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Abstract: Levitated Nanoparticles have received much attention for their potential to perform
quantum mechanical experiments even at room temperature. However, even in the regime where
the particle dynamics are purely classical, there is a lot of interesting physics that can be explored.
Here we review the application of levitated nanoparticles as a new experimental platform to explore
stochastic thermodynamics in small systems.
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1. Introduction

In 1827, botanist Robert Brown noted the erratic movement of tiny particles emitted from pollen
grains in a liquid [1]. This seemingly unspectacular observation would play a critical role in the
development of the atomistic theory of matter. However, only in 1905 did Albert Einstein’s theoretical
analysis [2] of Brown’s observation provide crucial evidence for the existence of atoms. Einstein
surmised that the random motion of the suspended particles is a consequence of the thermal motion of
surrounding fluid molecules. Ever since the Brownian Particle has been essential in the development
of our theoretical understanding of stochastic processes in different fields, ranging from the sciences
(chemistry, biology and physics) to economics (e.g., finance).

Einstein further concluded that “the velocity and direction of motion of the particle will be already
very greatly altered in an extraordinarily short time, and, indeed, in a totally irregular manner” and that
“it is therefore impossible—at least for ultramicroscopic particles—to ascertain the instantaneous velocity
by observation”.

This changed with the advent of optical tweezers, now a workhorse for studying thermodynamics
and non-equilibrium physics of small systems. The pioneering experiments on optical forces were
carried out by Ashkin and Dziedzic, where they used optical forces to counteract gravity and thereby
suspend micrometer-scale spheres in vacuum [3–5]. Later Ashkin et al. demostrated the stable 3D
optical trapping of micron-scale particles purely by light [6]. Since then there has been an explosion of
research using optical tweezers, to the point that they are an off-the-shelf tool for physical and biological
scientists [7,8]. In this system, it is possible to control and track the motion of mesoscopic objects with
astounding precision.

While most of the research on optical tweezers has focused on trapping and manipulating particles
in suspension, there has been a renewed interest in optical trapping in high vacuum [9–12], motivated
by the possibility to enter the quantum regime [13–15], which has lead to the development of the field
of levitated optomechanics [16,17]. Even though there has been tremendous progress towards entering
the quantum regime, with residual occupations of tens of phonons [18], achieving the ground state
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has been elusive. However, the exquisite control achieved in these experiments does not only bring
us closer to the quantum regime, it also opens up a wide range of exciting new experiments in the
classical domain. In particular, they allow the study of Brownian motion of a single well-isolated
particle with high temporal and spatial resolution and controllable coupling to the environment,
thereby rebutting Einstein’s original statement [9,19] and providing new insights into microscale
thermodynamic processes in the underdamped regime. Specifically, thermodynamic processes of
a single particle are stochastic, that is quantities such as energy, work and entropy are fluctuating
quantities where the fluctuations are of similar magnitude or even larger than the mean. This has
profound implications in the operation and fundamental limitations of microscopic machines.

Here we review the current state of the art in using levitated nanoparticles to answer questions
related to thermodynamics and non-equilibrium physics. We begin in Section 2 with a summary of
the relevant deterministic and stochastic forces, which determine the particle dynamics and allow
for control of the particle. In Section 3 we give a brief review of the stochastic (i.e. Brownian)
motion of levitated particles, since the Brownian particle is fundamental to the theory of stochastic
thermodynamics. Then we discuss the stability of the trapped particles and the related Kramers
escape problem in Section 4. After that, we introduce effective potentials for the energy in Section 5.
These potentials are useful to describe the dynamics of levitated nanoparticles in a time-modulated
trap, where the particle is driven far away from equilibrium. In Section 6 we discuss the dynamics
of relaxation towards equilibrium, before we review the work on fluctuation theorems in Section 7.
Fluctuation theorems are a powerful generalization of the well known thermodynamic inequalities for
systems far from equilibrium. Finally, Section 8 discusses the potential of constructing new kinds of
heat engines based on nanoparticles levitated in high vacuum.

2. Forces and Potentials

2.1. Deterministic Forces

Most experiments with particles levitated in vacuum use optical forces to create a stable trap
(c.f. Figure 1). This gives a great deal of flexibility since optical fields can be controlled very well in
intensity, position and time, allowing the creation of almost arbitrary force fields. However, since
light absorption heats [20] and potentially destroys the particle, experiments have been limited to low
absorption materials like Silica and Silicon. In addition to the optical forces, the particle is subject
to gravity Fg = mg, electric forces Fe = qE if the particle carries a charge q and magnetic forces
Fmag = ∇(µ · B) if the particle has a magnetic dipole moment µ.

Particles typically have a radius of a ∼ 100 nm but can also be much bigger [4,9]. When the radius
is much smaller than the wavelength λL of the trapping laser akL � 1, where kL = 2π/λL, the particle
can be treated as a dipole in the Rayleigh approximation. The polarizability for a particle with volume
V is thereby given by

α0 = ε0Vχ, (1)

where the total susceptibility of the particle χ = χe (1 + Nχe)
−1 depends on the material via the

material susceptibility χe and on its geometry through the depolarization tensor N, which in general are
both rank-2 tensors. However, for isotropic materials, the material susceptibility simplifies to a scalar
χe and similarly for a sphere the depolarization tensor is isotropic and simplifies to a scalar N = 1/3.
Thus, for a sphere we recover the Clausius-Mossotti relation χ = 3(εp − 1)/(εp + 2), where we
use εp = 1 + χe. For a particle with a uniaxial anisotropy, the susceptibility χ = diag(χ‖, χ⊥, χ⊥),
has a component χ‖ parallel and a component χ⊥ perpendicular to the symmetry axis. For example,
the depolarization tensor of a cylinder is N = diag(0, 1/2, 1/2) in the frame of the cylinder, where the
cylinder axis is along the x-axis. Consequently, χ‖ = εr − 1, χ⊥ = 2(εr − 1)/(εr + 1) for a cylinder
with isotropic εr. This means the maximal polarizability of a cylinder is (εr + 2)/3 times higher than
for a sphere of the equivalent volume, i.e. a factor of 2 for silica, and a factor of 4.6 for silicon.
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In general, one has to consider the total field to calculate the optical forces [21]. The total field is
the sum of the incident and the scattered field and is the self consistent solution to Maxwell’s equations.
For arbitrary shaped particles, the total field has to be calculated with numerical methods. However,
for a spherical particle, the modified polarizability

α = α0

(
1− i

k3
Lα0

6πε0

)−1

, (2)

accounts for the radiation reaction of the particle to its own scattered field, such that the induced
polarization due to a field E0 is P = αE0. We introduce α′ and α′′ to refer to the real and imaginary
part of the polarizability, respectively.

