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Abstract: The use of artificial intelligence (AI) in various medical imaging applications has expanded
remarkably, and several reports have focused on endoscopic ultrasound (EUS) images of the pancreas.
This review briefly summarizes each report in order to help endoscopists better understand and
utilize the potential of this rapidly developing AI, after a description of the fundamentals of the
AI involved, as is necessary for understanding each study. At first, conventional computer-aided
diagnosis (CAD) was used, which extracts and selects features from imaging data using various
methods and introduces them into machine learning algorithms as inputs. Deep learning-based CAD
utilizing convolutional neural networks has been used; in these approaches, the images themselves
are used as inputs, and more information can be analyzed in less time and with higher accuracy.
In the field of EUS imaging, although AI is still in its infancy, further research and development of AI
applications is expected to contribute to the role of optical biopsy as an alternative to EUS-guided
tissue sampling while also improving diagnostic accuracy through double reading with humans and
contributing to EUS education.

Keywords: artificial intelligence; deep learning; pancreas; computer-aided diagnosis; machine learning;
endoscopic ultrasound; pancreatic cancer; convolutional neural network; deep neural network; support
vector machine

1. Introduction

Pancreatic cancer (PC) has the fifth-highest fatality rate among all carcinomas, with a
five-year survival rate of approximately 6% [1]. Favorable long-term prognoses can be
achieved through early detection and surgical resection, especially for tumors less than 1 cm
in size, with a five-year survival rate of 80.4% [2]. Extracorporeal abdominal ultrasonog-
raphy (US), computed tomography (CT), magnetic resonance imaging (MRI), endoscopic
ultrasound (EUS), and endoscopic retrograde cholangiopancreatography (ERCP) have
emerged as essential in the diagnosis of PC; technological advances have enabled them
to provide precise imaging. Among these modalities, EUS enables observation of the
pancreas with high spatial resolution, and the sensitivity of detection of PC using EUS
has been reported to be 94% [3]. However, the diagnostic performance of EUS depends
largely on the experience and technical abilities of the endoscopist. The American Society
for Gastrointestinal Endoscopy recommends that EUS training should consist of at least
two years of standard gastrointestinal (GI) fellowship (or equivalent training) and one
year of pancreatic EUS training [4]. Screening by EUS is preferable in high-risk groups for
PC, but increased numbers of tests may induce fatigue and inattention of endoscopists.
However, because PC is rapidly progressive and fatal, there is concern that missing a
diagnosis could have devastating consequences for patients. The implementation of arti-
ficial intelligence (AI) for image analysis has been studied in various disorders, some of
which have already been used in clinical practice [5,6]. More advanced AI has been used
in the field of gastrointestinal endoscopy, including for detection of colon polyps [7,8],
discrimination between benign and malignant tumors [9], and evaluation of the depth of
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cancer invasion [10]. The application of AI into EUS for the pancreas is limited, and it is
still in its developmental stage compared to other fields. Herein, we present a literature
review with the aim of clarifying the progress and current prospects of EUS with AI for
pancreatic disorders. In this review, for readers unfamiliar with AI, we first provide a brief
overview and refer readers to cited works for precise details and further information.

2. Overview of Artificial Intelligence in Diagnostic Imaging
2.1. From Artificial Intelligence to Deep Learning

There are many definitions of AI, but the concept can be simply described as computer
programs developed by humans and equipped with analogs of the thoughts, judgments,
and reactions that take place in the human brain. Under this definition, one way to create
AI is machine learning (ML), which refers to a method of learning that utilizes a large
amount of input data and finds the various and complicated patterns or features that occur
within it. There are three types of ML: supervised learning, where the program learns
by correcting for differences between correct data and program output corresponding to
the input data; unsupervised learning, where the program learns without correct data,
assuming stationarity of the input, according to its distribution and similarity; and rein-
forcement learning, where the program learns through adjustments, by not giving the
program direct correct data, but instead by evaluating and rewarding the output. Super-
vised learning has mainly been used in diagnostic imaging, typical examples being artificial
neural network (ANN) [11], naïve Bayes [12], logistic regression [13], decision tree [14],
random forest [15], and support vector machine [16] (SVM, which is described in detail in
Section 2.3.). In early ML development, human designers struggled to create features such
as shape and density information from images in ingenious ways. However, other ML
techniques allow such features to be created by themselves through a learning process,
which can save considerable time and effort. Deep learning (DL) is one type of ML that
has been developed to further this goal, and it involves the development of ANNs that
realize AI through the use of multi-layered and complex structures (Figure 1). ANNs are
based on the perceptron, which was first published in 1958 as an attempt to mimic the
human brain’s neural circuits (Figure 2a) [11]. ANNs apply this perceptron to represent the
data received from the input layer as it passes through the hidden (i.e., middle) layer and
finally the output layer to represent the desired output, and the neurons (i.e., nodes) in each
layer are connected by a weight coefficient that indicates the strength of the connection,
bias, and an activation function such as a sigmoid (logistic) function or hyperbolic tangent
function (tanh) (Figure 2b) This flow of information from input to output is called forward
propagation. Through a proper training (learning) process, the network can adjust the
value of the weights of the connections to obtain the best results. Then, based on the errors
(loss) between the output and the correct data, the slope of the loss function is calculated
and then propagated through each layer toward the input layer. In each layer, the weight
coefficients and biases are adjusted based on the slope of the loss function. This is referred
to as the backpropagation algorithm [17].Diagnostics 2021, 11, x FOR PEER REVIEW 3 of 17 
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DL is a technology that utilizes a deep neural network (DNN), which is an ANN with
four or more layers obtained by increasing the number of hidden layers. This enables
handling problems that are not linearly separable and cannot be solved by the simple
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perceptron, as well as complex tasks and large amounts of data. (Figure 2c). However,
we should be aware of issues such as overfitting and the vanishing gradient problem,
which can occur as the DNN becomes deeper. Overfitting is a general phenomenon in ML
where the model fits too well to the training samples, resulting in a low accuracy rate when
evaluating unknown samples; in other words, the model is optimized for training data only
and has no generality. To prevent overfitting, various efforts have been made to increase
the amount of training data and regularize and simplify the models in ML model creation.
The vanishing gradient problem is a phenomenon of multi-layered ANNs, in which the
gradient approaches zero as it nears the input layer and finally disappears, resulting in a
loss of learning. One way to solve this problem is to use the rectified linear unit (ReLU)
instead of the sigmoid function for the activation function, which has been used in many
DL studies. The ReLU function output is 0 if the input is a negative value, and the output
is x if the input x is a positive value, such that the slope is 1, thus avoiding the vanishing
gradient problem.

