024), 1% (v/v) so-

dium pyruvate and 1% (v/v) HEPES buffer. They were

grown in a humidified environment, incubated at 37�C,

with 5% CO2, 95% air. Cells were plated in flat-bottom

96-well plates (Corning, Costar, Cat. CLS3997) in

DMEM 10% (v/v) FBS at a concentration of 1.65 � 105

cells/ml (150 ll per well). Twenty-four hours after plating,

the cells were washed with fresh pre-warmed (37�C)

media and kept in phenol red-containing DMEM 1% (v/

v) FBS. Cells were treated with soluble aggregates in a

1:5 dilution. Lipopolysaccharide (Invivogen San Diego,

CA, Cat. Tlrl-3pelps) at 10 ng/ml was used as a positive

control and aCSF buffer in a 1:5 dilution was used as a

negative control. The supernatant was collected every

24 h for analysis and the wells were washed with fresh

Soluble aggregates in early Alzheimer’s BRAIN COMMUNICATIONS 2021: Page 3 of 16 | 3



Aggregate
+

aptamer

Coverslip

Imager
strand

Well

TIRF 
illumina�on

Emission
(to camera)

i

ii

200 nm 200 nm

i ii

500 nm

Figure 1 Schematics of assays used to characterize soluble aggregates. (A) Extraction of soluble aggregates from human brain tissue

through soaking in aCSF. (B) Neuroinflammation assay using BV2 cells to measure production of TNF-a. (C) Liposome assay used to measure

the aggregates’ ability to penetrate a lipid membrane. (D) Neurite length assay used to measure neurotoxicity. (E) Single-molecule pull-down

imaging used for the characterization of Ab-containing aggregates. (F) Aptamer DNA-PAINT imaging used to characterize the size and number

of aggregates. (G) AFM imaging of 3D morphology used to characterize morphology and cross-sectional dimensions of the aggregates. aCSF,

artificial cerebrospinal fluid; TNF-a, tumour necrosis factor-a, ELISA, enzyme-linked immunosorbent assay; TIRF, total internal reflection

fluorescence.
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media and replaced with fresh solution. The supernatant

was stored in a �80�C freezer and thawed only once be-

fore being measured with a mouse TNF-a DuoSet ELISA

(R&D Systems, MN, USA, Cat. DY410) using a plate

reader (CLARIOstar, BMG Labtech, Ortenberg,

Germany) at 450 nm. Experiments were carried out over

96–120 h. Three wells were used for each sample of sol-

uble aggregates to estimate variation.

Cytotoxicity assay

Cell supernatant collected from the neuroinflammatory

assay was stored at �80�C. A lactate dehydrogenase

(LDH) assay (Abcam, Colorimetric, Cat. ab102526) was

used to detect the concentration of LDH (mU/ml) in the

supernatants. Cells treated with RIPA lysis buffer

(Thermo Scientific, Cat. 89900) were taken as complete

cell death (100%), whereas cells of the same density

treated with aCSF buffer were taken as healthy cells

(0%). The supernatants were thawed only once before

taking measurements.

Immunoprecipitation experiments

Immunoprecipitation was carried out as described previ-

ously, with a few modifications.49 Briefly, DynabeadsVR

Protein A (Invitrogen, Cat. 10002D) and DynabeadsVR

Protein G (Invitrogen, Cat. 10004D), mixed in a 1:1

ratio in low-binding snap top tubes (Eppendorf AG,

Hamburg, Germany), were used to bind and pull down

an APP-binding antibody (6E10, Mouse IgG1, Biolegend,

Cat. SIG-39320). The antibody was added at a concen-

tration of 20 lg/ml. Four hundred microlitres of soluble

aggregates from the HPC and VAC regions were then

added to the mix. The snap top tubes were placed on a

magnetic rack to pull down the magnetic beads, along

with the antibody and binding targets. The neuroinflam-

mation assay was then carried out on samples of soluble

aggregates with or without immunodepletion of Ab-con-

taining fragments.

Neurite length assay

Lund Human Mesencephalic (LUHMES) cells were pur-

chased from the American Type Culture Collection

(ATCC) (Cat. CRL-2927) and were cultured according to

the ATCC guidelines. Briefly, the cells were grown in a

T75 flask pre-coated with 50 lg/ml poly-L-ornithine

(Sigma, Cat. P3655) and 1 lg/ml Human Fibronectin

(Sigma, Cat. F-0895) in DMEM: F12 (Invitrogen, Cat.

31330038), supplemented with L-glutamine, N2 supple-

ment (Invitrogen, Cat. 17502-048), and basic recombin-

ant human Fibroblast Growth Factor (b-FGF) (Sigma,

Cat. F0291). Experiments were carried out after 4 days of

differentiation in DMEM: F12 medium containing N2

supplement, 2 ng/ml human recombinant GDNF (R&D

Systems, Cat. 212-GD), 1 mM dibutyryl cAMP (Sigma,

Cat. D0260) and 1 lg/ml tetracycline (Sigma, Cat.

