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SUMMARY
Previously, we described the safety and therapeutic potential of neurospheres (NSs) derived from a human induced pluripotent stem cell

(iPSC) clone, 201B7, in a spinal cord injury (SCI) mousemodel. However, several safety issues concerning iPSC-based cell therapy remain

unresolved. Here, we investigated another iPSC clone, 253G1, that we established by transducing OCT4, SOX2, and KLF4 into adult hu-

man dermal fibroblasts collected from the same donor who provided the 201B7 clone. The grafted 253G1-NSs survived, differentiated

into three neural lineages, and promoted functional recovery accompanied by stimulated synapse formation 47 days after transplanta-

tion. However, long-term observation (for up to 103 days) revealed deteriorated motor function accompanied by tumor formation. The

tumors consisted of Nestin+ undifferentiated neural cells and exhibited activation of the OCT4 transgene. Transcriptome analysis re-

vealed that a heightened mesenchymal transition may have contributed to the progression of tumors derived from grafted cells.
INTRODUCTION

Advances in stem-cell-based therapies may help overcome

CNS disorders such as spinal cord injury (SCI). Transplanta-

tion of neural stem/progenitor cells (NS/PCs) has yielded

beneficial effects and improved functional recovery in

SCI animal models (Cummings et al., 2005; Hofstetter

et al., 2005; Iwanami et al., 2005; Ogawa et al., 2002; Okada

et al., 2005; Salazar et al., 2010; Yasuda et al., 2011). Plurip-

otent stem cells (PSCs), including embryonic stem cells

(ESCs) and induced PSCs (iPSCs), can differentiate into

NS/PCs (Falk et al., 2012; Fujimoto et al., 2012a; Kumagai

et al., 2009; Miura et al., 2009; Nori et al., 2011; Okada

et al., 2004, 2008; Tsuji et al., 2010), oligodendrocyte pre-

cursor cells (OPCs) (Keirstead et al., 2005; Wang et al.,

2013), and motoneuron progenitors (Erceg et al., 2010; Lu-

kovic et al., 2014) in vitro. Previous studies demonstrated

the therapeutic potential of mouse and human iPSC-

derived NS/PCs for SCI in mice and non-human primates

(Fujimoto et al., 2012b; Kobayashi et al., 2012; Nori et al.,

2011; Tsuji et al., 2010). However, tumorigenicity remains

a major concern for clinical applications of iPSCs.

Previously, we reported the safety and therapeutic po-

tential of human iPSC-derived neurospheres (iPSC-NSs)
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for SCI in non-obese diabetic–severe combined immuno-

deficient (NOD-SCID) mice (Nori et al., 2011) using the

iPSC clone 201B7 (Nori et al., 2011; Takahashi et al.,

2007). Here, we aimed to characterize novel NS/PCs

derived from a different iPSC clone, 253G1. We estab-

lished this clone from the same adult human dermal fibro-

blasts used for 201B7 by transducing three reprogram-

ming factors: OCT4, SOX2, and KLF4 (Nakagawa et al.,

2008). Grafted 253G1-derived neurospheres (253G1-NSs)

survived and differentiated into three neural lineages in

the injured spinal cord, and some of the resultant cells

formed synapses with host neurons. Motor function in

grafted mice initially recovered but then gradually

declined, and tumors emerged during long-term observa-

tion. These tumors consisted of undifferentiated Nestin+

cells, but not NANOG+ pluripotent cells. Late-onset acti-

vation of the OCT4 transgene (Tg) may be associated

with tumor formation. Transcriptome analysis revealed

altered expression of genes involved in the epithelial-

mesenchymal transition (EMT), which is related to

tumor invasion and progression. Moreover, canonical

pathway analysis revealed upregulation of the Wnt/b-cat-

enin signaling pathway after 253G1-NS transplantation,

which played a critical role in tumor development.
ors
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Thus, although 253G1-NSs conferred temporary func-

tional recovery in mice with SCI, they later developed

into tumors and worsened the overall outcome.
RESULTS

Grafted 253G1-NSs Survive in Injured Spinal Cord and

Differentiate into Three Neural Lineages

Immunodeficient (NOD-SCID) mice were used for xeno-

graft experiments. After laminectomy, contusive SCI was

induced at the Th10 level. Nine days after injury, 5 3 105

253G1-NS-derived cells, whichwere lentivirally transduced

with the fluorescent protein Venus (an altered yellow fluo-

rescent protein; Nagai et al., 2002) or ffLuc (Venus fused to

firefly luciferase; Hara-Miyauchi et al., 2012), were injected

into the lesion epicenter. Histological analyses were per-

formed 47 days (d) after transplantation. The grafted

253G1-NSs survived, migrated into the host spinal cord

(Figures 1A and 1B), and differentiated into neuronal

nuclei (NeuN)+ (17.2% ± 2.6%) and b-tubulin isotype III

(bIII tubulin)+ (42.2% ± 3.1%) neurons, glial fibrillary acidic

protein (GFAP)+ astrocytes (15.0% ± 0.7%), and adenoma-

tous polyposis coli CC-1 (APC)+ oligodendrocytes (2.7% ±

0.3%; Figures 1C–1G). Quantitative analysis revealed that

67% of NeuN+ mature neurons were GAD67+ GABAergic

neurons (Figure 1H). Small numbers of grafted cells

differentiated into tyrosine hydroxylase (TH)+ and choline

acetyltransferase (ChAT)+ cholinergic neurons (Figures 1I

and 1J).
Grafted 253G1-NS-Derived Neurons Form Synaptic

Connections with Host Neurons

We performed triple immunostaining for human nu-

clear protein (HNu) and two neuronal markers, bIII

tubulin and the presynaptic protein Bassoon (Bsn).