In conjunction with the significant advances in computer technology, such as graphics
processing units (GPUs) with high computational power, the acquisition of large amounts
of data through the development of the internet, and the development of various DL
algorithms, including convolutional neural networks (CNNs) [18], autoencoders [19],
and generative adversarial networks [20], have flourished, and various algorithms have
emerged to further improve accuracy, solve enormous computational problems, and in-
crease flexibility in learning. In particular, CNNs have been confirmed to be far superior to
conventional image recognition methods and are now commonly used in medical imaging
as well [21]; additional details about CNNs are described in 2.4 below.

2.2. Computer-Aided Diagnosis

Diagnosis based on image processing by computers is referred to as computer-aided
diagnosis (CAD); the use of DL has become a mainstream AI application [22]. There are
various roles in diagnostic imaging using computer systems, primarily computer-assisted
detection (CADe) for lesion detection within an image, computer-assisted diagnosis (CADx)
for differentiation (classification) of lesions, and segmentation for extraction of the area,
including the contour of the object, which facilitates identifying the detailed delineation
of the lesion and the category (i.e., lesion or organ) to which individual pixels belong.
The basic technologies involved in the CAD schemes are (i) image processing such as
normalization, (ii) image input, (iii) feature extraction, and (iv) results for detection or
classification. In conventional CAD, each step of the process is conducted by human
researchers themselves or with the help of computers, while DL-based CAD can automate
this sequence of steps, end to end, through a learning process [23]. There are first reader,
second reader, and concurrent reader forms of computer support, whereas the second
reader type is the one most commonly found in CAD today. This is diagnosed first by
the doctor, as usual; then, the computer results are reviewed, providing the possibility
to change the interpretation and diagnose as necessary. On the other hand, a concurrent
reader-type CAD system that refers to the CAD output at the same time as the diagnosis and
a CAD system similar to the first reader type that makes a decision before the specialist’s
diagnosis have also been developed [5].

2.3. Support Vector Machine

SVM is one of the supervised learning ML algorithms [16] (Figure 3). The basic con-
cept is to classify data belonging to two categories by creating a boundary. When there
are two types of data for classification, the boundary is a line; when there are three types,
the boundary is a plane; and when there are four or more types, the boundary is a hyper-
plane boundary, which is collectively referred to as a “separating hyperplane”. A support
vector represents the data closest to the separating hyperplane, and the distance between
the support vector and the separating hyperplane is referred to as a margin; an SVM
achieves classification by calculating the separating hyperplane such that this margin is
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maximized. (Figure 3a). If the data are linearly separable, this can be accomplished by a
very simple calculation; however, in practice, including in imaging, data are generally not
linearly separable. In such cases, soft-margin SVM and the kernel method are used to deal
with the data. Essentially, soft-margin SVM allows a few anomalous expression profiles to
fall on the “wrong side” of the separating hyperplane. Hence, introducing the soft margin
necessitates introducing a user-specified parameter that roughly controls how far across
the boundary data are allowed to be. There is a trade-off between hyperplane violations
and margin distance, therefore ML classification is accomplished by trying to maximize
the margin while allowing hyperplane violations as much as possible (Figure 3b). On the
other hand, the concept of the kernel method is to map features to a high-dimensional
feature space that is linearly separable (Figure 3c). However, this requires a huge amount
of computation because features must be mapped to a number of dimensions as large as
the number of data, so replacing the inner product of the non-linear map with a kernel
function reduces the computational complexity significantly. This technique is called the
kernel trick [24], for which several kernel functions can be used, such as Gaussian kernels,
polynomial kernels, and radial basis function kernels. There are four main advantages of
SVM: (i) the kernel trick allows application to nonlinear problems, (ii) the solution is theo-
retically unique due to the explicit criterion of margin maximization, (iii) generalizability
is high due to margin maximization, and (iv) fewer parameters must be set in advance
compared with neural networks. Nevertheless, SVM has several key disadvantages: (i)
the effective features for classification must be determined manually, (ii) the learning time
is huge when the number of data is large, (iii) some ingenuity is required to perform
multi-class classification because it is basically a two-class classification method, and (iv)
the output data do not give the probability of belonging to a classification category.