Knowing the polarizability, we can calculate the optical force for sub-wavelength particles in the
Rayleigh approximation. The optical force has conservative and non-conservative contributions [22]

Fopt = α′∇I0/4 + σtot [S/c + c∇× L] , (3)

where σtot = α′′kL/ε0, ωL is the optical frequency, and L = −iε0 〈E× E∗〉 /4ωL , 〈. . . 〉 representing
a time average. The total cross-section σtot is the sum of the absorption and scattering cross-sections.
The first term is a conservative force Fgrad = α′∇I0/4. It pulls particles with a high refractive index
relative to their surroundings toward the region of maximum light intensity. In optical tweezers, this is
the focal volume of the light beam.
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Figure 1. Schematic of optical levitation setup. A nanoparticle is trapped by a tightly focused laser beam.
The translational degrees of freedom of the nanoparticle are measured with photodetectors and the
center-of-mass motion is cooled by parametric feedback. In addition to feedback, external modulation
allows excitation of the particle to drive it far from equilibrium. The top inset highlights the dominant
forces in a typical optical levitation experiment, which are the optical gradient and scattering forces
and gravity. The bottom inset shows the temperatures involved in a collision with a heated sphere:
the sphere’s centre-of-mass temperature (TCM) and surface temperature (Tint), and the temperatures
of the impinging gas particles (Tgas) and emerging gas particles (Tem) with Tgas ≤ TCM ≤ Tem ≤ Tint.
The collision with the air molecules leads to damping Γgas, which depends on the pressure. Main figure
taken from [23] with permission from Physical Review Letters. Inset adapted from [24] with permission
from Nature Nanotechnology.

The non-conservative scattering force Fscat = σtot [S/c + c∇× L] has two contributions:
the radiation pressure term, which is proportional to the time averaged Poynting vector S = 〈E×H∗〉,
H being the magnetic field and a curl force associated to the non-uniform distribution of the time
averaged spin density of the light field. The curl force is zero for a plane wave but can be significant
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for a tightly focused beam in optical tweezers. However, since α′′/α′ ∝ a3, the non-conservative forces
vanish for small particles and we will neglect them in the following discussion.

2.1.1. Optical Potential

The conservative force in Equation (3) can be expressed as the gradient of a potential
Fopt ≈ Fgrad = −∇Uopt. At the bottom of the potential, the centre-of-mass motion is harmonic,
with frequencies

Ωq = 2
√

χ

cπρ

√
Popt

w0wq
, (4)

where wq denotes the width of the optical intensity distribution along the three directions (q = x, y, z)
and w2

0 = wxwy, Popt is the optical power, ρ the density of the particle. Note that for tightly focused
laser beams with linear polarization, as commonly used in optical trapping, the field distribution
is slightly elongated along the direction of polarization of the incident field, which leads to slightly
different trapping frequencies along the two transverse directions. For larger oscillation amplitudes,
the motion becomes anharmonic, and the nonlinear coefficients can be obtained from higher derivatives
of the optical potential [25].

2.1.2. Rotation

For anisotropic particles, the light matter interaction is more complicated, since it depends upon
the alignment of the object relative to the polarization axis of the field [26,27]. For linearly polarized
light, the particle experiences an optical torque which aligns the particle with respect to the polarization
axis [28]. For small deflections from the polarization axis the angular motion is harmonic. In contrast to
linearly polarized light, the polarization axis of circularly polarized light rotates at the optical frequency.
This is too fast for the particle to follow. Nonetheless, light scattering transfers the angular momentum
of the light to the particle and exerts a torque [27]. The polarization anisotropy can originate from
the intrinsic birefringence of the particle [29–31] or from the anisotropic shape of the particle, e.g.,
a cylinder [32] (c.f. Equation (1)). The rotational degree-of-freedom of a levitated nanoparticle could
be used to design microscopic engines in the classical and quantum regime [33]. As of yet, there has
been no such experimental implementation.

2.2. Stochastic Forces

So far we have only considered the static forces that are responsible for creating a potential
landscape. In addition, stochastic forces excite the particle motion and lead to stochastic dynamics,
which are of particular interest when studying thermodynamics of individual small particles.
The stochastic forces result from the interaction of the particle with its environment. These interactions
lead to dissipation Γn and are the source of the different random forces acting on the particle
(labelled n). The strength of the random forces is characterized by their power spectral densities
Sn

ff. For most practical purposes, they can be considered as frequency independent (white noise).
After a time ≈ 1/ΓCM, where ΓCM = ∑n Γn is the total damping rate, the particle reaches
an effective thermal equilibrium, which is characterized by the effective temperature through the
fluctuation-dissipation relation:

TCM =
πSff

kBmΓCM
, (5)

where Sff = ∑n Sn
ff is the total force spectral density, m = Vρ is the particle mass, and kB is Boltzmann’s

constant. In the following we describe the individual contributions. They are: collisions with air
molecules (n = gas), radiation damping (n = rad), feedback or cavity damping (n = fb) and external
driving (n = drive).
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2.2.1. Gas Damping

For high pressures, the interaction with the gas is so strong that the particle motion is heavily
damped and its internal temperature Tint and centre-of-mass temperature TCM quickly thermalize
with the gas temperature Tgas. In this regime the damping becomes independent of pressure
ΓCM/2π ≈ 3aµv/m, as predicted by Stokes law, where µv is the viscosity. However, for strong
absorbers, e.g., resonantly illuminated plasmonic particles [34–36], the particle’s internal temperature
can rise significantly above the temperature of the environment, leading to so called “hot Brownian
motion” [37–39].

For decreasing pressure, the mean free path of the gas molecules increases (e.g., l̄ ∼ 60µm at
1 mbar). As a consequence, the particle no longer thermalizes with the gas since the impinging gas
molecules no longer carry away enough thermal power to balance the optical absorption from the
trapping laser. Due to the increased internal temperature Tint of the particle, the average energy of the
gas molecules after a collision with the particle increases. The process by which a surface exchanges
thermal energy with a gas is called accommodation, which is characterized by the accommodation
coefficient cacc = (Tem − Tgas)/(Tint − Tgas), where Tem is the temperature of the gas molecules
emitted from the particle surface. Accommodation quantifies the fraction of the thermal energy that
the colliding gas molecule removes from the surface, such that cacc = 1 means that the molecule fully
thermalizes with the surface. Since the mean free path in a dilute gas is long, one can safely assume that
an emitted molecule will not interact again with the particle before thermalizing with the environment.
Consequently, we can consider the particles that impinge on the particle surface and those that leave
the surface as being in equilibrium with two different baths with temperatures corresponding to
the temperature of the environment and the particle surface, respectively [24]. Therefore, we get
an additional contribution to the damping from the emerging hot molecules

Γem

2π
=

1
16

√
Tem

Tgas
Γgas, Sem

ff =
mkB

π
[caccTint + (1− cacc) Tgas]Γem. (6)

For pressures below P′gas = 0.57kBTgas
/

σgasa ≈ 54.4 mbar× (a/µm)−1, where the mean free

path l̄ = kBTgas

/
(
√

2σgasPgas) is much larger than the radius of the particle a, the damping is linear
in the pressure Pgas and given by

Γgas

2π
=

3
π
√

2

µvσgas

kBTgasρ

Pgas

a
, (7)

where µv = 2
√

mgaskBTgas
/

3
√

πσgas is the viscosity of a dilute gas, σgas is the cross-section of the
air molecules and mgas the molecule mass. The total damping due to the hot particle with the gas
environment is Γem + Γgas = 2πcPPgas/a, where typically cP ≈ 50 Hz(µm/mbar).