87128). Cells were plated at a density of 1 � 105 cells/

ml (100 ll per well) and treated with soluble aggregates

in a 1:5 dilution. Lipopolysaccharide (Invivogen San

Diego, CA, Cat. Tlrl-3pelps) at 10 ng/ml was used as a

positive control and aCSF buffer in a 1:5 dilution was

used as a vehicle control. The plate was placed in an

IncuCyteVR S3 live cell imaging system right after treat-

ment and monitored for 48 h. Four images were taken

per well (�600 cells per field of view), every hour, with

three wells per condition, totalling �7200 cells imaged

per condition per experiment. Two biological replicates

were carried out. Neurite length was measured using

NeuroTrack software with the following settings:

Segmentation Mode: Brightness; Segmentation

Adjustment: 0.7; Adjust size (pixels): 1; Min Cell Width

(lm): 25; Area (lm2) min: 500; Neurite Filtering: Best;

Neurite Sensitivity: 0.25; Neurite Width (lm): 4.

Membrane permeabilization assay

The membrane permeabilization assay was performed as

described previously.50 Briefly, liposomes composed of

16:0–18:1 PC and 18:1–12:0 biotin PC (100:1) (Avanti

Lipids), with an average diameter of 200 nm, were pre-

pared using extrusion and freeze-thaw cycles. Vesicles

filled with 100 lM Cal-520 dye were bound to a glass

surface coated with PLL-g-PEG and PLL-g-PEG biotin

(10:1) (Susos AG), via a biotin-neutravidin linkage. A ser-

ies of 9 different images were taken of 30 ll Ca2þ con-

taining buffer (L-15) alone to measure the background

for each set (Fblank). The same volume of soluble aggre-

gates (50 ll) was then incubated on the glass coverslip

for 15 min and imaged in the exact same fields of view

(Fsample). The same fields of view were then re-imaged

after the addition of 10 ll of 50 lg/ml ionomycin

(Fionomycin). By first determining the intensity of each

Table 1 Patient information

Patient ID No. Age at PM (years) PMI (h) Gender (M/F) Cause of death Braak

stage

AD1 NP17-216 77 55 F Burkitt’s Lymphoma III

AD2 NP17-194 71 70 M Pneumonia III

AD3 NP17-020 88 44 M End stage dementia III

AD, Alzheimer’s disease; F, Female; M, Male; PM, post-mortem; PMI, post-mortem interval.

Information from three Braak stage III Alzheimer’s disease patients (AD1, AD2 and AD3) whose brain tissue has been analysed in this study.
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individual vesicle, the average Ca2þ influx was calculated

using the following formula:

Fsample–Fblank

Fionomycin � Fblank

 !
� 100%

Imaging was carried out using a home-built total in-

ternal reflection fluorescence (TIRF) microscope, fitted

with a 488 nm laser (Toptica, iBeam smart, 200 mW,

Munich, Germany), which was used to excite the sam-

ples. The laser beam was expanded and collimated using

two Plano-convex lenses on the back-focal plane of the

60�, 1.49 NA oil immersion objective lens (APON60XO

TIRF, Olympus, product number N2709400) to a spot of

adjustable diameter. An EmCCD camera (Photometrics

Evolve, EVO-512-M-FW- 16-AC-110) was used to image

the dye fluorescence emissions collected by the objective.

Aptamer DNA-PAINT imaging

Aptamer DNA-PAINT imaging was performed as described

previously, with a few adaptations.51 Briefly, round slides

were cleaned for 1 h with argon plasma. A multiwell cham-

ber coverslip (CultureWell CWCS-50R-1.0) was then added

to the slide. The wells were cleaned with PBS 1% (v/v)

Tween 20 for 1 h before adding 5� diluted soluble aggre-

gates in PBS for 1 h. The wells were washed twice with

fresh PBS and replaced with imaging mix [2 nM imaging

strand (sequence CCAGATGTA-TCY3B), and 100 nM

aptamer-docking strand (sequence GCCTGTGGTGTTGGG-

GCGGGTGCGTTATACATCTA) in PBS]. All buffers were

passed through a 0.02lm filter (Anotop25, Whatman, Cat.

