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ABSTRACT

Epigenetic alterations, a well-recognized cancer hall-
mark, are driven by chromatin regulators (CRs). How-
ever, little is known about the extent of CR dereg-
ulation in cancer, and less is known about their
common and specialized roles across various can-
cers. Here, we performed genome-wide analyses
and constructed molecular signatures and network
profiles of functional CRs in over 10 000 tumors
across 33 cancer types. By integration of DNA muta-
tion, genome-wide methylation, transcriptional/post-
transcriptional regulation, and protein interaction
networks with clinical outcomes, we identified CRs
associated with cancer subtypes and clinical prog-
nosis as potential oncogenic drivers. Comparative
network analysis revealed principles of CR regu-
latory specificity and functionality. In addition, we
identified common and specific CRs by assessing
their prevalence across cancer types. Common CRs
tend to be histone modifiers and chromatin remodel-
ers with fundamental roles, whereas specialized CRs
are involved in context-dependent functions. Finally,
we have made a user-friendly web interface-FACER
(Functional Atlas of Chromatin Epigenetic Regula-
tors) available for exploring clinically relevant CRs for
the development of CR biomarkers and therapeutic
targets. Our integrative analysis reveals specific de-

terminants of CRs across cancer types and presents
a resource for investigating disease-associated CRs.

INTRODUCTION

Epigenetics, the study of stable, heritable traits that are not
attributable to changes in the DNA sequence, has emerged
as a means of elucidating critical regulation in cancer. Chro-
matin regulators (CRs) are indispensable upstream regula-
tory factors of epigenetics. According to regulatory roles in
epigenetics, CRs are usually grouped into three major cate-
gories: DNA methylators, histone modifiers, and chromatin
remodelers (1–3). DNA methylators and histone modifiers
can code and decode various modifications on cytosine and
histone residues and are usually further divided into read-
ers, writers, and erasers (4,5). Readers usually contain spe-
cific domains that can recognize specific cytosine or his-
tone residues and determine the modification type and state
(1,2,5). Writers and erasers usually play roles in adding and
removing certain modifications and from specific cytosine
or histone residues, as in methylation and demethylation
(1,2,5). Chromatin remodelers are a special type of CRs that
can disrupt the contact between nucleosomes and DNA,
shuffle nucleosomes around, replace them or remove them
from the chromatin, and cause abnormal epigenetic modi-
fications (1,2,5).

The alteration of epigenetic marks is a prevalent feature
in cancer (6). An increasing number of studies have found
that dysfunction of CRs can occur at different molecular
levels. For example, it is widely accepted that mutations can
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perturb CR functions. Yan et al. have found that genetic
alteration of DNMT3A (a DNA methylation transferase)
can induce genome-wide alterations of DNA methylation
and gene expression. Moreover, patients with DNMT3A
mutations have poor prognosis compared with those with-
out such mutations (7). In addition, a number of CRs have
been found to be dysregulated in gene expression across
cancer types. Damaschke et al. have observed that CHD8
and CTCF (two chromatin remodelers) are up-regulated
and down-regulated, respectively, in prostate tumor sam-
ples. They found that dysregulation of these CRs results in
structural abnormalities in chromatins and epigenetic alter-
ations of numerous cancer-associated genes, which finally
lead to increased tumor volume, extracapsular extension,
and metastases in prostate cancer patients (8). These stud-
ies demonstrate that CRs hold crucial roles in epigenetics
and that various molecular alterations can cause functional
perturbation of CRs.

With the development of high-throughput sequencing,
although hundreds of CRs have been identified, distinguish-
ing critical CRs in cancer remains a major challenge. Cur-
rently, functional aberrations of individual CRs have been
discovered in multiple cancer types. However, it is often
difficult to determine if a CR can exhibit the same role
or unique roles in different tumor contexts. For instance,
the up-regulated expression of EZH2 (a lysine methyltrans-
ferase) was found to promote tumor cell proliferation by
increasing the promoter occupancy of trimethylation of
H3K27 in various types of cancer (9–12). These analyses
of multiple cancers for EZH2 expression revealed its com-
mon role in carcinogenesis. In another study, Gonzalez-
Perez et al. found that several functional CRs have varied
mutation frequencies that depend on the tumor type. In ad-
dition, they found that CRs in the same multi-protein com-
plexes show mutually exclusive alterations in each cancer
lineage (2). Taken together, these previous studies primarily
identified dysfunctional CRs in a specific cancer or char-
acterized the dysregulation of a given CR in multiple can-
cer types. These results suggest that there is widespread per-
turbation of CRs on multiple molecular levels. Integrative
analysis of omics datasets of CRs is needed to evaluate their
activities and discover potential oncogenic CRs across can-
cer types.