Because the anti-Bsn antibody selectively recognized

the mouse and rat epitopes, but not the human epitopes

(Figure S1), we were able to evaluate the ability of

253G1-NS-derived neurons to integrate with the host

neural circuitry using this approach. Grafted bIII

tubulin+/HNu+ cells in parenchymal locations were

contacted by synaptic boutons of host neurons (Fig-

ure 1K). Moreover, triple immunostaining for HNu,

bIII tubulin, and human-specific synaptophysin (hSyn)

revealed dense terminal fields of human-derived bou-

tons apposed to host neurons (Figure 1L). Host ChAT+

neurons in the ventral gray matter were contacted by

the hSyn+ graft-specific terminals (Figure 1M). Im-

muno-electron microscopy also revealed Venus+ human

pre- and post-synaptic structures, as well as synapse for-

mation between host neurons and Venus+ 253G1-NS-

derived neurons (Figure 1N).
Stem C
Grafted 253G1-NSs Promote Motor Function Recovery

after SCI

We assessed motor function recovery using the Basso

mouse scale (BMS) score, Rotarod test, andDigiGait system.

According to the BMS score, the 253G1-NS-grafted group

exhibited significantly better functional recovery than

the PBS-injected control groupR12 days after transplanta-

tion (BMS score = 3.2 ± 0.1 at 12 days post-transplantation

and 3.3 ± 0.2 at 47 days post-transplantation; Nori et al.,

2011; Figure 1O). In the Rotarod test, 253G1-NS-grafted

mice remained on the rod significantly longer (61.1 ± 7.1

s) than the control group (33.0 ± 7.3 s; Nori et al., 2011)

at 47 days post-transplantation (Figure 1P). Gait perfor-

mance was evaluated using the DigiGait image analysis

system. All 253G1-NS-grafted mice could walk on the

treadmill at 8 cm/s, whereas some control mice (4/16)

could not. Stride length was significantly longer in the

253G1-NS-grafted group (4.2 ± 0.1 cm) than in the control

group (2.2 ± 0.1 cm; Nori et al., 2011; Figure 1Q).

Tumors Form after 253G1-NS Transplantation,

Resulting in Deteriorated Motor Function

We extended the follow-up period to 103 days post-trans-

plantation to investigate the long-term safety of the grafted

253G1-NSs. Although recovery ofmotor function persisted

for up to 47 days post-transplantation, 253G1-NS-grafted

mice exhibited gradual deterioration of hind limb motor

function thereafter (Figure 2A). To monitor the survival

and growth of the grafted cells in the mouse spinal cord,

we lentivirally transduced 253G1-NSs with ffLuc, which

allowed us to identify grafted cells by their bioluminescent

luciferase signals and fluorescent Venus signals. The

photon count of grafted 253G1-NSs decreased within the

first week post-transplantation, but gradually increased at

14 days post-transplantation and thereafter, demon-

strating the survival and growth of the grafted cells. Be-

tween 42 and 70 days post-transplantation, the photon

counts sharply increased (Figures 2B and 2C), consistent

with the deterioration of the BMS score shown in Figure 2A.

At 103 days post-transplantation, the photon count of the

grafted 253G1-NSs increased more than 10-fold from its

initial value (Figure 2C).