2.4. Convolutional Neural Network

A CNN is a DL algorithm that was developed based on the processing of human
visual signals (specifically, simulations of the principles of the cortical visual cortex V1
surrounding the avian sulcus in the occipital lobe). CNNs have made significant con-
tributions to computer vision (the process by which a computer obtains and recognizes
information from a series of images or videos) and continue to play a pivotal role in medical
imaging analysis. In contrast to the feature extraction algorithms used in traditional CAD,
which require human trial and error, CNNs use the image itself as an input and automati-
cally learn to identify the most suitable features. In addition, conventional ANN has the
problems of overfitting and vanishing gradient as the number of hidden layers increases;
however, with CNNs, the layers are not fully connected, and the weights are adjusted
for multiple data because multiple pixels in the input image (input feature map) share
a single weight, thus preventing overfitting. The typical CNN consists of the following:
(i) a convolutional and pooling layer for extracting distinctive features, and (ii) a fully
connected layer for the overall classification. The input images are filtered by a number
of specific filters automatically to extract the distinctive features to create multiple feature
maps (Figure 4a). This operation for filtering is called convolution, and the process of
training the convolutional filters to create the best feature maps is essential for success with
CNNs. These feature maps are compressed to a smaller size in the pooling layer, and these
convolution and pooling layers are repeated many times. Finally, a fully connected layer
combines all the features to obtain the final result (Figure 4b). ReLU (used as an activation
function to avoid the vanishing gradient problem) and data augmentation (used to increase
the number of training images by performing micro-geometric transformations such as
image inversion, resizing, and shifting) are commonly used to improve the generalizability
of CNNs. In addition, the dropout technique is often used to prevent overfitting by ran-
domly disabling some units in a layer and performing backpropagation in the remaining
units [25]. Various CNN architectures, such as LeNet [26], Alexnet [27], GoogLeNet [28],
VGGNet [29], and ResNet [30] have been proposed, and applications of them have been
used in many kinds of research.
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2.5. Validating Methods in Machine Learning

An important aspect of ML, including DL, is that the model learns the data such
that it can accurately make predictions and classifications using unknown data. In other
words, the model needs to acquire generalization performance. For this purpose, in the
development of ML, the generalization performance of the model is necessarily validated,
and there are several ways to achieve this, including the following approaches.

2.5.1. Hold out Validation

Some cases are randomly selected from the initial samples to form test cases, while the
remaining cases are used for training. In general, it is often one-half, one-quarter, or one-
nineth of the initial samples that are used for test cases. However, this is not suitable for
the validation of a study with small amounts of data because of data bias.

2.5.2. K-Fold Cross-Validation

In K-fold cross-validation, the samples are divided into K groups, one of which is used
as a test, and the remaining K-1 group is used for training. In cross-validation, each of the K
groups of samples is tested k times, and the average of the tests is the cross-validation result.
Although this method, depending on the number of patterns, is more computationally
intensive than hold-out validation, it is currently widely used owing to its confidence
and efficiency.
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2.5.3. Leave-One-Out Cross-Validation

Only one sample is extracted from each of the N samples and used as test data, and the
model is trained on the remaining N-1 samples and verified N times. More training data
can be obtained than in the above two methods, but because the amount of computation is
enormous in proportion to the number of samples, it is limited to studies with a relatively
small number of samples.

3. Literature Search

Two authors (R.T. and S.M.) used the Google search engine, Google Scholar, MED-
LINE via PubMed, OVID, Cochrane, and Scopus to search for articles published up to
September 2020 using the following keywords alone or in combination: endoscopic ultra-
sound, endosonography, artificial intelligence, deep learning, computer-aided diagnosis,
machine learning, and pancreas. We carefully selected articles from those searches that
accurately and clearly described the application of CAD to EUS for the pancreas. We also
manually retrieved eligible studies from the references in the review articles. All articles
included were in written in English only.

4. Computer-Aided Diagnosis for Pancreatic Endoscopic Ultrasound

A summary of the studies that have evaluated the use of CAD in diagnostic EUS is
presented in Table 1. The first report of using CAD for EUS in the pancreas was in 2001
by Norton et al. [31]. In the following 17 years, there were some reports of conventional
CAD, in which researchers made computer-based extraction and selection of appropriate
features, and then analyzed them with an ML algorithm. Finally, in 2019, DL-based CAD
was introduced in this area.