Here, we performed an integrative analysis of CRs in
10,969 tumors from patients across 33 cancer types. A com-
putational method was proposed to prioritize functional
CRs in cancer; this method integrates genetic mutations,
gene expression, miRNA regulation, protein–protein inter-
action networks (PPIN), and regulation of epigenetic mod-
ifications. In-depth analysis was performed to explore the
functional features of common and specific CRs in can-
cer. Moreover, we found that functional CRs can con-
tribute to individual cancer type and pan-cancer reclassi-
fication. To better delineate the alterations and effects of
CRs in cancer, we have developed and presented FACER
(http://bio-bigdata.hrbmu.edu.cn/FACER/), a convenient
and friendly resource for biomedical researchers to further
investigate CRs. Systematic analyses of multi-omics data
across cancer types could help identify functional CRs in
cancer and further elucidate the commonalities and differ-
ences in mechanisms across cancer types.

MATERIALS AND METHODS

Manually curation of chromatin regulators

A list of CRs was collected from the literatures by man-
ual curation (13–18). Information on biological categories,
functions, and involved protein complexes was also col-
lected from these publications. We ultimately collected 870
CRs and classified them into three major categories and
seven subcategories by considering the regulatory patterns
described in the literatures (Supplementary Figure S1 and
Supplementary Table S1).

Somatic mutations of CRs in cancer

Somatic mutations of CRs sequenced by whole-exome se-
quencing were collected from The Cancer Genome Atlas
(TCGA) project. All sequencing platforms were considered,
and silent mutations were removed from our analyses. We
calculated the mutation frequency of a CR in specific can-
cer types, defined as the percentage of patients with at least
one somatic mutation on this CR.

mRNA and miRNA transcriptome across cancer types

Both mRNA and miRNA expression profiles for all can-
cer types were also obtained from TCGA (Supplementary
Figure S2 and Supplementary Table S2). For mRNA ex-
pression data, gene expression was measured through map-
ping RNA-Seq by Expectation Maximization (RSEM) for
all types of cancer. For glioblastomas (GBM), the miRNA
expression profile was measured by microarray, whereas
miRNA-Seq datasets were used for the remaining cancer
types. The expression of miRNAs was measured as reads
per million (RPM). We first removed genes (or miRNAs)
with RSEM (or RPM) expression values of 0 in all samples
and then log2-transformed the expression levels. Consider-
ing the limited number of normal samples, we combined all
normal samples together as the control for further analysis
(19).

Transcriptional regulation of CRs across cancer types

TF–gene interactions assayed by chromatin immunopre-
cipitation followed by sequencing (ChIP-seq) were down-
loaded from the ChIPBase database (20). To identify the
TF-CR interactions in specific cancer types, we used a lin-
ear regression model to evaluate the regulatory activity be-
tween the TF and CR on the basis of gene expression data.
All candidate TF-CR pairs with adjusted P<0.01 were iden-
tified as the TF-CR interactions in the cancer.

miRNA regulation of CRs across cancer types

miRNA-gene interactions were collected from the combi-
nation of all experimentally validated pairs from databases,
including miRecords (21), miRTarBase (22) and TarBase
(23). Similar as transcriptional regulation, miRNA-CR reg-
ulation in the context of cancer was identified on the basis
of their expression correlation measured by Pearson corre-
lation coefficient. Candidate miRNA–CR interactions with
adjusted P < 0.05 were retained for further analysis.
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Figure 1. The workflow for prioritizing the cancer-related functional CRs. The processes for prioritizing functional CRs for each cancer type involved
three steps. First, seven functional features were defined, and CRs were ranked based on the features. Second, the individual ranks were integrated into
aggregated ranks, and multiple classifiers were constructed on the basis of the aggregated ranks. Third, the classifiers were evaluated and the prioritized
CRs obtained in each cancer type. ‘RRA’ represents the robust rank aggregation method. The cancer type abbreviations are those used by TCGA.

Protein–protein interactions of CRs

A proteome-scale interaction network was generated by
high-throughput affinity-purification mass spectrometry
(24). We extracted the CR-related interactions, which con-
sist of 2915 interactions among 554 CRs and directly inter-
acting partners.

Regulation of DNA methylation by CRs across cancer types

DNA methylation datasets detected by Illumina Infinium
HumanMethylation450 BeadChip array were also down-
loaded from TCGA data portal. After selecting the pro-
moter CpG islands (CGIs) and open sea regional clusters
on the genome, we calculated the aberrant hypermethyla-
tion (over CGI probes) and hypomethylation (over open
sea probes) values for each tumor sample compared with
normal samples (Supplementary Methods). To evaluate the
global regulatory effect of a given CR on the DNA hy-
permethylation (or hypomethylation) in a specific cancer
type, we computed the significance of Pearson correlation
(P value) between CR expression and aberrant hypermethy-
lation (or hypomethylation) of tumor samples (25).