Histological analyses revealed tumors in 253G1-NS-

grafted spinal cords. These tumors were divided into three

groups based on the diameter of the lesion (small-tumor

group, f < 200 mm; medium-tumor group, 200 < f <

700 mm; large-tumor group, 700 mm < f). Some of the tu-

mors (12/22) exhibited microcystic masses consisting of

HNu/Nestin double-positive human-derived bipolar cells

with hair-like processes. These masses were observed in

all tumors from the large-tumor group (7/7; Figures 2D

and 2E show representative images of microcystic masses

from the large-tumor group). Suchmasses were also present
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Figure 1. Grafted 253G1-NSs Mainly Differentiate into Neurons and Form Synapses with Host Spinal Cord Neurons
(A and B) Venus+ 253G1-NSs integrated into the mouse spinal cord. Arrowheads indicate the lesion epicenter.
(C–F) Representative images of Venus+ grafted cells immunostained for the markers NeuN (mature neurons) (C), bIII tubulin (all neurons)
(D), GFAP (astrocytes) (E), and APC (oligodendrocytes) (F).
(G) Percentages of cell-type-specific marker-positive cells among Venus+ grafted cells at 47 days post-transplantation. Values are
expressed as the mean ± SEM (n = 4 mice).
(H) Most 253G1-derived neurons differentiated into GAD67+ (GABAergic) neurons.
(I and J) TH+/HNu+ neurons and ChAT+/HNu+ neurons were observed, but were rare.
(K) Sections were triple stained for HNu (green), bIII tubulin (red), and the presynaptic marker Bassoon (Bsn, white). The Bsn antibody
recognized the mouse, but not the human, protein.
(L) Sections triple stained for HNu (green), bIII tubulin (red), and the human-specific presynaptic marker hSyn (white). bIII tubulin+/
HNu� neurons represented host mouse neurons. The hSyn antibody recognized the human, but not the mouse, protein.
(M) Large numbers of somatic and dendritic terminals from graft-derived nerve cells were present on host ChAT+ motor neurons at the
ventral horns.
(N) Electron microscopy (EM) images show synapse formation between host mouse neurons and graft-derived Venus+ (black) human
neurons. Pre- and post-synaptic structures indicate transmission from a graft-derived neuron to a host neuron, and from a host neuron to a
graft-derived neuron. H, host neuron; G, graft-derived neuron; arrowheads, post-synaptic density.
(O) Motor function in the hind limbs was assessed weekly using the BMS score until 47 days post-transplantation. Values are expressed as
the mean ± SEM (n = 32 mice).
(P) Rotarod test 47 days after transplantation. Graph shows total run time. Values are expressed as the means ± SEM (n = 10 mice).
(Q) Treadmill gait analysis using the DigiGait system 47 days post-transplantation. Graph shows stride length. Values are expressed as the
means ± SEM (n = 19 mice). Behavioral analyses were performed by two observers who were blinded to the treatment conditions.
Scale bars, 1,000 mm in (A); 100 mm in (B); 50 mm in (J-1); 20 mm in (F-3), (F-4), (H-1), (J-2), (K-1), (L-1), and (M-1); 10 mm in (H-2),
(J-3), (K-2), (L-2), and (M-2); 0.5 mm in (N). See also Figure S1.
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Figure 2. Tumor Formation during Long-Term Observation after 253G1-NS Transplantation
(A) Up to 103 days post-transplantation, motor function in the hind limbs was assessed weekly using the BMS score. Values are expressed
as the means ± SEM (n = 32 mice up to 47 days post-transplantation; thereafter, n = 22 mice until 103 days post-transplantation).
(B) Representative in vivo images of mice at 0, 14, 42, 70, and 103 days after 253G1-NS transplantation.
(C) Quantitative analysis of photon counts derived from grafted cells. Values are expressed as the means ± SEM (n = 20 mice up to 42 days
post-transplantation; thereafter, n = 14 mice until 103 days post-transplantation).
(D) Representative hematoxylin and eosin (H&E) image of a large tumor (700 mm < f).
(E) Boxed area in (D).
(E1–E3) Immunohistochemistry showing that most grafted cells in the microcystic area were Nestin+.
(F) Representative H&E image of a medium tumor (200 < f < 700 mm).
(G) Boxed area in (F). Immunohistochemistry shows that some grafted cells exhibited normal neural differentiation.
(H and I) Boxed area in (F). Some grafted cells formed microcystic masses that were positive for Nestin.
(J) Percentages of cell-type-specific, marker-positive cells among HNu+ grafted cells at 103 days post-transplantation. Values represent
the means ± SEM (n = 4 and 10 mice for 47 and 103 days post-transplantation, respectively). *p < 0.05, **p < 0.01.
Scale bars, 500 mm in (D) and (F), 50 mm in (E) and (G–I). See also Figure S2.
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Figure 3. Histological and Gene-Expression Analyses of Tumors
(A) Schematic of histological analyses of tumors.
(B) Correlation between tumor diameter and the proportion of grafted cells that were Nestin+ at 47 and 103 days post-transplantation (TP).
(C) Correlation between tumor diameter and the proportion of grafted cells that were Ki-67+.
(D) Correlation between tumor diameter and the proportion of grafted cells that were OCT4+.
(E) Correlation between the tumor diameter and the proportion of grafted cells that were OCT4+/HNu+ at 103 days after TP.
(F) Correlation between the number of days after TP (47 or 103 days after TP) and the proportion of grafted cells that were OCT4+. In
(B)–(F), n indicates the number of mice.
(G) Schematic of mRNA expression analyses of tumors.
(H–M) The expression of human OCT4-Tg, OCT4-Endo, SOX2-Tg, SOX2-Endo, KLF4-Tg, KLF4-Endo, c-MYC-Tg, and c-MYC-Endo mRNA in 253G1
cells, 253G1-NSs, 103-day post-transplant 253G1-NSs (TP 103d), and adult human dermal fibroblasts (HDFs) was analyzed by RT-PCR. Data

(legend continued on next page)
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in the majority of the medium tumors (5/7), whereas none

were found in the small-tumor group (0/8). In medium tu-

mors that exhibited microcystic masses, some grafted cells

underwent normal neural differentiation (Figures 2F and

2G). However, a portion of the grafted cells formed micro-

cystic masses positive for Nestin (Figures 2H and 2I), and

Nestin+ cells were also observed outside the microcystic

mass. Significantly higher percentages of Nestin+ cells

(34.2% ± 7.3%) and APC+ oligodendrocytes (5.4% ±

0.7%), as well as significantly lower percentages of bIII

tubulin+ neurons (32.1% ± 5.1%), were observed at

103 days relative to 47 days (Figure 2J). In addition,

15.8% ± 2.7% of grafted cells had differentiated into astro-

cytes at 103 days. Taken together, these data indicate that

approximately 87.5% of grafted cells differentiated toward

neural lineages.We observed no NANOG+ pluripotent cells

in grafted 253G1-NSs at 103 days post-transplantation

(Figure S2).

Next, we examined the correlation between tumor diam-

eter and the percentages of Nestin+, Ki-67+, or OCT4+ cells

among HNu+ grafted cells (Figure 3A). Statistical analysis

revealed a significant correlation between tumor diameter

and the percentage of Nestin+/HNu+ cells (Figure 3B).