4.1. Conventional Computer-Aided Diagnosis

Norton et al. [31] reported the first use of CAD based on digital image analysis (DIA) of
EUS images in 2001. This study included a total of 35 patients with a histological diagnosis,
including 14 with focal chronic pancreatitis (CP) and 21 with PC, who were randomly
selected from patients examined using radial EUS. Representative images (region of interest,
ROI) data for each case were then extracted by humans and inputted into a computer
program. This computer program scanned rows of grayscale pixels from the digitized and
described image characteristics such as degree of variation in grayscale between adjacent
pixels, grayscale variation over a length (“run”) of pixels, and overall brightness. Then,
the four features associated with “run” were judged to support maximizing the distinction
between PC and CP. After each lesion was represented on a two-dimensional grid according
to the results, the authors attempted to establish an arbitrary division that would allow for
a strong distinction between the two types of disease. Finally, Norton et al. were able to
maximize their overall diagnostic sensitivity to 89%. When the sensitivity for malignant
diseases was set to 100%, aiming to reduce the number of missed malignancies, the overall
diagnostic accuracy was 80%. This result was remarkably similar to the 85% accuracy
obtained by the actual EUS test and the 83% accuracy of the diagnosis by other observers
who watched the video of the test (blinded assessment). In summary, this study by Norton
et al. [31] cannot be described as AI-CAD for contemporary clinical applications because
the computer algorithm was very simple, the number of data points was very small, and the
EUS images were of very low resolution. However, this study showed that the analysis of
EUS images using DIA was feasible and comparable to human interpretation in different
pathological situations, establishing a foundation for later AI research in EUS imaging.
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Table 1. Summary of reviewed published studies using artificial intelligence to analyze pancreatic endoscopic ultrasound (EUS) data.

Author Year Objective Case
Number Analysis Target Type of CAD Algorithm of AI

Norton ID [31] 2001 Classification
(PC vs. CP) 35 Grayscale pixels

from B-mode image Conventional CAD Basic neural network

Das A [32] 2008 Classification
(PC vs. CP and NP) 56 Texture features

from B-mode image Conventional CAD ANN (multilayered perceptron)

Zhang MM [33] 2010 Classification
(PC vs. CP and NP) 216 Texture features

from B-mode image Conventional CAD SVM

Saftoiu A [34] 2012 Classification
(PC vs. CP) 258 Hue histogram

from EUS-elastgraphy Conventional CAD ANN (multilayered perceptron)

Zhu M [35] 2013 Classification
(PC vs. CP) 388 Texture features

from B-mode image Conventional CAD SVM

Saftoiu A [36] 2015 Classification
(PC vs. CP) 167

Parameters of
time-intensity curve

from contrast-enhanced
EUS

Conventional CAD ANN

Ozkan M [37] 2016 Classification
(PC vs. NP) 172 Digital features

from B-mode image Conventional CAD ANN

Kuwahara T [38] 2019 Classification (malignant
IPMN vs. benign IPMN) 50 B-mode image Deep Learning

based CAD CNN

Zhang J [39] 2020
EUS station recognition

and pancreas
segmentation

480 B-mode image Deep Learning
based CAD CNN

Tonozuka R [40] 2020 Detection of PC 139 B-mode image Deep Learning
based CAD CNN

CAD, computer-aided diagnosis; AI, artificial intelligence; PC, pancreatic cancer; CP, chronic pancreatitis; NP, normal pancreas; ANN, artificial neural network; SVM, support vector machine; IPMN, intraductal
papillary mucinous neoplasm; CNN, convolution neural network.
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Das et al. [32] studied the diagnosis of PC by ANN with the input of parameters
acquired by DIA of EUS images in 2008. They selected the ROI of each disease from EUS
images from a total of 56 patients including 22 patients with a normal pancreas (NP),
12 with a CP, and 22 with PC. Then, from the ROI image data of 110 NP, 99 CP, and 110 PC
images, texture analysis was performed, which is one of the techniques used to evaluate
the distribution and spatial variation of pixel intensities. Eleven independent features were
extracted from the 228 extracted texture parameters using principal component analysis
based on the correlations between each parameter (cumulatively explaining 96% of the
variation in the original 228 parameters). They built a CAD model for the diagnosis of
PC using a multilayered perceptron neural network that consisted of a single input layer,
including nine inputs based on the eleven parameters, and nine hidden layers. The single
output layer was a dichotomy of PC status (presence/absence). Of all the data, a randomly
selected 50% was used for training, and the remaining 50% was used for validation.
Validation results showed a sensitivity of 93%, specificity of 92%, positive predictive value
(PPV) of 87%, and negative predictive value (NPV) of 96%. The area under the receiver
operating characteristic curve (AUROC) was also high, at 0.93. Additionally, a model of
differentiation between NP and CP individuals was developed and validated, achieving
sensitivity and specificity of 100%. In summary, Das et al. [32] reported the first ML results
for EUS images of the pancreas using a multi-layered neural network, suggesting that this
is possible, although challenges presented by a lack of pathological evidence in CP and NP
individuals and small sample sizes remained.