516-1501) before use. Prior to imaging, a clean coverslip

was used to seal the wells to prevent evaporation. Imaging

was performed on a home built TIRF microscope using a

1.49 N.A., 60� objective (UPLSAPO, 60X, TIRF, Olympus)

and a perfect focus system. More details about the micro-

scope set up and data analysis are described in Whiten

et al.51

Single-molecule pull-down imaging

Glass coverslips covalently mounted with polyethylene glycol

(PEG) were used for single-molecule pull-down (SiMPull)

experiments. Coverslip preparation was carried out as

described previously, with a few modifications.52 Briefly,

glass coverslips (26 � 76 mm, thickness 0.15 mm, Thermo

Scientific) were washed ultrasonically (cleaner USC100T,

VWR), in a series of solvents [10 min in 18.2-MX cm�1

Milli-Q water, 10 min in acetone, then 10 min in methanol

(MeOH)]. The washed coverslips were then etched by 1 M

potassium hydroxide (KOH) under 20 min ultrasonication

and rinsed with a series of solvents (MeOH, 18.2-MX cm�1

Milli-Q water, then MeOH). The processed coverslips were

dried using nitrogen flow and cleaned with argon plasma

for 15 min (Femto Plasma Cleaner; Diener Electronic). The

coverslips were then silanized with 5 ml of 3-aminopropyl

triethoxysilane (Fisher Scientific UK, Cat. 10677502), 8.3 ml

acetic acid (AcOH) in 166.7 ml MeOH for 20 min, with

1 min ultrasonication at the start and mid-point of reaction

(10 min after the start point). The silanized coverslips were

then rinsed in MeOH, 18.2-MX cm�1 Milli-Q water, fol-

lowed by MeOH and dried using nitrogen flow. 50-well

polydimethylsiloxane (PDMS) gaskets (Sigma, GBL103250-

10EA) were then attached to the cleaned and silanized cov-

erslips. To passivate the wells, 9ml of a 100:1 aqueous mix-

ture of succinimidyl valeric acid PEG (MPEG-SVA-5000)

(110 mg ml�1, Laysan Bio Inc.) and Biotin-PEG-SVA-5000

(1.1 mg ml�1, Laysan Bio Inc.) were added, with additional

1ml of 1 M sodium bicarbonate (NaHCO3) (pH 8.5). The

coverslips were incubated with PEG solution overnight in a

humid chamber and then rinsed with 18.2-MX cm�1 Milli-

Q water and dried with nitrogen flow. The passivated wells

were treated by adding 9ml of MS(PEG)4 methyl-PEG-NHS-

Ester (10 mg ml�1, Thermo Scientific, Cat. 22341), with add-

itional 1ml of 1 M NaHCO3 (pH 8.5). The coverslips were

incubated with PEG solution overnight in a humid chamber

and then rinsed with 18.2-MX cm�1 Milli-Q water and

dried with nitrogen flow. PEGylated glass coverslips were

stored in a desiccator at �20�C until needed.

For the experiment, neutravidin (0.2 mg/ml) was added to

the coverslip for 5 min, followed by two wash steps with

0.05% (v/v) PBST and once with 1% (v/v) PBST.

Afterwards biotinylated 6E10 (Signet, Cat. 9340-02, 10 nM)

was added for 10 min, followed by two wash steps with

0.05% (v/v) PBST and once with 1% (v/v) PBST. The sol-

uble aggregates were added for at least 1 h at room tem-

perature followed by two wash steps with 0.05% (v/v)

PBST and once with 1% (v/v) PBST. The coverslips were

blocked using blocking solution containing 0.1% (w/v) bo-

vine serum albumin (BSA) (Thermo Scientific, Cat.

AM2616), 10% (v/v) salmon sperm (Thermo Scientific, Cat.

15632011) and 0.1% (v/v) PBST for 1 h at room tempera-

ture. The coverslips were then incubated with labelled 6E10

(cat. 80302, 500 pM) for 45 min, followed by three washing

steps with 0.05% (v/v) PBST. To properly seal the imaging

chamber and prevent evaporation, 3ll of PBS was added to

each well and sandwiched with a second coverslip.

To determine the number of fluorescent molecules in

each image, a z-stack was generated in ImageJ. The

images were cropped to 380 � 380 pixels and the con-

trast was adjusted. Using the negative control as a base-

line, a threshold was applied to all images, and single

molecules above this threshold were counted.

Atomic force microscopy

Samples of soluble aggregates were diluted 10� in PBS buf-

fer and imaged on freshly cleaved mica substrates using

atomic force microscopy (AFM). Ten microlitres diluted

samples were deposited on the substrate at room tempera-

ture. The samples were incubated for 10 min, followed by

rinsing with 1 ml milliQ water. The samples were then

dried using a gentle flow of nitrogen gas. AFM maps of
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3D morphology of all the samples were acquired in regime

of constant phase change, with 2–4 nm/pixel resolution

using a NX10 (Park Systems, city, South Korea) operating

in non-contact mode.53 This set up was equipped with a

silicon tip with a nominal radius of <10 nm and spring

constant of 5 N/m (PPP-NCHR). For each sample, we

scanned an area between 250 and 500 lm2. The lower

limit was used for samples where aggregated species were

found and the upper limit for the samples without aggre-

gates. Scanning Probe Image Processor (SPIP) (version 6.7.3,

Image Metrology, Denmark) software was used for image

flattening and single aggregate statistical analysis. The aver-

age level of noise for each image was measured using SPIP

software and was smaller than 0.1 nm.54 All the measure-

ments were performed at room temperature.

Statistical analysis

GraphPad Prism v9 was used to carry out statistical anal-

yses for all experimental data except for AFM data.