Compared with the small-tumor group, the large- and

medium-tumor groups contained significantly higher

percentages of Ki-67+/HNu+ cells and OCT4+/HNu+ cells

(Figures 3C and 3D). However, there was no significant cor-

relation between tumor diameter and the percentage of

OCT4+/HNu+ cells at 103 days post-transplantation (Fig-

ure 3E). Meanwhile, significantly more OCT4+/HNu+ cells

were observed at 103 days than at 47 days (Figure 3F);

thus, the percentage of OCT4+/HNu+ cells correlated posi-

tively with post-transplant duration.

We also evaluated the expression of human OCT4-Tg,

OCT4-endogenous (Endo), SOX2-Tg, SOX2-Endo, KLF4-

Tg, and KLF4-Endo mRNAs in 253G1 cells, 253G1-NSs,

and spinal cord tissues of the 253G1-NS-grafted group,

which were harvested at 103 days post-transplantation

(253G1-NS/transplantation [TP]-103d group; Figures 3G–

3M). Compared with 253G1-NSs, OCT4-Tg expression

was significantly higher in 253G1-NS/TP-103d spinal cords

(Figure 3H), whereas OCT4-Endo expression was only

observed in the 253G1 iPSCs (Figure 3I). SOX2-Endo was

expressed in both 253G1-NSs and the 253G1-NS/TP-103d

group, and levels of SOX2-Endo slightly increased after

transplantation (Figure 3K). KLF4-Tg expression was also

elevated in 253G1-NSs and the 253G1-NS/TP-103d group

(Figure 3L).
are presented as expression levels relative to the control (HDFs) 11 day
represent the means ± SEM (n = 3 independent experiments).
The p values shown in (B)–(F) were calculated using Scheffe’s test,
Kruskal-Wallis non-parametric test: (B) 5.00E-06, (C) 7.20E-06, (D) 0

Stem C
Transcriptomic Differences between 253G1-NSs and

201B7-NSs Post-Transplantation

Comparative transcriptome analyses of grafted cells and

surrounding host cells can reveal information regarding

the differentiation status of the grafted cells and the effects

of the graft on the host tissue. mRNA sequencing (mRNA-

seq) enables one to analyze the global expressionof individ-

ual human andmouse genes from amixture of human and

mouse cells (Bradford et al., 2013). Here, we sought to mea-

sure expression in mouse spinal cord tissue containing hu-

man cells derived fromgraftedhuman iPSC-NSs. To analyze

mRNA expression in both grafted human iPSC-NSs and

host spinal cord tissue, we analyzed the mRNA from NSs

of 253G1 and 201B7 cells, as well as mouse spinal cord tis-

sues containing grafted 253G1-NSs and 201B7-NSs, which

were harvested at 5 and 103 days post-transplantation

(PBS-5d and 103d, 253G1-NS/TP-5d and 103d, and

201B7-NS/TP-5d and 103d). The ratio of human andmouse

mRNA-seq reads derived from epicenter segments (8mm in

length) of iPSC-NS-grafted spinal cord tissuewas considered

to reflect the ratio of human andmouse cells (Table S1). The

global gene-expression patterns of these tissueswere hierar-

chically clustered into5-day (PBS-5d, 253G1-NS/TP-5d, and

201B7-NS/TP-5d) and 103-day groups (PBS-103d, 253G1-

NS/TP-103d, and 201B7-NS/TP-103d), which may reflect

time-dependent changes in the spinal cord microenviron-

ment following SCI (Figure 4A). Similarly, the gene-expres-

sionprofiles of the grafted iPSC-NSs clustered on thebasis of

time post-transplantation (NS, 5 and 103 days) rather than

clonal (253G1 and 201B7) origin (Figure 4B). However, the

profiles of the two clones diverged at 103 days post-trans-

plantation. Furthermore, the gene-expression profiles of

253G1-NS/TP-103d and 201B7-NS/TP-103d differed signif-

icantly (Figures 4C and 4D).

Next, we identified human genes that were upregulated

in the mouse spinal cord at 103 days post-transplantation

relative to iPSC-NSs before transplantation (fold change >

5.0). As shown in the Venn diagram in Figure 4E, we iden-

tified 692 genes in the 253G1-NS/TP-103d group, 335

genes in the 201B7-NS/TP-103d group, and 1,023 genes

in both the 253G1-NS/TP-103d and 201B7-NS/TP-103d

groups that were expressed at higher levels than in

253G1-NSs and 201B7-NSs. Gene Ontology (GO) analysis

of the 335- and 1,023-gene groups indicated that synapto-

genesis was occurring in both the 253G1- and 201B7-NS/

TP-103d groups (Tables 1 and S2). GO analysis of the 692

genes that were exclusively activated in 253G1-derived

cells at 103 days post-transplantation identified a
s after retroviral transduction of OCT4, SOX2, KLF4, and c-MYC. Values

and p values to determine significance were calculated using the
.01, and (F) 1.33E-04. *p < 0.05, **p < 0.01. ns, non-significant.
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Figure 4. Global Human Gene-Expression Analysis
(A) Hierarchical clustering analysis of mouse gene-expression data from spinal cord tissues of the PBS-5d and -103d, 253G1-NS/TP-5d and
-103d, and 201B7-NS/TP-5d and -103d groups.
(B) Hierarchical clustering analysis of human gene-expression data: 253G1-NSs and 201B7-NSs, as well as spinal cord tissues of the 253G1-
NS/TP-5d and -103d, and 201B7-NS/TP-5d and -103d groups. In (A) and (B), the signal intensity of each gene is displayed as a heatmap
colored according to the expression level.