Clinical information of tumor samples

We obtained clinical characteristics of the patients from
TCGA, including survival state, survival time, disease stage
and histologic grade.

Prioritization of functional CRs based on multi-omics data in
cancer

We proposed a computational method to prioritize func-
tional CRs in each cancer type by integrating multi-omics

features of CRs, which involved three steps (Figure 1 and
Supplementary Figure S3). First, seven functional features
that characterize the activity, regulation by differentially ex-
pressed TFs and miRNAs, central roles in PPIN, and aber-
rant regulation of epigenetic modifications of CRs were cal-
culated. The activity levels of CRs were assessed on the ba-
sis of their mutation frequency and the extent of their dif-
ferential expression in cancer. Moreover, we evaluated the
aberrant regulatory activity of CRs by assessing their DNA
hypermethylation and hypomethylation levels. All the CRs
were ranked on the basis of the seven features in each cancer
type. Second, we constructed classifiers to prioritize func-
tional CRs for each cancer type on the basis of the aggre-
gated ranks, which integrated the seven separate ranks using
the robust rank aggregation method (26). The aggregated
ranks represent the global functional impact of CRs. Using
the cancer hallmark–related CRs as the gold standard data
set, we trained the classifiers using all possible feature com-
binations for individual cancer types. Third, we selected the
most effective combined feature (MECF) and obtained the
corresponding functional CRs in each cancer type.

Defining the functional features of CRs in cancer. We de-
fined seven features to evaluate the functional impact of
each candidate CR in cancer (Table 1). Fmu is the mutation
frequency of the CR. Fde is the value of –log(P), where P
is the P value from the Student t-test used to evaluate the
significance of differential expression of CRs in cancer. Ftf
is the proportion of differentially expressed TFs (adjusted
P < 0.01 by t-test and |log2(fc)| > 1) to the overall TF set
that regulates this CR. Fmi is the proportion of differen-
tially expressed miRNAs (adjusted P < 0.01 by t-test and
|log2(fc)| > 1) to the overall miRNAs that regulate the CR.
Fppi is the number of interacting partners of the CR in the
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Table 1. The definition and calculation of seven features

Feature Feature value (for each CR in each cancer)

Fmu Num. of mutated samples / Num. of all samples
Fde –log10(P), P represents the significance of CR differential

expression calculated by t-test
Ftf Num. of diff-expressed TFs/number of regulatory TFs
Fmi Num. of diff-expressed miRNAs/number of regulatory

miRNAs
Fppi Num. of CR neighbors in PPIN
Fhyperm –log10(P), where P represents the significance of CR

regulation to sample hypermethylation
Fhypom –log10(P), where P represents the significance of CR

regulation to sample hypomethylation

PPIN. Fhyperm and Fhypom are negatively logarithmic P val-
ues of correlation between CR expression and DNA hyper-
methylation and hypomethylation scores, respectively. Each
CR was ranked by these features in descending order. That
is, in a specific cancer type, a CR with a higher value for
a feature was considered to have greater importance with
regard to that feature in that cancer.

Evaluating the functional impact of CRs by aggregated ranks.
We first constructed gold standard positive and negative
control sets. The true positives were defined as known can-
cer hallmark–related CRs. Cancer hallmark–related genes
were obtained from MSigDB V4.0 (27). Compiling a list
of negative controls is currently difficult or even impossi-
ble. Thus, we randomly selected the same number of non–
hallmark-related CRs as negative controls. This process was
repeated 100 times.

To identify the functional CRs in each cancer type, clas-
sifiers were developed on the basis of all possible combi-
nations of the seven features. In total, there are 127 fea-
ture combinations. For each feature combination, multiple
ranks of each CR were aggregated to a final rank based on
the robust rank aggregation method (26). For each feature
combination, the robust rank aggregation method com-
prised two steps based on multiple feature ranks (one to
seven feature ranks) of 870 CRs as follows. Let g be the
number of CRs and f be the number of features. First, we
obtained normalized ranks with the maximal rank value of
1 by dividing ranks by the maximal rank value g. For each
CR, we got the corresponding rank vector r = (r1, . . . , rj. . . ,
rf), where rj denotes the normalized rank of this CR in the
jth feature. Second, a scoring method that produces com-
parable scores for CRs was performed. The scoring method
was based on the assumption that all normalized feature
ranks come from a uniform distribution; the method deter-
mined how probable it is to obtain r̂k ≤ rk when the rank
vector r̂ is generated by the null model. The probability that
r̂k ≤ rk was denoted by βk,f(rk) and calculated as follows:

βk, f (rk) =
∑ f

l=k

(
f
l

)
r l

k(1 − rk) f −l

Then we defined minβ as the minimum of βk,f(rk):

minβ = min
k=1,..., f

βk, f (rk)

and obtained the final score for the rank vector r s(r), which
was defined as the adjusted P value of minβ by Bonferroni

correction. For each feature combination, according to the
final score of each CR, we obtained the aggregated rank.
Using the gold standard data set and negative control set
mentioned above, we validated the prediction efficiency of
each classifier by calculating the area under the receiver op-
erating characteristics curve (AUC). With the use of 100
randomly selected negative controls, the AUC of each clas-
sifier was represented by the mean value of 100 AUCs.

Prioritizing functional CRs. For a given cancer type, the
classifier with the highest AUC was selected as the optimal
classifier. In addition, the corresponding feature combina-
tion of this classifier was considered the MECF. We then
identified top-ranked 100 CRs as the functional CRs in the
cancer.

Survival analysis

We performed survival analysis to identify the association
of functional CRs with patients’ overall survival. For given
CR sets, we divided the tumor samples into different num-
bers of subtypes based on those CRs’ expression levels.
Kaplan-Meier survival plots and log-rank tests were used to
evaluate the survival differences between groups of patients.
This process was performed using the R package ‘survival’
(28).

Construction of pan-cancer and cancer-specific CR networks

A pan-cancer–associated CR network was constructed by
integrating CR-related interactions from three aspects, in-
cluding protein interaction, TF regulation and miRNA reg-
ulation. We first obtained direct and indirect interaction
partners for common CRs from PPIN. For TF and miRNA
regulation, we ranked each regulation by the frequency of
cancer types. The top 10% of regulations, with the high-
est frequency, were added to the CR-related network. For
cancer-specific networks, the TF/miRNA-CR interactions
observed in the specific cancer were selected. In these CR-
related networks, three types of nodes (common/specific
CR, TF, miRNA) and three types of edges (CR-CR, TF-
CR and miRNA-CR) were included.

Reclassification of tumor samples based on CR-related tran-
scriptome data

We developed an integrated subtype classification system
based on transcriptome data for functional CRs, and for
TFs and miRNAs that target the functional CRs. In ad-
dition, the TFs and miRNAs need to be differentially ex-
pressed in cancer. Next, we followed a two-step approach
called COCA (cluster-of-cluster assignment) to identify the
cancer subtypes (29). First, consensus clustering for the CR,
TF, and miRNA expression profiles was performed sepa-
rately for each. Second, the results of single-level clustering
were processed into a Boolean matrix and then taken as the
input of second-level consensus clustering for tumor sam-
ples. As a result, we obtained the high-order subtypes for 33
cancer types. We also performed reclassification for all of tu-
mor samples from all 33 cancer types following the COCA
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approach by integrating the expression profiles of cancer-
specific CRs, and of TFs and miRNAs that target the spe-
cific CRs. Only TFs and miRNAs that showed expression
perturbation in at least one cancer type were considered.

RESULTS

Functional characterization and prioritization of CRs across
33 cancer types

Multi-level deregulation of CRs was observed in cancer;
thus we proposed an integrative method to identify cancer-
related CRs by integrating multiple functional features of
CRs. We first collected a relatively comprehensive list of
CRs by manual curation (2–5,25,30–32), which involved
870 CRs. These CRs were further classified into three cat-
egories and seven subcategories (Supplementary Figure S1
and Supplementary Table S1). Next, we integrated multi-
omics data from tumor patients representing 33 cancer
types in TCGA (Supplementary Figure S2 and Supplemen-
tary Tables S2 and S3) and proposed feature classifiers to
prioritize functional CRs. In these classifiers, we defined
seven features to evaluate the functional impact of each CR
in a given cancer (Figure 1). The seven features involved
two indices that measure CR mutation frequency and the
extent of differential expression; three indices that evaluate
the targeting of CR at the transcription, post-transcription,
and protein interaction levels; and two indices that assess
the regulation of CR on DNA hypermethylation and hy-
pomethylation. We next ranked all CRs by these features in
descending order and compared the relative ranks of can-
cer hallmark–related CRs and other CRs. We found that
hallmark-related CRs had significantly lower ranks than
other CRs across the seven features we defined (Supplemen-
tary Figure S4). These results indicate that these features
can be used to identify functional CRs in cancer. Thus, we
performed robust rank aggregation (26) to prioritize func-
tional CRs by considering the seven features synthetically.
Considering the AUC of the classifiers constructed using
different combinations of features, we selected the classi-
fier that gave the highest AUC. The MECFs for each can-
cer were also identified. We found that the AUCs for classi-
fiers that combined multi-dimensional features were signifi-
cantly higher than those based on individual features (Sup-
plementary Figure S5). These results suggest that it is nec-
essary to combine multiple features for the prioritization of
functional CRs. On the basis of the classifier with the high-
est AUC, we identified the 100 top-ranked CRs in each can-
cer. Finally, 640 CRs were totally identified as functional
CRs across the 33 cancer types (Supplementary Table S4).