Unpaired two-tailed t-tests have been used to test the null

hypothesis, in cases where two independent, normally dis-

tributed samples needed comparing (liposome assay,

immunoprecipitations, and Aptamer-DNA PAINT data).

An alpha value of (P< 0.05) was chosen to represent sig-

nificant differences in the data (* ¼ P� 0.05, ** ¼
P� 0.01, *** ¼ P� 0.001). In cases where more than

two independent variables needed comparing, a one-way

analysis of variance (ANOVA) was used (neuroinflamma-

tion, neurite length assay). This was followed by a Tukey

post hoc test when comparing the mean of each variable

to the mean of every other variable, or a Dunnett post

hoc test when comparing the mean of each variable to

the mean of one control variable. Kolmogorov–Smirnov

tests have been used when comparing non-normally dis-

tributed cumulative distributions (Aptamer-DNA PAINT

and SiMPull data). Individual statistical values are

reported in the figure legends. To assess the variability

between independent repeats of the experiment and be-

tween patients, multiple comparisons tests were carried

out (Supplementary Tables 1 and 2).

Scanning Probe Image Processor (SPIP) software was

used for image flattening and single aggregate statistical

analysis for AFM imaging data. AFM data were plotted

using OriginProVR 2021. Mann–Whitney two-tailed tests

were used to compare the medians of the non-normally

distributed data sets. Individual statistical values are

reported in the figure legends.

Patient samples were blinded prior to experimentation

and were only unblinded after data analysis. Region se-

lection for all imaging experiments was automated, ensur-

ing randomization and elimination of human bias.

Furthermore, data analysis parameters (e.g. thresholding)

were kept consistent within each data set.

Data gathered by ELISA were analysed using MARS data

analysis software. A four-parameter logistic fit was fitted to

the data, as per the kit manufacturer’s instructions.

Data availability

Raw data were generated at the Yusuf Hamied

Department of Chemistry, University of Cambridge.

Derived data supporting the findings of this study are

available from the corresponding author on request.

Results

Characterization of soluble

aggregates using a series of

sensitive assays

A series of sensitive assays were employed to characterize

brain-derived soluble aggregates by measuring their neu-

roinflammatory potential, liposome-permeability, neuro-

toxicity, size, number and morphology (Fig. 1).

Global inflammation in the brain of

Braak stage III patients

Soluble aggregates were extracted from eight different

brain regions from three Alzheimer’s disease patients (Fig.

2A). Samples from all regions appear to be neuroinflam-

matory (Fig. 2B and C), cytotoxic (Fig. 2D) and capable

of permeabilising liposomes (Fig. 2E), to varying degrees.

This suggests that there is global pathology even at

Braak stage III. Despite patient-to-patient variability

(Supplementary Fig. 1), hippocampal aggregates appear

to be the most toxic in all three patients and have there-

fore been further characterized with our assays in com-

parison to the VAC, a region that is generally affected

later in Alzheimer’s disease progression. HPC aggregates

caused a significantly higher Ca2þ influx than VAC

aggregates (Fig. 2F), suggesting they may be better at per-

meabilizing liposomes.

Ab-containing fragments are likely

driving the soluble aggregate

inflammatory response

The solutions extracted from brain tissue are heteroge-

neous mixtures of proteins. In order to identify whether

Ab-containing fragments were involved in the inflamma-

tory response (Fig. 2B and C), an immunoprecipitation

with an APP-binding antibody (6E10) was carried out.

This enabled the treatment of BV2 cells with samples of

soluble aggregates with and without immunodepletion of

Ab-containing fragments. Samples immunodepleted of

Ab-containing fragments using the 6E10 antibody caused

a significantly lower inflammatory response than samples

that did not undergo immunodepletion (Fig. 3A, B and

Supplementary Fig. 2). These data are consistent with Ab
aggregates being involved in neuroinflammation.
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Soluble aggregates cause neurite

retraction in human LUHMES

neurons

Treatment of LUHMES cells with HPC and VAC soluble

aggregates caused significant neurite retraction over 48 h

(Fig. 4A–C and Supplementary Fig. 3). This suggests that

the soluble aggregates are neurotoxic, similar to what has

been previously reported with Braak stage VI soluble

aggregates.23 Surprisingly, there was no significant differ-

ence between the level of HPC and VAC aggregate-

induced neurite retraction (Fig. 4D).

Figure 2 Inflammation and liposome data. (A) Diagram of the eight regions that were removed, soaked, and used for experimentation.

(B) TNF-a response from BV2 cells treated with soluble aggregates (diluted 1:5) from eight different brain regions. Each point represents an

average from three different Alzheimer’s disease patients. Vehicle control was aCSF at equal volume to soluble aggregates. Lipopolysaccharide

at 10 ng/ml was used as a positive control (not shown). Connecting lines have been added for visual clarity. Error bars are mean 6 SD.