Zhang et al. [33] in 2010 performed various digital processing procedures with EUS
images to select better texture features and then used them to build an SVM prediction
model for differentiating PC from non-PC cases. A total of 216 patients, including 153 PC
and 63 non-PC patients (20 NP and 43 CP patients), were confirmed with a final diagnosis
by definitive cytology, surgical pathology, and a clinical follow-up more than 12 months
later. They set the ROI from each EUS image and extracted texture features from the ROI.
The authors used multifractal dimensional features, a quantitative measure of fractality
(self-similarity) and complexity, as texture features. The better combinations of features
were then examined using a sequential forward selection process and a Bayesian classifier.
In addition, they combined 20 other frequently used texture features with multifractal
features to investigate a better combination of features. As a result, they found that they
obtained the highest classification accuracy with seven-dimensional multifractal features.
They also found that by adding nine other texture features to this, the classification accuracy
reached 99.07%. These were then introduced into the SVM, and 50 random experiments
were conducted, and the accuracy, sensitivity, specificity, PPV, and NPV were each high,
at 97.98%, 94.32%, 99.45%, 98.65%, and 97.77%, respectively. This report was the first to
suggest the possibility of using CAD with SVM introducing multiple features based on
DIA. In summary, this study by Zhang et al. [33] suggests that SVM is a useful method
for diagnosing PC with EUS images and could be implemented for rapid non-invasive
screening of pancreatic disease.

Săftoiu et al. (2012) [34] reported a prospective, blinded, multicentric study of the
accuracy of real-time EUS elastography in focal pancreatic lesions. A total of 258 patients,
47 with CP and 211 with PC from 12 European hospitals, with final diagnoses obtained
by cytology, histology by EUS-guided fine needle aspiration (EUS-FNA), and/or surgical
pathology and/or a clinical follow-up after a minimum period of six months, were enrolled
in the study. Three 10 s videos per patient were obtained, and ROI was set to include
50% of the surrounding structures. The image analyst used computer software to cut 125
still images displaying 256 colors from one dynamic elastography movie to obtain 125
hue histograms. The ANN used was the multilayer perceptron with two hidden layers
trained using a back-propagation algorithm. During training, the number of neurons in
each hidden layer was varied from 1 to 128, with the final number of neurons being 55
in the first hidden layer and 34 in the second layer, which gave the best accuracy. They
ran the algorithm 100 times in a complete cross-validation cycle (ten-fold cross-validation)
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to avoid the inherent bias induced by its heuristic nature, and sensitivity, specificity, PPV,
and NPV values were 87.59%, 82.94%, 96.25%, and 57.22%, respectively. The corresponding
average area under the receiver operating characteristic curve (AUC), over the 100 different
computer runs of a complete cross-validation cycle, was 0.94. In summary, Săftoiu et al. [34]
successfully used ML with ANN to objectively interpret EUS elastography, a traditionally
subjective method of testing.

In 2013, Zhu et al. [35] (from the same group as Zhang et al. [33]) developed another
texture analysis-based CADx model using a SVM classifier to differentiate PC from CP
cases. A total of 388 patients, including 262 PC and 126 CP patients, were randomly
extracted from the single-center EUS-FNA database. From these EUS images, the ROI was
set for each of them, and 105 parameters in nine categories were extracted using image
analysis software as histograms. Among them, 25 better feature combinations were selected
by the distance between class algorithm, which is a method that determines that the greater
the distance between classes (meaning the difference between the medians of the features
of the two classes), the greater the accuracy of the classification performance. In this study,
a total of 388 patients were classified into a training set and a test set according to two
different methodologies: the half-and-half method of hold-out validation and the leave-
one-out method. Then, feature selection was performed by the sequential forward selection
(SFS) algorithm to reduce the training time, improve the interpretability and accuracy
of the model, and prevent overfitting. The SFS algorithm is a method used to select
better combinations of features that selects the combination with the best discrimination
performance after adding features one by one. Using this method, Zhu et al. were able
to achieve optimal classification accuracy, with a classification error rate of 4.38% for 16
combinations out of 25 features. These features were then introduced into the SVM and
examined using two different training/testing classification methods. In the half-and-half
method, the accuracy, sensitivity, specificity, PPV, and NPV were 93.86%, 92.52%, 93.03%,
91.75%, and 94.39%, respectively, while in the leave-one-out method, they were 94.16%,
91.55%, 95.07%, 93.67%, and 96.98%, respectively. In summary, Zhu et al. [35] demonstrated
the potential of ML with SVM by carefully identifying combinations with high classification
performance from a number of texture features.