So far, we have only considered spherical particles. For anisotropic particles, e.g., a rod,
the friction term is different along each of the axes, and depends upon the alignment of the particle.
As a consequence, the friction coefficient has to be replaced by a tensor Γ and the damping in a direction
s is given by Γ · s. For a thorough discussion see Ref. [40].

2.2.2. Radiation Damping

At very low pressure (≤ 10−6 mbar), gas damping becomes extremely small and photon shot
noise starts to dominate [18]. Photon shot noise is a consequence of the particulate nature of light.
As a consequence, photons arrive at discrete times, where the number of photons arriving per time
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interval ∆t is given by
√

∆tPopt
/

h̄ωL . The recoil from the fluctuating number of photons impinging
on the nanoparticle can be modeled as an effective bath with the characteristics [41]

Γrad
2π

= cdp
Pscat

2πmc2 and Srad
ff = cdp

h̄ωPscat

2πc2 , (8)

where cdp depends on the direction of motion of the particle with respect to the polarization of the laser
and is cdp = 2/5 for motion along the direction of polarization and cdp = 4/5 for motion perpendicular
to the polarization. The scattered power is Pscat = σscat Iopt, where σscat = |α|2k4

L/6πε2
0 and Iopt is the

laser intensity. The effective temperature of this bath can be calculated via Equation (5).

2.2.3. Artificial Damping and Heating

The noise processes described so far are present in any experiment with optically levitated
nanoparticles in high vacuum. In addition, random forces and damping can be introduced through
external fields that are under experimental control. Importantly, since energy can be injected or
extracted from the particle, i.e., it is not in thermal equilibrium, the fluctuation-dissipation relation
does not have to hold and the effective damping and temperatures can be controlled independently.
Feedback cooling damps the particle motion at a rate Γfb without adding any fluctuating forces,
thus S f b

ff = 0 and it is therefore referred to as cold damping [10,42]. Note that this simplified picture
assumes that the feedback signal is perfect and that it does not feedback any noise, which in general is
not true. Similarly, cavity cooling up-converts the particle energy to optical frequencies, which are
effectively at zero temperature because h̄ω � kBTenv in a room temperature environment [11,13,14].
Conversely, fluctuations of the trapping or control fields only add fluctuating forces without providing
damping. Hence, Γdrive = 0 and Sdrive

ff = q2Sqq, where q is the coupling parameter to the control field
and Sqq its spectral density. This can be realized for example with fluctuating electric fields, where q
corresponds to the charge on the particle [43–45].

Generally, one has to be careful to define a temperature for a system out of equilibrium [46].
However, the situation we present here is somewhat simple due to it being steady-state and for many
practical purposes the effective bath model that is characterized by an effective damping/temperature
gives a good description. However, one can also create situations where this is no longer true.
For instance, by parametric feedback damping, the temperature alone is not sufficient to give a full
description of the bath [47].

3. Brownian Motion

As discussed in the introduction, the Brownian particle serves as an exemplary model to describe
a variety of stochastic processes in many fields, including physics, finance and biology. Therefore,
a particle trapped in optical tweezers is paradigmatic since it is a direct experimental realization of
the idealized Brownian particle. Brownian motion in nonequilibrium systems is of particular interest
because it is directly related to the transport of molecules and cells in biological systems [48]. Important
examples include Brownian motors, active Brownian motion of self-propelled particles, hot Brownian
motion, and Brownian motion in shear flows [49]. Recent theoretical studies also found that the inertia
of particles and surrounding fluids can significantly affect the Brownian motion in nonequilibrium
systems [50].

In this section we will discuss the basics of Brownian motion. We will mainly treat the aspects
that are necessary for understanding the following discussion of thermodynamics with levitated
nanoparticles. For details on the theory of Brownian motion we refer the reader to the work of Ornstein,
Uhlenbeck and Wang [51,52] and for a recent review on Brownian motion in the underdamped regime
we refer the reader to Ref. [19].
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3.1. Harmonic Brownian Motion

Under the influence of trapping forces, the particle will be localized about its equilibrium position.
For small displacements, the trap can be approximated by a three-dimensional harmonic potential.
The three motional degrees of freedom are largely decoupled and we limit the discussion to a single
coordinate q(t) (q = x, y, z). The equation of motion for a harmonically trapped Brownian particle
is [52]

q̈ + Γ q̇ + Ω2
0q =

√
2kBTCM ΓCM/m Ξ(t). (9)

The particle oscillates in the trap at the characteristic frequency Ω̃ =
√

Ω2
0 − Γ2

CM/4. For the
optical potential the trap frequency Ω0 is given by Equation (4). We distinguish between three cases,
the overdamped (Ω0 � ΓCM), the critically damped (Ω0 ≈ ΓCM) and underdamped case Ω0 � ΓCM.
This stochastic equation of motion has been studied in detail by Ornstein and Uhlenbeck [51] and we
summarize their results here. The variance of the position of a Brownian particle in an under-damped
harmonic trap is

σ2
q (t) =

2kBTCM

mΩ2
0

[
1− e−

1
2 ΓCMt

(
cos(Ω̃t) +

ΓCM

2Ω̃
sin(Ω̃t)

)]
. (10)

In the over-damped harmonic trap, set Ω̃→ iΩ̃. In a critically damped harmonic trap, set Ω̃→ 0.
The position autocorrelation function is related to the variance as follows

〈q(t)q(0)〉 = kBTCM

mΩ2
0
− 1

2
σ2

q (t), (11a)

and the velocity autocorrelation and the position-velocity correlation function are given by

〈v(t)v(0)〉 = kBTCM

m
e−

1
2 ΓCMt

(
cos(Ω̃t)− ΓCM

2Ω̃
sin(Ω̃t)

)
, (11b)

〈q(t)v(0)〉 = 〈v(t)q(0)〉 = kBTCM

mΩ̃
e−

1
2 ΓCMt sin(Ω̃t). (11c)