Next, we investigated the potential dysregulation mecha-
nism of the prioritized CRs. Cancer-related functional CRs
tend to show widespread perturbation across cancer types
compared with other CRs (Figure 2A). For example, func-
tional CRs in colon adenocarcinoma (COAD) exhibit per-
turbations in six aspects, including higher mutation fre-
quency, differential expression, stronger regulation by dif-
ferentially expressed TFs and miRNAs, higher centrality
in PPIN, and stricter regulation of genome hypermethyla-
tion (Wilcoxon rank-sum test, Figure 2B–G). On the other
hand, the perturbations of functional CRs vary across can-
cer types (Figure 2A), even for cancers with similar tissue

origins. For instance, for uterine corpus endometrial carci-
noma (UCEC) and uterine carcinosarcoma (UCS), which
both originate from the uterus, the perturbations of CRs
were different despite their significant number of shared
functional CRs (hypergeometric P = 2.31e–07). Although
both of the functional CRs in UCEC and UCS are located
in the center of PPIN, the functional CRs in UCEC are
likely to show expression perturbation and play critical roles
in the regulation of hypomethylation. In the contrast, the
functional CRs in UCS exhibit higher mutation frequency
compared with other CRs.

To investigate the contribution of each feature in priori-
tizing the functional CRs in cancer, we next identified the
MECFs in each cancer type. Interestingly, we found that
MECFs were different across 33 cancer types. In particu-
lar, the MECFs in 30 cancer types consisted of more than
two features, and the MECFs in six cancers included four
features (Figure 2H). These observations suggest multi-level
functional perturbation of CRs in cancer. However, it is not
clear to what extent each feature contributes to functional
CR prioritization. Thus, we calculated the number of cancer
types each feature was involved in. Mutation frequency and
centrality in PPIN were found to be the top two recurrent
features (Figure 2I), which were involved in 25 and 29 can-
cer types, respectively. These results suggest that genes with
high mutation frequency or with high centrality in PPIN
are likely to be involved in cancer development. For exam-
ple, IDH1, a DNA methylation eraser, was found to be the
functional CR in three cancer types with high mutation fre-
quency (78%, 13.9% and 10.7% in brain lower grade glioma
(LGG), cholangiocarcinoma (CHOL), and acute myeloid
leukemia (LAML), respectively). Another example is a his-
tone deacetylase (HDAC1), which was found to be a func-
tional CR in 16 cancer types. This CR exhibits a higher cen-
trality (in top 11%) in PPIN. Both of these CRs (IDH1 and
HDAC1) are well-known targets of epigenetic cancer drugs,
such as IDH inhibitors or HDAC inhibitors (33). More-
over, we found that as the expression of IDH1 increased, the
DNA methylation on open sea clusters decreased in LGG
patients (Supplementary Figure S6). Taken together, these
results suggest multiple-level perturbation of CRs across
cancer. Integration of omics data can help prioritize func-
tional CRs in cancer.