(legend continued on next page)
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Table 1. Gene Ontology Analysis of 335 Human Genes
Upregulated in 201B7-NS-Grafted Spinal Cord

GO Accession GO Term Corrected p Value

GO:0045202 synapse 7.05E-08

GO:0007399 nervous system development 3.56E-06

GO:0007267 cell-cell signaling 7.69E-06

GO:0019226 transmission of nerve impulse 4.68E-04

GO:0043005 neuron projection 1.76E-03

GO:0030182 neuron differentiation 1.26E-02

GO:0007154 cell communication 1.26E-02

GO:0048699 generation of neurons 1.40E-02

GO:0022008 neurogenesis 1.91E-02

GO:0050806 positive regulation of

synaptic transmission

3.52E-02

GO:0050804 regulation of synaptic

transmission

4.19E-02

GO:0007417 central nervous system

development

4.80E-02

GO:0051971 positive regulation of

transmission of nerve impulse

4.80E-02

See also Table S2.
number of mesenchyme-associated terms, including

‘‘mesenchymal cell differentiation,’’ ‘‘mesenchymal cell

development,’’ and ‘‘epithelial tomesenchymal transition’’

(Table 2). These terms were also identified in a comparison

of 253G1 and 201B7 NS cells, suggesting that 253G1-NS

cells were more prone to undergo EMT (Table S3). Further-

more, the mRNA-seq data revealed that EMT-related genes

such as LEF1, BMP2, HGF, SNAI1, SNAI2, TWIST1, and

TWIST2 (as suggested by GO analysis and previous reports
(C) Principal-component analysis (PCA) of human gene-expression da
z axis, component 3 (13.88%).
(D) Two-dimensional PCA of human gene expression data. x axis, com
(E) Venn diagram of human genes whose expression increased in the 2
NSs and 201B7-NSs. Color key: red, 692 genes highly expressed in the
201B7-NS/TP-103d group; purple, 1,023 genes highly expressed in b
(F–L) EMT-related human gene expression in 253G1- and 201B7-NSs a
means ± SEM (n = 1 each in the human iPSC-NS, n = 2 for 201B7-NS/TP
independent experiments).
(M–P) The expression of SNAI1, SNAI2, TWIST1, and TWIST2 mRNA in
sented as expression levels relative to the control (the U87 human
independent experiments).
(Q) Representative H&E image of the mid-sagittal section 103 days a
(R) p-STAT3-stained image of the adjacent section of (Q). Arrow, les
(S) Boxed area in (R).
Scale bar, 1,000 mm in (Q) and (R), 100 mm in (S). *p < 0.05, **p <
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[Moody et al., 2005; Yang et al., 2004]) were significantly

upregulated in the 253G1-NS/TP-103d group relative to

the 201B7-NS/TP-103d group (Figures 4F–4L).We also eval-

uated the expression of SNAI1, SNAI2, TWIST1, and

TWIST2 mRNAs in 201B7-NSs and 253G1-NSs prior to

transplantation (Figures 4M–4P). Expression of SNAI2,

TWIST1, and TWIST2 was significantly higher in 253G1-

NSs than in 201B7-NSs (Figures 4N–4P), whereas SNAI1

expression was significantly lower in 253G1-NSs than in

201B7-NSs (Figure 4M). Furthermore, we evaluated the

signal transducer and activator of transcription 3 (STAT3),

extracellular-signal-regulated kinase (ERK) and v-akt mu-

rine thymoma viral oncogene (AKT) pathways, which are

involved in tumormaintenance. Specifically, we performed

immunohistochemical analyses to monitor the levels of

tyrosine 705-phosphorylated STAT3 (p-STAT3), tyrosine

202/204-phosphorylated ERK1/2 (p-ERK1/2), and serine

473-phosphorylated AKT (p-AKT). We observed p-STAT3+

cells (Figures 4Q–4S), but no p-ERK1/2+ or p-AKT+ cells,

in the 253G1-NS/TP-103d group.
Ingenuity Pathway Analysis Revealed Pathways that

Differed Significantly between 253G1-NS and 201B7-

NS Transplantation

We used Ingenuity Pathway Analysis (IPA) to identify path-

ways differentially expressed between the 253G1-NS/TP-

103d and 201B7-NS/TP-103d groups. IPA detected a total

of 56 significantly altered (p < 0.05) pathways. Figure 5

shows the ten most altered pathways, all of which were

significantly upregulated in the 253G1-NS/TP-103d group

relative to iPSC-NSs prior to transplantation.
DISCUSSION

Because we generated the human iPSC clone 253G1

without introducing c-MYC, we initially speculated that
ta. x axis, component 1 (41.03%); y axis, component 2 (24.21%);

ponent 1 (41.03%); y axis, component 2 (24.21%).
53G1-NS/TP-103d and 201B7-NS/TP-103d groups relative to 253G1-
253G1-NS/TP-103d group; blue, 335 genes highly expressed in the
oth the 253G1- and 201B7-NS/TP-103d groups.
nd the 253G1- and 201B7-NS/TP-103d groups. Values represent the
-103d, and n = 3 for 253G1-NS/TP-103d; n indicates the number of

201B7-NSs and 253G1-NSs was analyzed by RT-PCR. Data are pre-
glioblastoma cell line). Values represent the means ± SEM (n = 3

fter transplantation.
ion epicenter; arrowhead, distribution of grafted 253G1-NSs.