For a long time it was believed that the timescale at which these correlations exist is too fast to be
observable in experiment [2]. The first experimental observation was first achieved in vacuum [9] and
later in liquid [53], demonstrating that levitated nanoparticles indeed allow one to attain an entirely new
parameter regime to study thermodynamics of individual particles. Figure 2 shows the experimental
results from Li et al. [9].

a) b)

Figure 2. First experimental observation of the instantaneous velocity of a Brownian particle. (a) The
mean-square displacement for short times is proportional to t2, a signature of ballistic motion.
(b) The normalized velocity autocorrelation functions for different pressures in perfect agreement with
Equation (11b). Figures taken from [9] with permission from Science.
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3.2. Power Spectral Density and Calibration

According to the Wiener-Khinchin theorem, the position autocorrelation function is the Fourier
transform of the power spectral density Sqq(Ω) =

∫ ∞
−∞〈q(t)q(0)〉e

iΩtdt, which for Equation (9) is
given by

Sqq(Ω) = |χ(Ω)|2Sff(Ω) =
ΓCMkBTCM /πm

(Ω2 −Ω2
0)

2 + Γ2
CMΩ2

, (12)

where χ(Ω) = m−1 [Ω2 −Ω2
0 + iΓCMΩ

]−1 is the response function or susceptibility of a harmonic
oscillator. In the underdamped regime, the frequency spectrum of the autocorrelation function is
strongly peaked around the trap frequency Ω0, whereas when overdamped the frequency spectrum is
broad. For an example of the power spectral density in the underdamped regime see Figure 3a.

a) b)

Figure 3. Feedback cooling of a levitated nanoparticle. (a) Power spectral density under phase
locked feedback cooling at three different pressures and constant feedback gain. The area under
the power spectral densities is a measure for the effective center-of-mass temperature. (b) The
effective temperature expressed in terms of the phonon occupation as a function of gas pressure.
Figures reproduced from Physical Review Letters [18].

The power spectrum in Equation (12) is valid for a harmonic oscillator. However, the actual
trapping potential is nonlinear. For a symmetric potential the lowest order nonlinear term is a cubic or
Duffing nonlinearity. In an optical trap the symmetry is broken along the direction of propagation of
the trapping laser and along the vertical direction due to the scattering force and gravity, respectively.
However, the symmetry breaking tends to be small and therefore the quadratic nonlinearity is typically
neglected. Because of the Duffing nonlinearity, the oscillation frequency along an axis i = x, y, z
becomes a function of the oscillation amplitude and is red shifted by [25] ∆Ωi =

3
8 Ωi ∑j ξij A2

j where
Aj is the instantaneous amplitude of mode j and the ξij ∼ 1/w2

j are the Duffing terms, where wj is the
width of the optical potential along the j direction. The frequency shift due to changes in the oscillation
amplitudes is also known as self-phase modulation (j = i) and cross-phase modulation (j 6= i).
The frequency shift can be neglected as long as it is much smaller than the linewidth ΓCM. This is the
case for high pressure '1 mbar, but for low pressures the amplitude fluctuations of the particle lead to
significant frequency fluctuations and the power spectral density becomes distorted. This nonlinear
Brownian motion typically does not play a role in nanomechanical systems because the amplitude
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fluctuations are small. However, levitated nanoparticles have a low mass and a high motional
quality-factor and, therefore, nonlinear Brownian motion can be observed in these systems [25].

The power spectral density is a useful tool in experiments with harmonic oscillators, since the
dynamics of the oscillator can be separated from (spectrally distant) noise. In addition, the analysis
of the power spectral density allows one to extract the center-of-mass temperature of the oscillator
and the damping rate [9,10,20,24]. However, to avoid miss-calibration due to the above mentioned
nonlinearities, one should use the velocity power spectral density Sq̇q̇ = Ω2Sqq instead of (12) [54].

3.3. Quantum Brownian Motion

In the quantum regime, when the center-of-mass temperature is of the order of a single quantum
of motion kBTCM ≈ h̄Ω0, the position autocorrelation Equation (11a) contains the product of the
Heisenberg time-evolved operators q̂(t), q̂(0), which do not commute. As a result, the spectrum [55]

SQ(Ω) =
h̄/π

1− exp
(
− h̄Ω

kBTCM

) Imχ(Ω) =
h̄ΩmΓCM/π

1− exp
(
− h̄Ω

kBTCM

) |χ(Ω)|2, (13)

is asymmetric in frequency and the PSD at positive frequencies is a factor exp(h̄Ω0
/

kBTCM ) higher
than the PSD at negative frequencies. The positive-frequency part of the spectral density is a measure
of the ability of the oscillator to absorb energy, while the negative-frequency part is a measure of the
ability of the oscillator to emit energy. Therefore, we can understand the positive frequency part of
the spectral density as being related to stimulated emission of energy into the oscillator, while the
negative-frequency part is related to the emission of energy by the oscillator.

Typically, the motional frequencies of a levitated particle are ∼100 kHz. Hence, the ground-state
temperature is a few micro-kelvin and therefore out of reach for cryogenic techniques, and one
has to resort to active cooling methods. Recent experiments using feedback cooling have already
attained motional occupations of a few tens of phonons [18]. However, a measurement of the sideband
asymmetry in a homodyne measurement, as observed in other nano-mechanical systems [56–60],
is still elusive.

4. Trap Stability and Kramers Turnover

For a particle to be trapped in optical tweezers, the axial component of the gradient force must
exceed the destabilizing effects of the scattering force and gravity. The scattering force is negligible
for small particles but increases quickly with particle size such that large particles are pushed away
from the focal volume. In addition, the ratio between the scattering and gradient forces scales with the
refractive index contrast [8]. This places an upper limit on the maximum particle size and materials
that can be trapped, even if they experience very little optical absorption. The destabilizing effect
from the scattering force can be circumvented by using a configuration with counter-propagating
beams [9,61]. However, in this case polarization fluctuations translate into intensity fluctuations, which
can also destabilize particles in the trap. Besides, radiometric forces can play a role in the stability
condition for larger particles (∼µm), where non-uniform heating leads to temperature gradients across
the particle [24] and the resulting forces might destabilize the trap [62].