Histone modifiers and chromatin remodelers are more likely
functional CRs

In accordance with epigenetic regulation patterns, we
grouped the functional CRs that we identified into three
major categories: DNA methylators, histone modifiers and
chromatin remodelers. In addition, we further divided the
DNA methylators and histone modifiers that we identi-
fied into readers, writers and erasers (Supplementary Fig-
ure S7). We next calculated the number of functional CRs
in different categories and found that the majority of these
CRs were histone modifiers across various cancer types.
Moreover, we found that DNA methylation readers and his-
tone modification writers were the most common functional
CRs across all 33 cancer types (Figure 3A). Next, we ex-
plored whether this result is biased according to the num-
bers of CRs in different categories. We calculated the odds
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Figure 2. The global features of functional CRs across cancer types. (A) A global view of the seven features of functional CRs across cancer types. The
columns represent the significance of the tests of whether the feature values for functional CRs were higher compared with those of other CRs. The values
are colored based on the adjacent color map. (B–G) The comparison results of functional CRs and other CRs in COAD for the seven features, including
CR mutation frequency (B), negatively logarithmic P values of CR differential expression (C), proportion of differentially expressed TFs to the overall TF
set that regulates this CR (D), proportion of differentially expressed miRNAs to the overall miRNA set that regulates this CR (E), CR degree in PPIN
(F) and negatively logarithmic P values of correlation between CR expression and DNA hypermethylation and hypomethylation (G). (H) The summary
MECFs for 33 cancer types. The right bars show the number of cancers with a certain number of features in their MECFs. Each point set represents the
MECF of the cancer indicated on the right. The node size indicates the frequency of features across cancers, and different colors correspond to different
features. (I) The frequency of the seven features in MECFs across 33 cancer types. ‘Fun-CR’ represents functional CRs and ‘O CR’ represents other CRs.

ratios for different categories and subcategories of cancer-
context functional CRs and found that histone modifiers
and chromatin remodelers were universally prioritized as
functional CRs while DNA methylators were rewired across
cancer types (Figure 3B, top). Moreover, histone modifi-
cation readers and writers as well as chromatin remodel-
ers played important roles across cancer types compared
with DNA methylation erasers and histone modification
erasers (Figure 3B, bottom). Interestingly, we found that

specific categories of CRs were likely to occur in several
cancer lineages. For instance, DNA methylation readers
tended to be related to gastrointestinal and gynecologic can-
cers, while DNA methylation writers tended to play roles
in cerebral, kidney, and hematologic diseases. However, we
found that the CRs are different, although the specific CR
category was involved in some cancer types. For example,
among DNA methylation writers, DNMT3B was identified
in GBM, while DNMT3A was likely to be critical in LGG.
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Figure 3. Epigenetic category of functional CRs across cancer types. (A) Pie charts show the numbers of CRs in different categories, and bar charts show
the numbers of CRs in different categories across cancer types. The cancers in bar charts are ordered as in Figure 2A. ‘M’ represents DNA methylator, ‘H’
represents histone modifier, ‘Cr’ represents chromatin remodeler, ‘Two’ represents two types, ‘a’ means ambiguous, ‘R’ represents reader, ‘W’ represents
writer and ‘E’ represents eraser. (B) The odds ratios for different categories of CRs across cancer types. The cancer type abbreviations are those used by
TCGA. (C) The CGI methylation in KIRP tumor samples is proportional to the expression of DNMT1 and DNMT3B. Darker color represents higher
expression. (D) Two groups of KIRP samples distinguished by the expression of DNMT1 and DNMT3B show significantly different CGI methylation
and different survival rates.

Potential functions of the prioritized CRs in cancer

As cancer-related hallmarks provide a framework for un-
derstanding remarkable biological processes in cancer, we
next focused on different categories of CRs in the context
of cancer hallmarks (34). Functional enrichment analysis
showed that DNA methylators, histone modifiers and chro-
matin remodelers were all enriched in at least one cancer
hallmark, especially in the hallmark ‘genome instability and
mutation’, highlighting the extent of genome alternations in
cancer (Supplementary Figure S8 and Supplementary Ta-
ble S5). Histone modifiers were enriched in seven hallmarks,
indicating their widespread roles in cancers. Functional hi-
stone modifiers in almost all cancer types were enriched in

the functions ‘evading apoptosis’, ‘genome instability and
mutation’, ‘insensitivity to antigrowth signals’, and ‘self-
sufficiency in growth signals’.

A number of studies have proposed that epigenetics-
related phenotypes, such as the CpG island methylator phe-
notype (CIMP), define distinct subgroups of cancer (35). As
CRs could regulate the genome-wide methylation pattern,
we next explored to what extent the functional CRs con-
tributed to the CIMP phenotype. We found that two DNA
methyltransferases, DNMT1 and DNMT3B, were priori-
tized as kidney renal papillary cell carcinoma (KIRP) re-
lated CRs, ranked at 14 and 19, respectively. These two
CRs showed expression perturbation in KIRP. We next in-
vestigated the association between the expressions of these
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two DNA methylators with hypermethylation of KIRP tu-
mor samples. We found that the patients highly express-
ing two DNA methylators have higher hypermethylation on
genome CGIs (P = 7.15e–04, Figure 3C). Moreover, the pa-
tients showed a significant difference in survival (log-rank
P = 1.98e–04, Figure 3D). Next, we systematically ana-
lyzed the regulation of genome-wide DNA methylation lev-
els from all prioritized DNA methylators in the correspond-
ing cancers. We found that 90% of prioritized DNA methy-
lators significantly regulated DNA hypermethylation and
hypomethylation (P < 0.05, Supplementary Figure S9 and
Supplementary Table S6). For example, IDH2, an eraser of
DNA methylation, was found to significantly decrease the
genome-wide DNA methylation levels of LGG samples, in-
cluding CGI (R = –0.31, P = 1.85e–13) and open sea re-
gions (R = 0.19, P = 1.79e–05). These results suggest that
the perturbed expression of DNA methylators contributes
to the CIMP phenotype and that DNA methylators influ-
ence the prognosis of cancer patients by regulating genome
methylation.