0.01. See also the mRNA-seq read distribution in Table S1.
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Table 2. Gene Ontology Analysis of 692 Human Genes
Upregulated in 253G1-NS-Grafted Spinal Cord

GO Accession GO Term Corrected p Value

GO:0030198 extracellular matrix

organization and biogenesis

2.29E-16

GO:0001501 skeletal development 1.29E-14

GO:0043062 extracellular structure

organization and biogenesis

2.67E-13

GO:0001568 blood vessel development 1.88E-12

GO:0001944 vasculature development 3.51E-12

GO:0030199 collagen fibril organization 5.50E-08

GO:0014031 mesenchymal cell

development

2.78E-07

GO:0048762 mesenchymal cell

differentiation

4.84E-07

GO:0001525 Angiogenesis 2.81E-06

GO:0048514 blood vessel morphogenesis 3.02E-06

GO:0001503 ossification 1.74E-05

GO:0031214 biomineral formation 1.89E-05

GO:0014032 neural crest cell development 5.94E-04

GO:0014033 neural crest cell

differentiation

7.55E-04

GO:0007517 muscle development 3.04E-03

GO:0042127 regulation of cell proliferation 4.84E-03

GO:0001837 epithelial to mesenchymal

transition

2.02E-02

See also Table S3.
253G1-NSs would be less tumorigenic than 201B7-NSs.

Therefore, we performed transplantation of 253G1-NSs to

treat SCI in adult NOD-SCID mice. Like the 201B7-NSs,

the grafted 253G1-NSs differentiated into three neural lin-

eages, reconstructed local circuitry, and promoted angio-

genesis as well as axonal regrowth (data not shown).

Thus, 253G1-NS transplantation promotedmotor function

recovery after SCI in NOD-SCID mice.

When considering the clinical use of iPSC-NSs, it is

important to address safety issues, especially with regard

to tumorigenicity. To this end, we extended the observa-

tion period after transplantation. Previously, we reported

that 201B7-NS-grafted mice maintained functional recov-

ery until 103 days post-transplantation, and confirmed

that 201B7-NSs were non-tumorigenic based on histologi-

cal findings (Nori et al., 2011). Here, we found that

253G1-NS-grafted mice exhibited temporary motor func-
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tion recovery for up to 47 days post-transplantation; how-

ever, this was followed by a gradual deterioration in motor

function, along with grafted cell proliferation and tumor

development. Bioluminescence imaging revealed that the

photon count of the grafted cells increased more than 10-

fold from the initial value by 103 days after transplanta-

tion. These tumors were negative for the pluripotency

marker NANOG. Tumor size correlated with the proportion

of Nestin+ cells in the graft at 103 days post-transplanta-

tion. Previously, we showed that after 201B7-NS transplan-

tation, the proportion of grafted cells that were Nestin+

decreased from 10.7% ± 2.2% at 47 days to 7.5% ± 1.0%

at 103 days post-transplantation, resulting in no evidence

of tumorigenicity (Nori et al., 2011). By contrast, the pro-

portion of Nestin+ cells increased from 19.6% ± 0.5% at

47 days to 33.1% ± 7.4% at 103 days after 253G1-NS

transplantation, suggesting that differentiation-resistant

Nestin+ cells proliferated over time and formed tumors.

Consistent with this, the proportion of Ki-67+ cells signifi-

cantly increased from 1.7% ± 0.17% at 47 days to 3.0% ±

0.2% at 103 days after 253G1-NS transplantation, which

is significantly higher than what was observed after

201B7-NS transplantation. These findings suggest that

the proportion of proliferating cells increased over time

and induced tumor formation in 253G1-NS-grafted mice

in the long term.

Tumor diameter exhibited no significant correlationwith

the proportion of OCT4+/HNu+ cells. Instead, the propor-

tion of grafted cells that were OCT4+ was solely dependent

on the post-transplantation observation period. In our pre-

vious study, we observed no evidence of OCT4+/HNu+ cells

or tumor formation in 201B7-NS-grafted mice after long-

term observation (Nori et al., 2011). It is likely that the

chronologically increasing OCT4 expression in the grafted

253G1-NSs is related to tumor formation, consistent with

the results of RT-PCR, which showed that the expression

of OCT4-Tg at 103 days post-transplantation was signifi-

cantly higher than that in untransplanted 253G1-NSs.

OCT4 is a key regulator of self-renewal and plays a critical

role in maintaining ESC pluripotency (Niwa, 2007). In

addition, OCT4 is sometimes re-expressed in somatic cells

during carcinogenesis (Monk and Holding, 2001). OCT4

is also highly expressed in human gliomas and glioma

cell lines, and OCT4 overexpression in glioma cells induces

Nestin expression by inhibiting glioma cell differentiation

(Du et al., 2009; Ikushima et al., 2011). These findings are

consistent with the results we describe here, even though

the tumors observed in the present study were not patho-

logically identical to gliomas. We also observed that

KLF4-Tg was activated in 253G1-NSs, and that its expres-

sion increased after transplantation. KLF4 is highly ex-

pressed in primary breast ductal carcinoma and oral

squamous carcinoma (Foster et al., 2005; Pandya et al.,
ors



Figure 5. The Most Significantly Altered
Common Pathways after Transplantation
of 253G1- and 201B7-NSs, as Revealed
by Ingenuity Pathway Analysis
Canonical pathway analysis identified the
pathways from the Ingenuity Pathway
Analysis library that were significantly en-
riched in the data set. Only genes that
showed a fold change R 3.0 were consid-
ered in this analysis. The black bars show
the human gene set in the 253G1-NS/TP-
103d group versus the 201B7-NS/TP-103d
group. The white bars show the comparison
of the human gene set in 253G1-NSs versus
201B7-NSs in the same pathway. Bars
represent the logarithmic values (log10) of
the significance level (p); the solid line
corresponds to the threshold of p = 0.05.
2004). Previous reports also showed that KLF4 overexpres-

sion promotes self-renewal in ESCs (Li et al., 2005), and

KLF4 is an essential reprogramming factor that functions

by binding at Oct4 loci to initiate Oct4 transcription and

complete the reprogramming process (Wei et al., 2013).