Overcoming the destabilizing effects from the scattering force is not sufficient to guarantee that
particles can be trapped. As we discussed earlier, the particle is subject to fluctuating forces from the
environment. The energy of a thermal bath follows a Maxwell-Boltzmann distribution with mean
value of kBTCM. Since the tail of the distribution extends to high energies, the potential depth should
be at least≈ 10kBTCM [6] to make particle escape through thermal excitation unlikely (the likelihood of
finding the particle with energy ≈ 10kBTCM is less than 0.02%). Hence, there is a finite probability that
the particle will gain enough energy to escape the potential, even when it is confined by a potential
much deeper than kBTCM, in a process known as Kramers escape. This form of “classical tunneling”
appears in a diverse range of physical systems, including chemical reaction rates, protein folding,
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atomic transport in optical lattices and molecular diffusion at solid-liquid interfaces. The Kramers
escape rate is given by an Arrhenius law

RK = R0 exp
(
−Ubarrier

kBTCM

)
(14)

where R0 is the attempt frequency and Ubarrier is the barrier height. From the Boltzmann factor in
Equation (14) it follows that such a transition is exponentially suppressed if the potential is much
deeper that the thermal energy Uopt � kBTCM. Kramers found [63] that in the underdamped regime,
the transition rate increases with increasing friction, and that in the overdamped regime the transition
rate increases with decreasing friction, with the transition region labelled the turnover. Fifty years later,
a theory was developed that linked the two regimes [64,65].

Closely related to Kramers escape is the Kramers turnover problem. It describes the transitioning
between two local potential minima as the friction is varied. This is often more relevant in physical
situations, describing the transitions between two protein configurations, for example. It is also much
more convenient to study experimentally, since the particle is not lost after the transition but instead
recaptured in the other well. In particular, levitated particles are well suited to studying the Kramers
escape and recently led to its first quantitative observation [66]. The double well potential can be
created by using two tightly focused laser beams. The intensity and exact relative position of the two
foci determines the height of the barrier. The hopping rates between the two wells is determined by the
local curvatures of the potential at the extrema and by the interaction strength with the environment.
In addition, the interaction strength can be varied over many orders of magnitude through a change in
the gas pressure Pgas.

Figure 4 shows the experimental data from Rondin et al., which for the first time measured
the Kramers rate across the turnover [66], using an optically levitated nanoparticle. In addition,
the figure includes the limiting cases in the high and low damping regime, and the full solution for
arbitrary damping.

overdamped

un
de

rd
am

pe
d

γ = |ωB|

Figure 4. Measurement of the Kramers turnover with a levitated nanoparticle. Data illustrating the first
experimental observation of Kramers turnover, taken from [66]. The full theory from [64] (solid line) is
shown as a solid blue line together with the limiting cases as predicted by Kramers [63] (dot-dashed
lines). The red dashed line highlights the expected turnover point as predicted from the measured
shape of the double well potential and is in excellent agreement with the experimental observations.
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5. Effective Potentials in the Steady State

At constant trapping laser power, the trapping potential is static in time Uopt(r). However, through
modulation of the trapping beam intensity, the optical potential becomes time-dependent. This is
particularly useful when studying non-equilibrium dynamics and for engineering effective baths
in the context of nano heat engines. From Equation (4) it follows that a change in optical power
δPopt(t) changes the trap frequency by Ω(t) = Ω0(1 + ζ(t)/2), where ζ(t) = δPopt(t)

/
P̄opt and P̄opt

is the mean optical power. Energy is most effectively exchanged between the trapping laser and the
particle if the modulation ζ(t) = ζ0 cos(Ωmodt) occurs at twice the trapping frequency Ωmod ≈ 2Ω0.
The flow of energy is thereby determined by the relative phase φmod between the particle oscillation
and the laser intensity modulation (note that φmod does not appear in ζ(t), since the modulation serves
as the time reference and φmod is the phase of the particle with respect to the modulation). If the
modulation is in-phase, energy is extracted (cooling), while the motion is excited when the modulation
is out-of-phase (heating). Without active stabilization of the modulation phase with respect to the
particle motion, the relative phase is random. However, since the out-of-phase motion is amplified and
the in-phase motion is damped, the out-of-phase motion quickly dominates and the particle motion
synchronizes or entrains with the parametric modulation [23].

Therefore, to achieve cooling the phase needs to be actively stabilized, for instance with
a phase-locked loop [18]. Alternatively, a parametric feedback modulation of the form ζfb(t) =

−(η/Ω0)q(t)q̇(t) [10], where η parameterizes the feedback strength, leads to a modulation at the
parametric resonance condition, ensuring a phase that is optimized for extracting energy from the
mechanical mode. In contrast to feedback with a phase-locked loop, where the modulation amplitude
is constant, here the modulation amplitude is proportional to the particle energy. As a consequence,
the particle feels a nonlinear friction force with ΓNL ∝ E. This kind of friction has also be observed in
carbon based nanomechanical resonators [67] and leads to non-equilibrium steady states that can no
longer be described by a thermal distribution as we will discuss in the following.

5.1. Effective Potential for the Energy

The main physics of the particle motion under parametric modulation and feedback is captured
by a one dimensional equation of motion along each axis:

q̈ + Γ q̇ + Ω2
0

[
1 + ζ0 cos(Ωmodt) + ξq2 + Ω−1

0 ηqq̇
]

q =
√

2kBTCMΓCM/m ξ(t), (15)

where q = (x, y, z). The total energy of a single degree-of-freedom is given by

E(q, p) =
1
2

mΩ2
0q2 +

p2

2m
+

1
4

ξmΩ2
0q4, (16)

where p(t) = mq̇ is the momentum. The energy obeys the stochastic differential equation [68]

dE =

[
−ΓCM(E− kBTCM)− ηΩ0E2

2mΩ2 −
EζΩ2

0 sin(2φmod)

2Ω

]
dt +

√
2EΓCMkBTCMdW. (17)

From (17) one derives the probability distribution for the energy
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PE(E) =
1
Z

exp {−βH(E)} , (18)

where Z =
∫

PE(E)dE. Thus, the energy distribution is that of an equilibrium system with
effective energy

Heff =

[
1 +

ζ0Ω2
0 sin(2φmod)

2ΓCMΩ

]
E +

ηΩ0

4mΓCMΩ2 E2. (19)

While the term proportional to E2 is caused by the feedback cooling, the term proportional to E is
affected only by the parametric modulation. Note that the Duffing term is included in the energy E on
the right-hand side of the above equation (c.f. Equation (16)).

Equation (17) is quite general, as it captures the dynamics of the slowly varying energy under
parametric heating without active stabilization, phase-locked loop feedback cooling and parametric
feedback cooling. However, one has to bear in mind that the oscillation frequency Ω is not necessarily
the same as the frequency Ω0 of the unperturbed harmonic oscillator. For instance, for strong
modulation the particle motion entrains with the modulation and Ω ≈ Ωmod/2 [23], while for
weak modulation Ω ≈ Ω0. The weak and strong regime are determined by the threshold condition

ζ0 > 2Q−1
√

1 + Q2 (2−Ωmod/Ω0)
2 ≈ 2Q−1, the approximation being exact at parametric resonance

Ωmod = 2Ω0 and Q = Ω0/ΓCM is the quality factor. Above threshold, the effective temperature
diverges and the motion transitions from a thermal state to a coherent oscillation, similar to the lasing
condition of an optical oscillator [23].