Individual patient data can be found in Supplementary Fig. 1. (C) TNF-a measurements from the 96-h time point of the inflammation assay.

Each point represents one of the three Alzheimer’s disease patients. Error bars are mean 6 SD. Statistical analysis has been carried out

relative to the Vehicle control [one-way ANOVA: F(8,18) ¼ 5.989, P < 0.001. Post hoc Dunnett test against Vehicle: HPC: P < 0.001; CBL: P ¼
0.008; VAC: P ¼ 0.02; PP: P ¼ 0.46; AC: P ¼ 0.62; PVC: P ¼ 0.64; FC: P ¼ 0.69; EC: P ¼ 0.74]. (D) Cell viability was assessed from cell

supernatant from the 96-h time point of the inflammation assay using an LDH assay. Each point represents one of three Alzheimer’s disease

patients. Error bars are mean 6 SD. (E) Ca2þ influx of each patient and region measured by liposome assay. Error bars are mean 6 SD of

fields of view. HPC and VAC samples have been repeated in an independent experiment and show a similar trend. (F) Ca2þ influx from two

repeat experiments, averaged by brain region (HPC and VAC). Each point represents one of three Alzheimer’s patients. Error bars are mean

6 SD (HPC vs VAC: n ¼ 3, P ¼ 0.007, t4 ¼ 5.201). AC, anterior cingulate cortex; CBL, cerebellum; EC, entorhinal cortex; FC, frontal cortex;

HPC, hippocampus; PP, posterior parahippocampal gyrus, PVC, primary visual cortex; TNF-a, tumour necrosis factor-a; VAC, visual

association cortex.
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Length and number
characterization of soluble
aggregates

The size and number of the soluble aggregates have been

characterized by Aptamer DNA-PAINT super-resolution

microscopy. This was performed using an aptamer that

binds to fibrillar Ab, although it can also bind fibrillary

a-synuclein fibrils. The aggregates vary from region to re-

gion, and from patient to patient. In all cases, there is a

variety of soluble aggregates of a range of lengths

detected, however the length distributions differ (Fig. 5A

and C). The HPC aggregates appear to be shorter than

VAC aggregates in general, and have a smaller propor-

tion of longer aggregates (over 100 nm) (Fig. 5B and D).

Despite the clear difference in length there is a relatively

small difference between the inflammatory responses of

these two regions (Fig. 2B), suggesting that the aggregates

smaller than 100 nm (80–95% of all aggregates) are most

inflammatory.

Structural characterization of
aggregates using AFM

The 3D morphology and the heterogeneity of the aggre-

gates from the HPC and VAC samples were character-

ized using high-resolution and phase-controlled AFM

imaging (Fig. 6A and B).53–55 In both the HPC and the

VAC samples, we observed the abundant presence of

spherical aggregates. The single molecule statistical ana-

lysis of the cross-sectional diameter of these aggregates

showed that the spherical aggregates present in the HPC

samples had a diameter (�30–50 nm) that was signifi-

cantly smaller than the diameter of the spherical

aggregates in the VAC samples (�50–80 nm) (Fig. 6C).

The difference of the average diameter of the aggregates

is in agreement with the results obtained by Aptamer

DNA-PAINT in Fig. 5.

Furthermore, we observed that HPC samples contained

several elongated toroidal structures, as well as fibrillar

and prefibrillar aggregates. The VAC samples contained a

significantly smaller number of elongated aggregates, and

toroidal aggregates were not found in the 500 lm2 area

of the sample that was imaged in a randomized manner.

The statistically significant difference in the number of

elongated aggregates in the HPC versus VAC samples

was evaluated by calculating the density of the number

of these elongated aggregates per lm2 (Fig. 6D). The tor-

oidal and fibrillar aggregates had an average length of

�100 nm (Fig. 6E).

AFM cannot determine the proteins the toroidal, fibril-

lar and spherical structures consist of. However, the dif-

ferent heterogeneity of the aggregated species in the HPC

and VAC samples suggests that there is a regional vari-

ability in the structures of soluble aggregates, and toroid-

al and fibrillar structures might be more toxic than

spherical structures.

Characterization of Ab-containing
fragments through single-molecule
pull-down imaging

Aptamer DNA-PAINT and AFM imaging allowed us to

characterize the morphology, size, number and shape of

the soluble aggregates. However, as the techniques are

not protein-specific, the SiMPull technique was

employed to specifically characterize the Ab-containing

Figure 3 Immunodepletion of Ab-containing fragments. (A) TNF-a response measured from BV2 cells treated with soluble

aggregates that have either undergone (red) or not undergone (blue) a pull-down using a 6E10 APP-binding antibody. Each point represents an

average from three patients. Vehicle control was aCSF at equal volume to soluble aggregate samples. Lipopolysaccharide at 10 ng/ml was used

as positive control (not shown). Error bars are mean 6 SD. (B) TNF-a measured at the 96-h time point. Each point represents one of three