These results suggest that KLF4 plays an important role

in maintaining PSCs, and that the tumor formation we

observed could be related to KLF4-Tg activation.

In a previous study, themolecular properties of engrafted

NS/PCs changed dramatically depending on the spinal

cord microenvironment (Kumamaru et al., 2012). Here,

we analyzed the changes in the microenvironment of

mouse spinal cord tissues affected by iPSC-NS transplanta-

tion. We observed no significant differences in the mouse

gene-expression profiles of spinal cord tissues among the

253G1-NS/TP, 201B7-NS/TP, and control groups, suggest-

ing that mouse gene expression did not widely affect

tumorigenesis in grafted iPSC-NSs. However, human

gene-expression profiles from the 253G1- and 201B7-NS/

TP groups differed in a time-dependent manner, which
Stem C
may have been related to tumor formation in the 253G1-

NS/TP group. GO analysis revealed increased progression

of EMT in the 253G1-NS and 253G1-NS/TP groups relative

to the 201B7-NS and 201B7-NS/TP groups.

During EMT, epithelial cells lose their epithelial char-

acteristics and acquire the properties of migratory

mesenchymal cells. This process is associated with the

early stages of carcinogenesis, cancer invasion, and

recurrence (Hay, 1995; Thiery, 2002). Brain tumors,

including some human gliomas, also contain stem-like

cells with both neural and mesenchymal potential that

are implicated in both tumor progression and invasive-

ness (Ricci-Vitiani et al., 2008). STAT3 is frequently over-

expressed in cancers, including gliomas (Abou-Ghazal

et al., 2008), and STAT3 phosphorylation leads to the

transcriptional activation of genes involved in processes

such as cell proliferation, apoptosis suppression, and

angiogenesis (Bowman et al., 2001). Moreover, STAT3

regulates the EMT gene TWIST (Cheng et al., 2008),

consistent with the more active EMT progression and
ell Reports j Vol. 4 j 360–373 j March 10, 2015 j ª2015 The Authors 369



elevated TWIST expression in the 253G1-NS/TP group

observed in this study. Mesenchyme-like changes in

253G1-NSs following transplantation may contribute to

the biological characteristics of tumor cells derived

from parental 253G1-NSs.

IPA revealed upregulation of human ESC pluripotency

pathways in post-transplantation 253G1-NSs. This phe-

nomenon might be related to the population of differenti-

ation-resistant Nestin+ cells that proliferated over time and

formed tumors. Furthermore, the Wnt/b-catenin signaling

pathway was significantly upregulated in the 253G1-NS/

TP group. Previous studies showed that Wnt/b-catenin

signaling is critical for regulating the self-renewal, prolifer-

ation, and differentiation of NS/PCs in the brain (Gong and

Huang, 2012), and that this pathway leads to enhanced

TERT expression in human cancers, resulting in the stabili-

zation of telomeres, a hallmark of tumorigenesis (Hoff-

meyer et al., 2012). In part, the tumorigenicity of 253G1-

NSs could be related to upregulation of the Wnt/b-catenin

signaling pathway. Moreover, consistent with GO analysis,

regulation of the EMT pathway was significantly upregu-

lated in the 253G1-NS/TP group relative to the 207B7-NS/

TP group.

Recently, several clinical trials of stem-cell-based therapy

for SCI using either human NS/PCs (Cummings et al.,

2005; Salazar et al., 2010) or human ESC-derived OPCs

(Strauss, 2010) have been initiated. Compared with these

stem cells, iPSCs raise fewer ethical concerns in certain

countries (Nori et al., 2011; Tsuji et al., 2010). On the other

hand, the use of iPSC-derived cells risks tumorigenesis

(Miura et al., 2009; Tsuji et al., 2010). The present study

demonstrates that even unsafe iPSC-NSs can confer thera-

peutic benefits against SCI, at least in the short term. How-

ever, long-term observation is required to assess the safety

of iPSC-NSs, because slow-growing tumors could causemo-

tor function to deteriorate over longer periods of time. In

the present study, we used retrovirally generated iPSCs (Na-

kagawa et al., 2008; Takahashi et al., 2007) and showed that

activation ofOCT4- and KLF4-Tgmight be related to tumor

formation. Thus, from a clinical-applications perspective,

NS/PCs derived from integration-free iPSCs (Okita et al.,

2008, 2011) should be chosen to avoid Tg-induced tumor-

igenesis. Recently, a pilot clinical study of integration-free

iPSC-based therapy for age-related macular degeneration

was approved following review by the Japanese govern-

ment (Garber, 2013; Kamao et al., 2014). As a step toward

clinical applications in the SCI field, we have already initi-

ated integration-free iPSC-NS transplantation in the NOD-

SCID mouse SCI model. At the same time, transplantation

into immune-deficient animals, accompanied by subse-

quent long-term observation, should be used to determine

the safety and effectiveness of these cells (Okano et al.,

2013).
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EXPERIMENTAL PROCEDURES

Additional details regarding several of the protocols used in this

work are provided in Supplemental Experimental Procedures.
Cell Culture, Neural Differentiation, and Lentiviral