We also revealed the functions of histone modifiers in hi-
stone modifications. For example, we found that PHF19, a
writer for H3K36me3 as a component of polycomb repres-
sive complex 2 (PRC2), was prioritized as a breast invasive
carcinoma (BRCA) related CR in our analyses. In addition,
PHF19 was up-regulated in patients with BRCA tumors. In
two other independent breast cancer cell line data sets that
we analyzed previously (36), the expression of PHF19 was
also up-regulated compared with that in a normal breast cell
line. Moreover, the genome-wide H3K36me3 marks showed
an obvious increase in cancer (36). These results suggest
that the up-regulated expression of PHF19 contributes to
the high H3K36me3 marks and further induces the devel-
opment of breast cancer.

Common and specific CRs play different roles in cancer

Plenty of studies have described the shared molecular char-
acteristics among different cancer types as well as the spe-
cific traits of individual cancers (34,37). Thus, we aimed
to explore the similarity and specificity of various cancer
types based on the similarity of prioritized functional CRs.
We calculated the Simpson index between pairs of cancers
on the basis of the prioritized CRs and found that CRs
were generally shared across different cancer types. Specif-
ically, 471 of 528 cancer pairs significantly shared the pri-
oritized chromatin regulators (P < 0.05, Supplementary
Figure S10). This phenomenon was more obvious in pairs
of cancers with similar tissue origins, such as COAD and
rectum adenocarcinoma (READ) (56% shared), ovarian
serous cystadenocarcinoma (OV) and UCS (65% shared),
and lung squamous cell carcinoma (LUSC) and head and
neck squamous cell carcinoma (HNSC) (50% shared). Fur-
thermore, we found that the overlap between LAML and
other cancer types was smaller than the overlaps between
the solid cancer types, which suggests a difference between
blood cancers and solid tumors. Next, we calculated the
number of related cancer types for each CR. The results
showed that as the number of cancer types increased, the
number of CRs related to those cancer types decreased. In
addition, we further grouped functional CRs according to

the number of cancer types they occurred in. Specifically,
32 CRs that occurred in more than half of the cancer types
(≥17 cancers) were defined as common CRs, whereas 193
CRs exclusively to one specific cancer type were defined as
specific CRs, and the remaining CRs were defined as mixed
CRs (Figure 4A). We found that the proportions of the three
groups of CRs across the 33 cancer types varied from 7% to
30% of common CRs and from 0% to 23% of specific CRs
(Figure 4B). Next, we analyzed the differential expression of
common chromatin regulators across cancer types. A total
of 15 CRs were found to be consistently differentially ex-
pressed (false discovery rate<0.05) across more than half of
the 33 cancer types. Among these CRs, 14 were up-regulated
in cancer, and 1 was down-regulated (Supplementary Figure
S11A). Interestingly, 11 of these 15 CRs showed consistent
deregulation across cancer types compared with the cor-
responding adjacent normal samples (Supplementary Fig-
ure S11B). These results indicate that common CRs tend to
show the same direction of expression perturbation across
cancer types. Moreover, it was observed that the functional
CRs in LAML involved relatively fewer common and rela-
tively more specific CRs compared with other cancers (8%
and 19%, respectively), which may be a consequence of the
difference between hematologic diseases and solid tumors.

We next analyzed the distribution of the common, spe-
cific and mixed CRs in cancer in different epigenetic cat-
egories. Overall, all of these types of CRs included DNA
methylators, histone modifiers, and chromatin remodelers
(Figure 4C and Supplementary Table S7). The common
CRs in cancer were found to be enriched mostly in read-
ers and writers for histone modification and chromatin
remodelers (19%, 56% and 19%, Supplementary Figure
S12). Among these CRs, we identified some well-known
oncogenes, such as KMT2C, SMARCD1 and SMARCA4
(1,33,38). For cancer-specific CRs, we found that these CRs
included 36% of the DNA methylation erasers and 35% of
the histone modification erasers. The specific CRs have pre-
viously been found to play specific roles in specific cancer
types. For example, the lung adenocarcinoma (LUAD) spe-
cific DNA methylation eraser APOBEC3F has been found
to play important roles in the immune response in non–
small cell lung cancer (39). Another LUAD–specific DNA
methylation eraser, APOBEC3C, has been reported to be
significantly associated with a decreased risk of lung can-
cer (40). Taken together, these results suggest the common-
alities and specificities of CR sets among multiple cancer
types.