Alzheimer’s disease patients. Error bars are mean 6 SD (Unpaired two-tailed t-test, HPC vs HPC þ 6E10: n ¼ 3, P ¼ 0.04, t4 ¼ 3.061; VAC vs

VAC þ 6E10: n ¼ 3, P ¼ 0.002, t4 ¼7.658). Individual patient data can be found in Supplementary Fig. 2.
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aggregates in these samples.56 Intensity values provide

an approximation of aggregate molecular weight, assum-

ing that more fluorescent antibodies bind larger aggre-

gates, and hence an increase in intensity correlates with

an increase in aggregate size. The intensity values sug-

gest that VAC samples contain larger Ab-containing

aggregates than the HPC samples in two out of the

three patients (Fig. 7A–C), and when averaging the three

patients (Fig. 7D). This is in agreement with the

Aptamer DNA-PAINT and AFM data, which also show

that VAC samples have larger aggregates than HPC

samples. There was no significant difference in the num-

ber of detectable spots per field of view for the two

regions (Fig. 7E).

Figure 4 Neurite length. Representative images of neurite length of LUHMES cells treated with(A) aCSF buffer and (B) HPC at 0 and 48-h

time points. Representative images of LUHMES cells treated with HPC and VAC from all three Alzheimer’s disease patients can be found in

Supplementary Fig. 3. (C) Relative neurite length of LUHMES cells (�7200 cells imaged per condition) treated with soluble aggregates at a 1:5

dilution for 48 h, normalized to neurite length at the 0-h time point (1.0), and vincristine at 48 h (0) to signify total neurite retraction. Vehicle

was aCSF at same dilution as soluble aggregates (1:5), and vincristine (50 nM) served as a positive control for neurite retraction. Error bars

are mean 6 SD from two biological repeats, with each condition carried out in triplicate wells, and 4 images analysed per well. (D) Relative

neurite length at the 48-h time point averaged by brain region. Each point represents one of three Alzheimer’s disease patients. Error bars are

mean 6 SD [One-way ANOVA: F(2,5) ¼ 18.63, P ¼ 0.005. Post hoc Tukey test: n ¼ 3 for all: Vehicle vs HPC: P ¼ 0.008; Vehicle vs VAC: P ¼
0.005; HPC vs VAC: P ¼ 0.84].
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Discussion
The only previous study using soluble aggregates

extracted from soaking brain tissue analysed Braak stage

VI Alzheimer’s disease brains and showed that the major

species was Ab that caused long-term potentiation deficit

and neuronal retraction.23 In this pilot study, we wanted

to first see whether we could detect any aggregates in

early disease soluble aggregates, since this would allow us

to study earlier events in disease development. We char-

acterized the soluble aggregates from eight different brain

regions from three Alzheimer’s disease patients at Braak

stage III. Soluble aggregates from all eight regions were

neuroinflammatory and liposome-permeable, to varying

degrees. This suggests that there is global pathology

occurring even at Braak stage III, which is an early stage

of disease. We found extensive variation between the

same regions in different brains, for example, in the

A

B

C

HPC

200 nm

VAC

200 nm

HPC

200 nm

VAC

200 nm

HPC

200 nm

VAC

200 nm

0 200 400 600 800 1000
80

85

90

95

100

Length (nm)

R
el

at
iv

e
fr

eq
ue

nc
y

(%
)

HPC

VAC

✱✱✱

0 200 400 600 800 1000
80

85

90

95

100

Length (nm)

R
el

at
iv

e
fr

eq
ue

nc
y

(%
)

HPC

VAC

✱

0 200 400 600 800 1000
80

85

90

95

100

Length (nm)

R
el

at
iv

e
fr

eq
ue

nc
y

(%
)

HPC

VAC

✱✱✱

0 200 400 600 800 1000
80

85

90

95

100

Length (nm)

R
el

at
iv

e
fr

eq
ue

n c
y

(%
)

0 200 400 600 800 1000
80

85

90

95

100

Length (nm)

R
el

at
iv

e
fr

eq
ue

nc
y

(%
)

0 200 400 600 800 1000
80

85

90

95

100

Length (nm)

R
el

at
iv

e
fr

eq
ue

nc
y

(%
)

AD1 AD2 AD3 Average

0 200 400 600 800 1000
80

85

90

95

100

Length (nm)

R
el

at
iv

e
fr

eq
ue

nc
y

(%
)

HPC

CBL

VAC

PP

AC

PVC

FC

EC

0 200 400 600 800 1000
80

85

90

95

100

Length (nm)

R
el

at
iv

e
fr

eq
ue

nc
y

(%
)

HPC

VAC

✱✱✱

HPC
CBL

VAC PP AC
PVC FC EC

0

5

10

15

20

25

Pr
op

or
tio

n
of

ag
gr

eg
at

es
>

10
0

nm
(%

)

HPC
CBL

VAC PP AC
PVC FC EC

0

10

20

30

40

Pr
op

or
tio

n
of

ag
gr

eg
at

es
>

10
0

nm
(%

)