In 2015, Săftoiu et al. [36] generated time-intensity curves (TICs) based on data derived
from dynamic contrast-enhanced EUS performed on solid pancreatic masses and analyzed
them using multilayered ANN to classify CP from PC cases. The study prospectively
enrolled consecutive patients in five European hospitals (Romania, Denmark, two German
centers, and Spain) with solid pancreatic masses diagnosed cytologically or pathologically,
and ultimately enrolled a total of 167 patients, including 112 PC patients and 55 CP patients,
for the analysis. A randomly selected 70% of cases were used for the ANN training set,
15% for the validation set, and 15% for the test set. The validation set in this study was used
to measure the generalization of this ANN and was responsible for stopping the training
when it was confirmed that sufficient generalization had been reached. From the video data
of each case, two ROIs were created per case. One was set to include 50% of the lesion and
the other to include the surrounding normal pancreatic parenchyma. Seven parameters
from TIC curve analysis were then quantified by the software: peak enhancement, the wash-
in area under the curve, rise time, mean transit time, time to peak, wash-in rate, and wash-in
perfusion index. Among seven parameters, the values of peak enhancement (p = 0.0001),
wash-in area under the curve (p = 0.0009), wash-in rate (p = 0.0008), and wash-in perfusion
index (p = 0.0027) were determined to be significantly different between CP and PC cases.
Then, they constructed a feed-forward network consisting of an input layer with seven
neurons, a single hidden layer with a sigmoid function, a backpropagation algorithm,
and an output layer with two neurons. In terms of the diagnostic ability of ANN introduced
with all seven parameters, the sensitivity, specificity, PPV, and NPV were 94.64%, 94.44%,
97.24%, and 89.47%, respectively. In summary, Săftoiu et al. [36] suggest that CAD by ANN
using the parameters obtained from their TIC analysis may provide additional diagnostic
value to human qualitative CE-EUS interpretation and EUS-FNA results.
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Ozkan M et al. [37] focused on age-dependent pancreatic changes and proposed a
new CAD system using ANN to distinguish between PC and NP cases in three age groups.
The classifier in the designed system can receive EUS images for all age groups together as
input for training and testing, as well as receive them separately. From the EUS images
of 172 people who underwent EUS, 202 images of PC cases and non-PC cases for which
pathological diagnosis was obtained by EUS-FNA 130 images were used in this study;
11 patients with PC (21 images) and 29 non-PC patients (47 images) were included in the
<40-year-old group, and 36 patients with PC (41 images) and 22 non-PC patients (34 images)
were included in the 40-to-60-year-old group, while the >60-year-old group included 46
patients with PC (140 images) and 28 non-PC patients (49 images). Firstly, in the image
preprocessing phase, multiple image processing filters were used to improve image quality,
remove noise, and remove characteristic edges in the image. Then, after image reduction,
two gastrointestinal endoscopists identified and segmented the lesions in the segmentation
phase. Next, in the feature extraction phase, 122 digital features were extracted from
six categories. However, introducing all 122 features into the ANN would have been
time-consuming, so the researchers used the Relief-F feature reduction method to reduce
the number of features to 20 for optimal results. The ANN model in this study was a
multilayered feed-forward perceptron with three layers: the input layer, a single hidden
layer, and an output layer. Additionally, the ANN was trained by feeding digital features
of cancer and non-cancer separately. In the under-40 group, 13 cancer and 30 non-cancer
images were used for training, while the remaining images (8 cancer and 17 non-cancer)
were used in the test data, and the performance with this age group had an accuracy of
92%, sensitivity of 87.5%, and specificity of 94.1%. In the 40-to-60-year-old group, 27 cancer
and 22 non-cancer images were used for training, and the remaining images (14 cancer
and 12 non-cancer) were used in the test data; the performance for this age group reached
88.5% accuracy, 85.7% sensitivity, and a specificity of 91.7%. In the >60-year-old group,
110 cancer images and 31 non-cancer images were used for training, and the remaining
images (30 cancer and 18 non-cancer) were used in the test data; the performance with this
age group reached 91.7% accuracy, 93.3% sensitivity, and a specificity of 88.9%. On the
other hand, for the entire patient population, 160 cancer, and 100 non-cancer images were
used for training, and the remaining images (42 cancer and 30 non-cancer images) were
used in the test data. The overall performance for the combined population achieved 87.5%
accuracy, 83.3% sensitivity, and 93.3% specificity. They concluded that the performance
would be better if the analysis was performed by age group.