Note that the evolution of the position of a real Brownian particle in the underdamped regime
and in a time-dependent optical potential is determined by Equation (15). In contrast, Equation (17)
describes the evolution of its energy or amplitude. This evolution can be interpreted as the evolution of
an underdamped, albeit fictitious, Brownian particle in a static potential [68]. Interestingly, this fictitious
Brownian particle can exhibit dynamics similar to what we have seen for the real Brownian particle,
such as transitions between two local minima that are described by Kramers’ theory [69].

5.2. Effective Temperature

Without non-linear parametric feedback (η = 0), the energy distribution is that of a harmonic
oscillator with effective temperature

T′CM = TCM

(
1 +

ζ0Ω2
0 sin(2φmod)

2ΓCMΩ

)−1

. (20)

Equation (20) states that parametric modulation of the trapping potential results in an effective
temperature change of the environment, where the particle centre-of-mass temperature changes from
TCM to T′CM. For −π/2 < φmod < 0, T′CM > TCM, that is the particle motion is heated, while for
0 < φmod < π/2, T′CM < TCM and the particle motion is cooled. The rate at which the particle
thermalizes with this effective bath is Γ′CM = ΓCM

(
TCM/T′CM − 1

)
, where the largest rates are achieved

at φmod = −π/4 and φmod = π/4, for heating and cooling respectively. If the relative phase between
the particle motion and the modulation φmod is not stabilized actively, the particle motion will self-lock
to φmod = −π/4. Thus, an effective hot bath can be implemented easily by a simple modulation of the
trapping laser at Ωmod ≈ 2Ω0. Figure 3 shows the effective temperature or occupation number for
a particle under high vacuum as a function of pressure (i.e., ΓCM) and constant feedback strength (ζ0).
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6. Relaxation

In the steady-state, a trapped particle samples the distribution Equation (18), which depends
on experimental parameters, such as the average power of the trapping laser, and the strength and
frequency of the modulation of any potential modulation. Hence, under a non-adiabatic change of the
parameters, the systems relaxes into a new steady state. The Fokker-Planck equation that describes
the time for the evolution probability density function PE(E, t), including feedback and modulation,
is given by [68]

∂PE(E, t)
∂t

=
∂

∂E

[
ΓCM(E− kBTCM) +

ηΩ0E2

2mΩ2 +
Eζ0Ω2

0 sin(2φmod)

2Ω

]
PE(E, t) + ΓCMkBTCM

∂2

∂E2 EPE(E, t). (21)

In general it is non-trivial to find an analytic solution to Equation (21). Amazingly, in the absence of
feedback cooling (η = 0), the equation of motion for the energy corresponds to the Cox-Ingersoll-Ross
model for interest rates, for which the exact analytical solution is given by the Noncentral Chi-squared
distribution [70]

PE(E|E0, t) = cte−ct(E+E0e−ΓCMt) I0

(
2ct
√

EE0e−ΓCMt
)

, (22)

where ct = β
(
1− e−ΓCMt)−1, I0(x) is the modified Bessel function of the first kind and E0 is the initial

energy, i.e., P0(E|E0) = δ(E− E0). As expected, the equilibrium distribution P∞(E|E0) = β exp(−βE)
does not depend on the initial conditions and is given by the Maxwell-Boltzmann distribution at
temperature TCM = 1/(kBβ). If the system is initially prepared at t = 0 in a steady state with energy
distribution P0(E0), the energy distribution after time t is

PE(E, t) =
∫ ∞

0
PE(E|E0, t)P0(E0)dE0. (23)

For an initial Maxwell-Boltzmann distribution, corresponding to a thermal equilibrium
distribution at temperature T0, the energy distribution at time t is also a Maxwell-Boltzmann
distribution

PMB
E (E, t) = β(t)e−β(t)E, (24)

with time dependent temperature

TCM(t) = T∞ + (T0 − T∞)e−ΓCMt. (25)

Note that the initial temperature T0 and final temperature T∞ can be controlled in the experiment
by modulation of the trapping laser, as discussed earlier. Explicitly, a levitated nanoparticle can be
cooled via feedback to a centre-of-mass temperature TCM far below the ambient temperature. Once the
feedback modulation is switched off, the particle will thermalize with the environment (in general via
collisions with surrounding gas), at an average rate ΓCM, which can be controlled by varying the gas
pressure. Figure 5 shows the relaxation from a non-equilibrium state towards thermal equilibrium.
The rate at which the particle reaches equilibrium can be accelerated using time-dependent potentials.
This has been demonstrated recently with a colloidal particle [71] and a similar strategy has been
proposed for underdamped systems [72].
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a)

b)

c)

d)

Figure 5. Relaxation from a non-equilibrium steady state. (a) Individual trajectories of the energy as the
system relaxes toward equilibrium (b) Position distribution during the relaxation process. The energy
distribution is given by Equation (23). (c) Energy distribution in the steady state (t ≤ 0) in agreement
with Equation (18). The deviation from a thermal state due to the nonlinear feedback is clearly visible.
(d) Experimental verification of the detailed fluctuation theorem (c.f. Equation (26)). All figures taken
from [47] with permission from Nature Nanotechnology.

7. Fluctuation Theorems

As a system relaxes to a thermal equilibrium the dynamics satisfy detailed balance with respect
to the equilibrium distribution. The time reversibility of the underlying dynamics implies that the
Crooks-like [73,74] transient fluctuation theorem [47,75]

P(−∆S)
P(∆S) = e−∆S , (26)

for the relative entropy change ∆S = βQ+ ∆Φ (or Kullback-Leibler divergence) holds. The quantity
∆Φ = Φ(t)−Φ(0) is the difference in trajectory dependent entropy Φ(t) = − ln P0(u(t)) between
the initial and the final states of the trajectory and Q is the heat absorbed by the bath at reciprocal
temperature β. Here, u(t) denotes an entire trajectory of length t including position and momentum
of the oscillator and u∗(t) denotes the trajectory that consists of the same states visited in reverse
order with inverted momenta. Because no work is done on the system, the heat Q exchanged along
a trajectory equals the energy lost by the system, Q = −[E(t)− E(0)], where E(0) and E(t) are the
energy at the beginning and at the end of the stochastic trajectory.