Transduction
Cell culture, neural differentiation of human iPSCs (253G1),

and lentiviral transduction of neurospheres were performed as

described previously (Nori et al., 2011; Okada et al., 2008). Briefly,

253G1-derived primary neurospheres were dissociated and in-

fected with lentivirus expressing Venus or ffLuc under the control

of the EF promoter. Primary neurospheres were passaged into sec-

ondary and tertiary neurospheres. The ffLuc vector enabled detec-

tion of grafted cells as strong bioluminescent ffLuc signals in live

SCI mice, and as fluorescent Venus signals in fixed spinal cord

sections.
Animal Model and Cell Transplantation
Adult female NOD-SCID mice (20–22 g) were anesthetized via

intraperitoneal (i.p.) injection of ketamine (100 mg/kg) and xyla-

zine (10 mg/kg). After laminectomy, contusive SCI was induced

at the Th10 level using an IH impactor (60 kdyn; Precision Systems

and Instrumentation) as described previously (Scheff et al., 2003).

Nine days after SCI, 253G1-NSs (5 3 105 cells) were transplanted

into the lesion epicenter of eachmouse (n = 37) using a glassmicro-

pipette and stereotaxic injector (KDS310; Muromachi Kikai). The

253G1-NSs were transplanted at approximately the same time as

the PBS injection and 201B7-NS transplantation described in our

previous report (Nori et al., 2011).
Bioluminescence Imaging
A Xenogen-IVIS spectrum-cooled, charge-coupled device optical

macroscopic imaging system (Summit Pharmaceuticals Interna-

tional) was used for bioluminescence imaging to confirm the sur-

vival of the grafted cells as previously described (Itakura et al.,

2014; Okada et al., 2005; Takahashi et al., 2011). Monitoring was

performed for 103 days post-transplantation.

Motor Function and Histological Analyses
Motor function was evaluated using the BMS, Rotarod apparatus

(Muromachi Kikai), and DigiGait system (Mouse Specifics). For

histological analyses, the animals were anesthetized and trans-

cardially perfused with 4% paraformaldehyde (pH 7.4). Spinal

cords were removed and sectioned in the sagittal/axial plane

on a cryostat. All motor function and histological analyses

were conducted by observers blinded to the treatment condi-

tions. All animal experiments (approval number 09169) were

performed under the control of the Keio University Institutional

Animal Care and Use Committee in accordance with the Institu-

tional Guidelines on Animal Experimentation at Keio University,

the Japanese Government Law Concerning the Protection and

Control of Animals, and the Japanese Government Notification

of Feeding and Safekeeping of Animals, and approved by the

ethics committee of Keio University (IRB approval number

09091-8).
ors



RT-PCR
RNA isolation and RT-PCR were performed as previously described

(Nori et al., 2011; Okada et al., 2008).
Transcriptome Analysis
Total RNA from each sample was purified as previously described

(Okada et al., 2008). mRNA libraries were prepared according to

the TruSeq RNA sample prep kit protocol and sequenced using a

Genome Analyzer IIx (Illumina). Mouse and human mRNA se-

quences were separated using Xenome software (Conway et al.,

2012), and separated mRNA-seq data were mapped to the corre-

sponding genomic DNA sequences (human [hg19] and mouse

[mm9]) using TopHat software (Trapnell et al., 2009). The map-

ped sequences were normalized by trimmed mean of M values

(TMM) and analyzed using Avadis NGS software (Agilent Tech-

nologies). All software used default parameters. For principal

component analysis (PCA) and clustering analysis, the normal-

ized data were narrowed down to 13,693 genes using a cutoff

value for expression levels (reads per kilobase of exon per

million mapped reads [RPKM] > 100). A Venn diagram was con-

structed to visualize the 1,715 genes that were upregulated in

the 253G1-NS/TP-103d group and the 1,358 genes that were up-

regulated in the 201B7-NS/TP-103d group (RPKM > 100, fold

change > 5.0 versus each NS group). GO analysis was performed

using gene lists from the overlapping area, as well as from each

separate area, in the Venn diagram. For GO analysis, p values

were calculated using Fisher’s exact test. Subsequently corrected

p values were applied for multiple testing corrections using the

Benjamini-Yekutieli method with a cutoff at p = 0.05. Pathway

analysis was performed via IPA (Ingenuity Systems) using

genes that were up- or downregulated in the 253G1-NS/TP-

103d group versus the 201B7-NS/TP-103d group, as well as in

253G1-NS versus 201B7-NS (RPKM > 100, fold-change > 3.0).

The genes were overlaid on the Ingenuity Knowledge Database

and networks were algorithmically generated based on their

connectivity. The p values were determined using Fisher’s exact

test and p = 0.05 was interpreted as indicating statistical

significance.
Statistical Analyses
An unpaired, two-tailed Student’s t test was used to assess the

253G1-NS differentiation efficacy. One-way ANOVA followed

by the Tukey-Kramer test for multiple comparisons was used

for the Ki-67, Rotarod, and DigiGait analyses. Repeated-mea-

sures, two-way ANOVA followed by the Tukey-Kramer test was

used for the BMS analysis. The Kruskal-Wallis non-parametric

test and Scheffe’s test were used to analyze tumor diameter

and the percentage of HNu+ grafted cells that were Nestin+, Ki-

67+, or OCT4+. Statistical significance was determined as *p <

0.05, **p < 0.01.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental

Procedures, two figures, and three tables and can be found
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