4.2. Deep Learning-Based Computer-Aided Diagnosis

Kuwahara et al. [38] in 2019 reported a predictive model for malignant intraductal
papillary mucinous neoplasm (IPMN) in EUS images using CNNs, a DL method. A to-
tal of 50 IPMN patients who underwent surgical resection were included in the study,
with low- and intermediate-grade dysplasia defined as benign, and high-grade dysplasia
and invasive carcinoma defined as malignant IPMN. A total of 3970 still images from 50
patients were collected and converted into levels on a grayscale (0–255) for each pixel,
which was increased to 10,000 by data augmentation and then fed into the CNN model.
The original CNN algorithm was based on the ResNet50 algorithm with max-pooling and
global average pooling layers. To speed up the training and prevent overfitting, various
methods, such as batch normalization, stochastic depth, early stopping, data augmentation,
random cropping, and random erasing were used. The optimization algorithm used to
train the network weights was a momentum stochastic gradient descent estimation imple-
mentation. They set the output value to be a continuous variable from 0 to 1, with a value
close to 1 indicating a high probability of malignancy, which they called the AI value. In this
study, ten-fold cross-validation (with a training/test set ratio of 90/10, conducted 10 times)
was used to verify the validity of this algorithm. The area under the ROC curve for the
ability to diagnose malignancies of IPMNs via AI malignant probability was 0.98 (p < 0.001).
When an AI malignant probability of 0.41 was used as a cutoff point based on the ROC
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analysis, the sensitivity, specificity, and accuracy of the AI malignant probability were
95.7%, 92.6%, and 94.0%, respectively; its accuracy was higher than human preoperative
diagnosis (56.0%), as well as that based on the presence of mural nodules ≥5 mm (68.0%).
Multivariate analysis including patient backgrounds and imaging findings, and human
preoperative diagnosis, and this AI value showed AI malignant probability to be the only
independent factor for IPMN-associated malignancy (odds ratio, 295.16; 95% confidence
interval, 14.13–6165.75; p < 0.001). Thus, Kuwahara et al. [38] concluded that the use of AI
is recommended for objectively assessing the preoperative malignancy of IPMNs.

Zhang et al. [39] built a DL-based image classification model using multiple deep
CNNs (DCNNs) to utilize the “station approach” in pancreatic EUS, which had been
established as the standard scanning procedure to allow endosonographers to recognize
landmark images and, underneath them, to perform a comprehensive examination of
the pancreas and biliary tract. In this study, the station approach of EUS in the pancreas
was divided into six stations: (1) abdominal aorta; (2) the pancreatic body; (3) pancreatic
tail; (4) confluence; (5) pancreatic head from the stomach; and (6) pancreatic head from
the descending part of the duodenum. This DCNN base model, named BP MASTER
(pancreaticobiliary master) system, consisted of four DCNNs. DCNN1 was trained to pick
up only EUS images from among the white light images and EUS images in the video.
DCNN2 was trained to filter out unqualified EUS images, which were defined as images
that could not be classified into a pancreas station. Thus, for DCNN1 and DCNN2, 19,486
standard station and 15,684 unqualified EUS images were used for training, and 3897
standard station and 3137 unqualified EUS images were used for testing. DCNN3 classified
qualified EUS images into the six stations. DCNN4 segmented landmarks, such as the
pancreas and blood vessels, in the six stations. For the training of DCNN3 and DCNN4,
247 examinations (19,487 images) were used, while 44 examinations (1920 images) and
29 examinations (180 images) were used for internal testing and as a comparison data set
with endoscopist diagnoses, respectively. The authors also performed 28 video validations
that were prospectively registered separately at the same hospital, and external validations
based on 109 examinations (768 images) that were performed at other hospitals were also
considered. They then conducted the following three assessments: (i) examination of
the performance of each DCNN; (ii) comparative testing of three endoscopy experts and
models; (iii) a crossover study to test the system effect on reducing the difficulty in ultra-
sonographics interpretation among trainees. Eight trainees were randomly divided into
group A, which first evaluated the videos and images without BP MASTER augmentation,
and group B, which first evaluated the videos and images with BP MASTER augmentation.
After a washout period of two weeks, the arrangement was reversed. The average accuracy
of the six stations determined by DCNN3 was 0.942, 0.824, and 0.862 for the internal and
external test data sets and the video test set, respectively. For the evaluation of the segmen-
tation performed by DCNN4, the Dice coefficient, which indicates the degree of agreement
for the set, was 0.715, and recall (true positives / [true positives + false negatives]) at 50%
intersection over union (50% IoU, the overlap between the predicted and ground-truth
bounding box is more than 50%) and precision (true positives / [true positive + false
positives]) were 100% and 52.2%, respectively. When this model was applied to 20 patients
(180 photographs), the accuracy and the Dice coefficients for the pancreas and blood vessels
were 90%, 0.77, and 0.813, respectively, comparable to those of three endoscopists who also
evaluated this group. The model also achieved substantial interobserver agreement with
the three endoscopists (κ = 0.846, 0.853, and 0.826, respectively). There was a statistically
significant increase in the mean accuracy (8.4%) and the mean Dice coefficients of both
blood vessels (8.6%) and pancreas segmentation (9.2%) under BP MASTER augmentation.
The recall at 50% IoU for blood vessel and pancreas segmentations were 0.798 and 0.972,
and a significant improvement was observed in blood vessel segmentation (10.7%) but not
in the pancreas (9.3%). With BP MASTER augmentation, a significant improvement in the
recall at 50% IoU was observed in blood vessel segmentation (10.7%) but not in the pancreas
(9.3%). Significant precision at 50% IoU improvement was observed in pancreas segmenta-
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tion (10.9%) but not in blood vessel segmentation (2.4%). Thus, Zhang et al. [39] showed
the potential for station recognition and segmentation of the pancreatic and perivascular
segments by AI, shortening of the learning curve in EUS education, and improving EUS
quality control in the future.