The fluctuation theorem holds for any time t at which ∆S is evaluated, and it is not required
that the system has reached the equilibrium distribution at time t. In general, the steady distribution
P0(u(t)) necessary to compute ∆Φ is unknown. However, from the distribution derived for our model
Equation (19), we find that for relaxation from a non-equilibrium steady state generated by nonlinear
feedback of strength η and parametric modulation of strength ζ0, the relative entropy change is given
by [68,76]

∆S = β∆Hfb (27)

where ∆Hfb = Hfb(t)− Hfb(0) and Hfb = Heff − E is the contribution to the effective energy (19) from
the modulation of the trapping laser. Thus, our stochastic model (c.f. Equation (27)) allows us to express
the relative entropy change during a relaxation trajectory in terms of the energy at the beginning and
the end of that trajectory. Note that Hfb can also be negative, e.g. when we cool the particle motion.
For example, setting φmod = π/4, η = 0 in Equation (19) amounts to cooling with phase looked
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loop feedback [18]. In this case, Hfb(t) = (ζΩ0 /2ΓCM ) E(t) = (βeff − β)E(t)/β and consequently
∆S = (β− βeff)Q. Since here the relative entropy change is proportional to the heat Q, it is intuitively
clear that ∆S is a measure for the dissipation during the relaxation process. This dissipation function
was measured in the underdamped regime with optical tweezers and colloidal particles and was one
of the very first experimental demonstrations of the validity of a fluctuation theorem [77]. In contrast,
for parametric feedback, where ζ = 0, η > 0, we find that ∆S ∝ E2(t)− E2(0) is no longer proportional
to Q. In this case, ∆S still is a measure for the reversibility of the relaxation process. However, it is
no longer a simple function of the exchanged heat. This was verified in the underdamped regime
using a levitated nanoparticle by Gieseler et al., [47], when starting from a variety of non-equilibrium
steady states (c.f. Figure 5). It is important to note that the relative entropy change defined here is a
special case of an infinite class of quantities R, which have been introduced in their general form in a
classic paper by Seifert [78] and has been called the dissipation function Ωt by Evans and Searles [79].
Because it depends on the stochastic trajectory it is commonly referred to as “stochastic entropy”.

Later Hoang et al., [80] experimentally demonstrated another differential fluctuation theorem
with levitated nanoparticles

P (−W, u∗(t))
P (W, u(t))

= e−β(W−∆F), (28)

which determines the probabilities that the system performs work W = −
∫ τ

0 ḟ (t)q(t)dt against
an external force f (t). In the experiment, the force is ramped from foff to fon at a rate that is much
faster than the velocity and position relaxation times, such that when the ramp finishes, the system
is far from thermal equilibrium. The free energy difference between the equilibrium states at the
beginning and at the end of the ramp is given by ∆F = −( f 2

on − f 2
off)/(2mΩ2).

Note that the differential fluctuation theorems can be integrated to yield integral fluctuation
theorems 〈exp(−R)〉 = 1, such as the Jarzynski equality [81,82] and its refined version,
the Hummer-Szabo relation [83,84], which allows the reconstruction of free energy potentials.
Thus, by verifying the underlying differential fluctuation theorem, the validity of the integral
fluctuation theorem is implied and consequently also the “second law” inequality 〈R〉 ≥ 1 [75].
Importantly, the fluctuation theorems are valid for arbitrarily-far-from-equilibrium processes.
Both detailed and integral fluctuation theorems allow the estimation of equilibrium free energy
changes from nonequilibrium protocols and have found applications in determining the free energies
of DNA molecules [74,82]. For a detailed review see Refs. [75,85–87].

8. Heat Engines

In the previous section we saw that in microscopic systems, thermodynamic quantities such as
the work against an external force and the heat exchanged with the environment, become stochastic
quantities due to the underlying fluctuating trajectories through phase space. Yet work, heat and
efficiency can be rigorously defined within the framework of stochastic thermodynamics, yielding the
respective ensemble quantities after averaging [75,88]. As a consequence, the output of a microscopic
engine will be fluctuating with the possibility of it running “in reverse”. Interestingly, one can draw
analogies between a particle in an optical trap and an ideal gas inside a piston, where the trap stiffness
is analogous to the inverse of an effective volume while the variance of the trajectory of the particle
can be seen as an effective pressure. By monitoring the motion of a particle as it undergoes the cyclic
heat engine, one can extract the work statistics. This is the basic idea behind the following stochastic
heat engines. We leave a full discussion of the heat and entropy statistics to other sources, for example
Spinney & Ford [89].

Schmiedl & Siefert gave the first full description of a colloidal stochastic heat engine [90] and
the first experimental realization was by Blickle & Bechinger [91], who locally heated the liquid
(water) surrounding an optically trapped particle through laser absorption (c.f. Figure 6a). Thereby,
they realized temperature changes of 70 ◦C in 10 ms, and their data agreed well with theoretical
predictions. This study was of particular importance, since it clearly demonstrated the fluctuating
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nature of the work statistics and observed that for individual cycles sometimes the engine operated in
reverse, due to the fluctuating position statistics, thereby demonstrating that microscopic heat engines
behave fundamentally differently from their macroscopic counterparts. The fluctuations of the power
can be accounted for in a power fluctuation theorem [85] and a stochastic definition of efficiency is
given by the ratio of the stochastic work extracted in a cycle and the stochastic heat transferred from
the hot bath to the system.

The efficiency of the Stirling engine is fundamentally limited by the isochoric steps, where heat
is transferred between the system and the heat baths that are at different temperatures, making the
cycle inherently irreversible. The Carnot engine overcomes this limit by replacing the isochoric steps
with adiabatic changes, during which no heat is exchanged with the environment. The second law of
thermodynamics imposes a maximum (Carnot) efficiency ηC = 1− TC/TH that can be reached by any
heat engine operating between two baths at temperature TC and TH, respectively [92].

However, it is commonly believed that the realization of an adiabatic change requires that the
control to the system is applied extremely slowly and therefore in a Markovian process the Carnot
efficiency can only be achieved in the limit of zero power output [93]. For practical applications,
however, one is interested in the efficiency at maximum power, which has lead to the birth of
finite-time thermodynamics [94]. For the ideal case, the efficiency at maximum power is limited
by Novikov-Curzon-Ahlborn efficiency [95,96] η∗ = 1−

√
TC/TH, which is smaller than the Carnot

efficiency η∗ < ηC. Later it was found that it is possible to generate a shortcut to adiabaticity [97,98].
In these protocols the evolution of the system mimics the adiabatic dynamics without the requirement
of slow driving by introducing a counterdiabatic driving term, raising the question whether the
Novikov-Curzon-Ahlborn efficiency can be surpassed [90]. As a consequence, optimal protocals
that lead to shortcuts to adiabaticity have received much attention recently [99–102], both for their
experimental relevance and as an interesting theoretical problem in its own right. Recent studies have
also asked whether single parameter bounds such as the Novikov-Curzon-Ahlborn bound is the best
metric, discussing instead “trade-offs” between efficiency and power under different experimental
conditions and under non-equilibrium operation [103]. Levitated nanoparticles could test these
relations over a large parameter space. For instance, one can explore non-Markovian dynamics [104]
due to feedback and operation under periodic temperature variations [103] which could be achieved
through modulation of the laser beam as we discussed before. Besides, the full over- to under-damped
regime is easily accessible whilst dynamically varying all of the relevant thermodynamics quantities
(such as trapping volume and temperature). In addition, the tantalizing potential to operate in the
quantum regime could enable exploration of constraints on the efficiency and power production of
non-Markovian quantum engines [105].