HPC
CBL

VAC PP AC
PVC FC EC

0

5

10

15

20

25

Pr
op

or
tio

n
of

ag
gr

eg
at

es
>

10
0

nm
(%

)

HPC
CBL

VAC PP AC
PVC FC EC

0

5

10

15

20

25

Pr
op

or
tio

n
of

ag
gr

eg
at

es
>

10
0

n m
(%

)

HPC VAC
0

5

10

15

20

25

Pr
op

or
tio

n
of

ag
gr

eg
at

es
>

1 0
0

nm
(%

)

✱✱✱

HPC VAC
0

10

20

30

40

Pr
op

or
tio

n
o f

ag
gr

eg
at

e s
>

10
0

nm
(%

)

ns

HPC VAC
0

5

10

15

20

25

Pr
op

or
tio

n
of

a g
gr

e g
at

es
>

10
0

nm
(%

)

✱✱

HPC VAC
0

5

10

15

20

25

Pr
op

or
tio

n
o f

a g
g r

eg
at

es
>

1 0
0

nm
(%

)

✱✱✱

D

E

Figure 5 Length and number characterization of soluble aggregates using Aptamer DNA-PAINT. (A) Cumulative frequency of

soluble aggregates in all eight brain regions and in (B) HPC and VAC regions only, from three independent experiments (Kolmogorov–

Smirnov test, AD1: P < 0.001, D ¼ 0.2092; AD2: P ¼ 0.03, D ¼ 0.0974; AD3: P < 0.001, D ¼ 0.3799; Average: P < 0.001, D ¼ 0.2016). See

Supplementary Table 1 for the results of multiple comparison test. (C) Proportion of soluble aggregates over 100 nm in length in all eight

brain regions and in (D) HPC and VAC regions only. Each point in the AD1, AD2 and AD3 graphs represents one of three replicates; each

point in the Average graph represents one of three Alzheimer’s disease patients. Error bars are mean 6 SD. (Unpaired two-tailed t-test, n ¼ 3

for all. AD1: P < 0.001, t4 ¼ 16.71; AD2: P ¼ 0.21, t4 ¼ 1.510; AD3: P ¼ 0.002, t4 ¼ 7.618; Average: P < 0.001, t4 ¼ 10.66). (E)

Representative super-resolved images of aggregates in HPC and VAC samples.

Soluble aggregates in early Alzheimer’s BRAIN COMMUNICATIONS 2021: Page 11 of 16 | 11

https://academic.oup.com/braincomms/article-lookup/doi/10.1093/braincomms/fcab147#supplementary-data


aggregate length and number, but clear differences be-

tween HPC and VAC, since the former is affected very

early in Alzheimer’s disease and the latter is largely un-

affected until late disease. We therefore chose to compare

the soluble aggregates in HPC and VAC regions using all

assays, with VAC serving as an internal control for each

patient.

Despite patient-to-patient variability, HPC aggregates

appeared to be the most toxic. TNF-a secretion in re-

sponse to soluble Ab aggregates has been previously

Figure 6 High-resolution AFM imaging of aggregates 3D morphology. Structural characterization of the aggregates in (A) HPC and

(B) VAC regions using AFM. The blue arrows are highlighting toroidal and elongated aggregates. (C) The single aggregate statistical analysis of

the cross-sectional diameter of the spherical aggregates reveals that VAC spherical aggregates are significantly larger than HPC ones (Mann–

Whitney test, two-tailed; HPC1 vs VAC1: P < 0.001, U ¼ 140761; HPC2 vs VAC2: P < 0.001, U ¼ 56141; HPC3 vs VAC3: P < 0.001, U ¼
125376). (D) Bar plot with SD of the density of the number of elongated protofilaments and toroidal oligomers per lm2 in each sample. The

graph shows the significant presence of elongated aggregates in the HPC (n1¼35, n2¼17, n3¼16 per 2020 lm2) compared to the VAC

samples (n1 ¼ 2, n2 ¼ 0, n3 ¼ 1 per 2020 lm2) (Unpaired two-tailed t-test, HPC1 vs VAC1: P ¼ 0.03, t35 ¼ 2.195; HPC3 vs VAC3: P ¼ 0.02,

t15 ¼ 2.706). (E) Statistical analysis of the cross-sectional length of the toroidal, prefibrillar and fibrillar aggregates. (F) Statistical analysis of

the cross-sectional height of the toroidal, prefibrillar and fibrillar aggregates.
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reported to cause long-term potentiation deficit,57 a cellu-

lar correlate of memory loss, so together with our data

showing inflammation being highest in the HPC, this

offers an explanation as to why memory loss occurs in

Alzheimer’s disease.