Tonozuka et al. [40] developed an original CAD system using CNNs of EUS images
and reported its PC detection ability, using control images from patients with CP and NP
as a preliminary study to analyze whether EUS can correctly recognize pancreatic masses.
The CNN in this study consisted of seven convolution layers, followed by six normalization
layers to speed up the training and improve robustness, six activation layers using the
ReLU, and four max-pooling layers to downsize images to half their original width and
height. The output of the final layer was a score array, representing whether or not each
position in the image contained a lesion. Then, to show which parts of the image the AI
recognized as important, the AI was presented with color images using gradient-weighted
class activation mapping (Grad-CAM) [41]. A total of 139 patients, including 76 PC, 34 CP,
and 29 NP patients, were divided into two data sets; the first set included 92 patients (51 PC,
22 CP, and 19 NP patients) who were defined as the training and validation set, and the
remaining 47 patients (25 PC, 12 CP, and 10 NP patients) were independently defined as
the test set. After training the model with 88,320 images, ten-fold-cross validation and
independent tests were conducted. For the ten-fold cross-validation data set, the sensitivity,
specificity, PPV, and NPV were 90.2%, 74.9%, 80.1%, and 88.7%, respectively. For the test
data set, those values were 92.4%, 84.1%, 86.8%, and 90.7%, respectively. The AUROC of
the validation and test data sets were 0.924 and 0.940, respectively. Regarding misdetection,
which was defined as a rate of concordance between the clinical diagnosis and the AI diag-
nosis of less than 90%, there were a total of 34 cases, including 13 overlooked PC cases and
21 overdiagnosed non-PC cases. In univariate analysis of the non-PC cases, they found that
male sex, CP cases, mass formation, hyperechoic foci without acoustic shadow, and main
pancreatic duct dilation were significant factors involved in the overdiagnosis of tumors.
The multivariate logistic analysis demonstrated that only the factor of mass formation was
associated with overdiagnosis of a tumor in the non-PC cases (p = 0.022; OR, 9.08; 95% CI,
1.37–60.00). Although previous reports have utilized EUS-CADx for tumor differentiation,
this was the first report on the feasibility of EUS-CADe applications for pancreatic cancer
mass detection in EUS images prior to subsequent tumor differentiation.

5. Discussion

The application of ML and DL to EUS imaging of the pancreas has been reported
to achieve equal or better results than endoscopists, although few studies have been
conducted. With further research and development, several advantages are likely to arise
from this clinical application. The first is the role of optical biopsy as an alternative to
tissue sampling. Currently, EUS-FNA is widely used in the diagnosis of pancreatic tumors,
but there are cases in which tissue sampling cannot be performed owing to intervening
vessels or other factors, or there are adverse events such as bleeding, pancreatitis, or tumor
dissemination. However, once the application of CADx to EUS images is established,
this will enable diagnostic estimation without such risks, which is helpful in determining
treatment strategies. Secondly, the diagnostic accuracy is improved by double reading with
humans; even experts can miss lesions owing to fatigue or inattention, and double reading
with AI can improve their detection and diagnostic capabilities. Furthermore, if double
reading is implemented in real-time for EUS, it may lead to a reduction in examination time.
Thirdly, these advances can contribute to the education of inexperienced endoscopists.
In general, EUS education requires a high amount of time training under experts, but AI
could replace or augment that expertise and also shorten the learning curve.

On the other hand, there are also some limitations to the application of AI to EUS
imaging. This is owing to the small number of pancreatic diseases themselves, the over-
whelmingly low number of EUS examinations compared to other examinations, and the
need for robust techniques to produce diagnostic images. There are also challenges in deal-
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ing with rare pancreatic diseases and atypical findings. A solution to this problem requires
multicenter collaboration and a database containing many images. There are already online
databases with many images of chest X-rays, CT scans, and MRI fundus images that are
used by AI researchers, and cooperation at the national or global level may be necessary
for EUS data as well. Secondly, in AI, especially in DL, the judgment and recognition of
computers are invisible, a phenomenon known as the “black box problem.” Therefore,
even if a misdiagnosis occurs, there may be cases in which the basis for the decision is
not understood, and depending on how it is used, the patient’s life may be entrusted to
a black box, such that even the doctors and developers cannot understand the basis for
their decisions. This is a fatal flaw in the context of today’s evidence-driven medicine.
An expandable AI that uses Grad-CAM (Figure 5) [41] and other technologies to visualize
AI decisions has been developed, and the evolution of AI requires the development of
such technologies.
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6. Conclusions

Although AI studies on EUS imaging of the pancreas are still in their infancy, AI has
the potential to make great contributions to the use of EUS, which is a highly specialized
imaging technique, and further research is thus desirable. In addition, advances in AI
technology have simultaneously created complexity in these approaches, which requires
collaboration not only with physicians but also with computer technicians and engineers
from ultrasound endoscope development companies.
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