To overcome the limitations of the Stirling cycle, Martinez et al. implemented a Carnot cycle
with an optically trapped colloidal particle (c.f. Figure 6b). The adiabatic ramp was thereby
realized by changing the temperature and trap stiffness together such that the ratio T2/k remained
constant [102,106]. This protocol required a precise control over the bath temperature that is
synchronized with the change of the trap stiffness. This is not possible with heating of the surrounding
water as done by Blickle & Bechinger [91]. Instead they produced an effective hot temperature bath with
fluctuating electromagnetic fields as we discussed earlier [45]. For slow driving, their Carnot engine
attained the fundamental limit given by the Carnot efficiency and the efficiency at maximum power
was in excellent agreement with the Novikov-Curzon-Ahlborn efficiency. In addition, they showed that
the Carnot bound can be surpassed for a small number of non-equilibrium cycles [107]. For a detailed
discussion of microscopic heat engines in the overdamped regime we refer to Refs. [85,86,108].

The implementations discussed so far have been realized with colloidal systems, where the
motion of the particle is heavily damped due to the close contact with the surrounding liquid.
Under these conditions, a measurement of the momentum distribution is very challenging, although
not impossible [53,109]. Martinez et al., [106] circumvented this challenge by extrapolating the
instantaneous velocity from the mean-squared time-averaged velocity. However, from a fundamental
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standpoint it is desirable to have direct access to the instantaneous position and momentum of the
particle. The instantaneous momentum of the particle can be measured easily by operating under
high vacuum conditions [9,10]. In addition, the investigation of much more isolated systems provides
a path toward the future realization of quantum heat engines and it has been suggested that super
Carnot efficiencies can be attained by clever bath engineering [110].

From our previous discussion it is clear that optically levitated particles are well suited to
implement a microscopic heat engine in the underdamped regime. Analogous to the experiments with
colloidal particles [91,107], the volume of the engine is controlled through the power of the trapping
laser (c.f. Equation (4)). However, due to the weak interaction with the environment, the effective
temperature can be controlled with much higher precision (c.f. Equation (20)) through a combination
of gas pressure, external driving and feedback cooling and even allows to create non-thermal
baths [47,68,111] that could lead to surpassing the Carnot efficiency [110]. Such an all-optical heat
engine was proposed by Dechant et al., [112]. In this proposal, cooling is realized through the
interaction with an optical cavity instead of active feedback cooling. The all-optical control provides
flexibility in optimizing the heat engine for maximizing its performance. In the overdamped case
the analytic treatment of optimal protocols is possible because the dynamics can be described
by a simplified in terms of the slow position variable [90]. In contrast, this is not possible in
the underdamped case, where the position and velocity variables cannot be separated [113,114],
and numerical methods must be used. An important note is that these optimal protocols increase the
power output and the efficiency of the engine by introducing rapid changes in the trapping frequency.
Being able to realize this kind of fast control experimentally is a distinct advantage of the all-optical
nature of the heat engine. In particular, a heat engine realized with a fast cavity response or a cavity-free
setup could prove advantageous, since the control is not limited by the finite cavity response time.

a) b)

Figure 6. Single particle engines. (a) Realization of a Stirling engine by Blickle & Bechinger [91]
using laser absorption to change the temperature of the environment. (b) Martinez et al., [107]
realized a microscopic Carnot engine. The adiabatic steps of the Carnot engine requires to change the
temperature and the trap stiffness synchronously. Figures reproduced from Nature Physics.

9. Conclusions

In this review we have explored the potential for levitated nanoparticles to address questions
in stochastic thermodynamics and non-equilibrium physics on the single particle level in the
underdamped regime.

In the overdamped regime, micron-sized colloidal particles in liquid have already been used
extensively to construct micro-engines and to study the statistical properties of their power and
efficiency, largely motivated by trying to understand biological systems. A better understanding
of how nature builds machines and motors at the molecular level then allows scientists to build
their own molecular devices [115,116]. Although these objects operate in overdamped environments,
the timescale of their operation requires one to account for inertial contributions [113]. As discussed,
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measuring the instantaneous momentum in real time is not straightforward in overdamped systems.
In contrast, the momentum relaxation in underdamped systems is much slower due to the weak
interaction with the environment, which allows for obtaining a complete picture of the dynamics.
Hence, levitated particles may offer new insights into the molecular world.

In levitated systems, deterministic forces and stochastic forces are well controlled experimentally,
thus giving access to new parameter regimes. For example, levitated nanoparticles have led to
the first observation of ballistic Brownian motion [9] and to the first quantitative measurement of
Kramers turnover [66] in addition to demonstrating general fluctuation theorems in the underdamped
regime [47,80].

The underdamped regime is of fundamental interest, since the underlying equations of motion
contain inertia which in overdamped systems is typically ignored. It also allows one to make
the connection to the even more fundamental unitary evolution of quantum mechanical systems.
Therefore, future experiments with levitated nanoparticles will help to characterize the sources of
irreversibility in micro-engines and give new insight into the statistical properties of their efficiencies
that could inspire new strategies in the design of efficient nano-motors. In addition, rapid progress in
cooling the center-of-mass motion will enable the operation in the quantum regime, thereby realizing
a textbook quantum Brownian particle.

In the quantum regime, the information we can extract from a system is limited by the
Heisenberg uncertainty principle [117]. The fact that information is physical is also well established
in thermodynamics through Landauer’s principle, which asserts that there is a minimum possible
amount of energy required to erase one bit of information [118]. This link between information theory
and thermodynamics was verified experimentally with a colloidal system where the information was
obtained by light scattering from the particle [119,120]. In ultra-high vacuum, the interaction with
the optical light field is the dominant interaction of the levitated particle with its environment [18].
Therefore, the quantum back-action of the measurement [121,122] starts to play a role in this regime.
The impact of the measurement process in the operation of heat engines and work extraction [123] is
a very active field of research that combines information theory, the quantum measurement process
and thermodynamics. Levitated particles in high vacuum are already exploring thermodynamics in
the underdamped regime and are poised for venturing into the quantum regime. However, definite
theoretical proposals for the realization of thermodynamic protocols with levitated nanoparticles in the
quantum regime are still lacking. We hope that this review changes this by making the fundamentals
of levitated nanoparticles easily accessible to the community of quantum thermodynamics while also
raising awareness of this exciting field among researchers working in levitation.
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