We have identified the size, length, morphology and

number of these endogenous soluble aggregates. These

varied from region to region and from patient to patient

but importantly there was a range of aggregates of differ-

ent sizes (20–200 nm) in all regions. It should be noted

that the aptamer used for the Aptamer DNA-PAINT

studies can bind both Ab and a-synuclein, however, our

work7,40 and previous work23 suggests that it is most

likely Ab. Furthermore, AFM imaging is not protein spe-

cific, but the sizes of the imaged aggregates are consistent

with those measured with Aptamer DNA-PAINT, similar

to what was observed in our previous work on CSF.40

We have taken advantage of the high-resolution of

AFM to further characterize the morphology and struc-

ture of soluble aggregates from the HPC and the VAC.

HPC samples contained structures of toroidal nature, as

well as fibrillar structures. VAC samples rarely had fibril-

lar structures and contained many spherical structures.

We have found in CSF41 and with synthetic aggregates7

that protofibrils are the main inflammatory species. This

is because they are the right diameter to be bound by

multiple toll-like receptor 4s (TLR4s). Indeed, in the HPC

samples about 7–15% of the aggregates detected by

AFM have the right height (�2 nm) to produce a strong

inflammatory response, compared to the proportion in

the VAC, which is less than 2%. These aggregates were

less than 100 nm in length, which is also consistent with

our observation, combining our Aptamer DNA-PAINT

and inflammatory assay results, that the inflammatory

aggregates are less than 100 nm in length. Overall, our

data suggest that fibrillary aggregates less than 100 nm in

length and 2 nm in diameter can cause inflammation and

that there are more of these aggregates in the HPC com-

pared to the VAC.

A previous study has found that activated microglia are

present in HPC and VAC in Alzheimer’s disease patients

classed as having low neuropathologic change.10 Both the

HPC and VAC already had some activated microglia. It

was found that there are more microglia and more acti-

vated microglia in HPC than VAC, but an increase in the

proportion of activated microglia occurred in both areas

at early stages. This is supported by cross-sectional stud-

ies, which have used PET scans to detect activated micro-

glia, and have shown increases in inflammation in early

disease all over the brain that is associated with cognitive

Figure 7 Single-molecule pull-down characterization of Ab-containing fragments in samples. Cumulative frequency plots of

intensity values of Ab aggregates in HPC and VAC samples from (A) AD1 (Kolmogorov–Smirnov test, HPC vs VAC, P < 0.001, D ¼ 0.1987),

(B) AD2 (Kolmogorov–Smirnov test, HPC vs VAC, P < 0.001, D ¼ 0.1451), (C) AD3 (Kolmogorov–Smirnov test, HPC vs VAC, P < 0.001, D

¼ 0.0804) and (D) Average of the three patients (Kolmogorov–Smirnov test, HPC vs VAC, P < 0.001, D ¼ 0.05452). See Supplementary

Table 2 for results of multiple comparison test. (E) The number of detected spots (Ab) per field of view (380 x 380 pixel cropped images).

Each point represents one of three Alzheimer’s disease patients. Error bars are mean 6 SD (Unpaired two-tailed t-test, HPC vs VAC, n ¼ 3, P

¼ 0.47, t4 ¼ 0.7978).
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decline.58–60 Peripheral cytokine studies have shown that

this increase in inflammation in early disease plateaus in

later stages of the disease.61–64 Furthermore, recent stud-

ies have shown that microglia do not appear to take up

and transport soluble Ab, but instead degrade them by

secreting insulin-degrading enzyme (IDE).65 In combin-

ation with our work, this suggests that instead of aggre-

gates spreading through the brain, the same aggregate-

induced inflammation is occurring locally to a greater or

lesser extent in the entire brain simultaneously.

It should be noted that our study was intended to de-

termine the feasibility of this approach and has been per-

formed on a small number of Alzheimer’s disease patients

due to the manual nature of these experiments. We are

working on automating these assays to allow for more

high-throughput assessment of Alzheimer’s disease brain

tissue, to explore whether similar characteristics of sol-

uble aggregates are found in larger cohorts and allow

comparison to age matched control brain and brain at

later stages of AD. More sensitive neuroinflammation

assays are also needed to better characterize the inflam-

matory properties of aggregates from different brain

regions. In the future, this approach has the potential to

characterize the aggregates that form in humans during

the development of AD and identify which aggregates are

toxic and by what mechanisms. In particular, by studying

regions where inflammatory aggregates are just starting

to be formed, it may be possible to study the early proc-

esses of disease.

Overall, our data are consistent with small soluble Ab-

containing aggregates, 2 nm in diameter and less than

100 nm in length, driving inflammation in Alzheimer’s

disease to greater or lesser extents in all regions of the

brain and this aggregate-induced inflammation then caus-

ing cellular dysfunction and ultimately cell death. Our

study also highlights the heterogeneity in size, morph-

ology and structure of the aggregates formed in the brain

with the proportion of different aggregates differing be-

tween brain regions. It also highlights the challenges in

selectively targeting the correct species and suggests that

targeting the aggregate induced inflammation may be a

better therapeutic strategy than attempting to target spe-

cific aggregates.
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Supplementary material is available at Brain

Communications online.
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