Distinct functional features contribute to common and spe-
cific CRs in cancer

To uncover the potential perturbation mechanism of CRs
in cancer, we next investigated the seven original functional
features of common and specific CRs. Tracing the origi-
nal feature ranks of 32 common CRs, we found that their
aberrations varied across cancer types, even in cancers with
similar tissue origins (Figure 5A and Supplementary Figure
S13). For instance, KMT2C was prioritized as a functional
CR of both kidney chromophobe (KICH) and KIRP; how-
ever, its dysfunction mechanism differed between these two
cancer types. KMT2C showed a higher mutation frequency
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Figure 4. Common and specific CRs in cancer. (A) The definitions of common, specific, and mixed CRs in cancer. Bars show the number of functional
CRs with certain numbers across cancer types. (B) The frequencies of the types of CRs across cancer types. (C) The biological categories and ranks of the
three types of CRs. The colors in the heat map show the ranks of CRs. The cancers are ordered as in Figure 4B.

in KIRP patients, whereas the aberrant regulation of miR-
NAs and its regulation of DNA methylation over open sea
regions were additional features in KICH patients. On the
other hand, it is apparent that functional CRs in the same
cancer type play diverse roles (Figure 5A), suggesting the
advantage of integrating multiple features to identify func-
tional CRs. Next, we compared the functional features of
specific CRs between their related cancers and other cancer
types. For example, the GBM-specific CRs showed a higher
mutation frequency and more dysregulated expression in
GBM patients than in other tumor samples (Figure 5B).
Moreover, both regulation density from differentially ex-
pressed TFs/miRNAs and the aberrant regulation of DNA
methylation of specific CRs were found to be stronger in
related cancer types (Supplementary Figure S14A and B).

Next, we globally compared the seven features in all can-
cer types by focusing on common and specific CRs. We
found that common CRs in cancer had higher values for
all seven features compared with specific CRs, especially in

four functional features (all P < 0.05, Wilcoxon rank-sum
test), including mutation frequency, differential expression,
degree in PPIN, and regulation of genome hypermethyla-
tion (Figure 5C, top, and Supplementary Table S8). How-
ever, limiting the CRs to the related cancer types brought
different observations. The significantly higher mutation
frequency and greater differential expression of the com-
mon CRs were diminished considerably, and specific CRs
showed significantly higher regulation of hypermethylation
(P = 1.93e–03, Figure 5C, bottom). Moreover, specific CRs
tend to be targeted by more differentially expressed TFs
and miRNAs (P = 5.95e–04, P = 2.71e–04, respectively)
and showed a tendency toward greater regulation of DNA
hypomethylation (P = 0.06, Figure 5C, bottom). These re-
sults suggest that common CRs have extensive perturbation
mechanisms across cancers while specific CRs have inten-
sive aberrant mechanisms primarily in their unique related
cancer types.
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Figure 5. Portrayal of common and specific CRs in cancer. (A) Circos plot displays 32 common and 193 specific CRs. The top right sector shows the mean
ranks of common CRs at seven individual features and the aggregated feature levels in corresponding cancer types. The adjacent heat map indicates the
related cancer types for each common CR. The remaining sectors each indicate a unique cancer type with related specific CRs. Only cancers with at least
one specific CR are shown. The pie charts inside show the categories of common and specific CRs. (B) The features of GBM-specific CRs in GBM and
other cancer types, including mutation frequency and the extent of differential expression. (C) Feature values of common and specific CRs in 33 cancers
and in their related cancer types are shown at the top and bottom, respectively. Features are defined as in Table 1.

Cancer is rarely a consequence of perturbation in a sin-
gle gene but, rather, reflects the rewiring of a network (41).
We next constructed pan-cancer and cancer-specific asso-
ciated CR networks (as described in Materials and Meth-
ods). Network analysis revealed that common CRs tended
to form a tightly connected network compared with specific
CRs, with more internal interactions and targeting by more
common TFs and miRNAs (Supplementary Figure S14C).
In total, 79.6% of miRNAs (39 of 49) in the pan-cancer net-
work have been reported to be involved in multiple cancer
types (13–18). Function enrichment analysis for common
and specific CRs further revealed their different biological
functions. Common CRs in cancer were highly enriched for
basic cellular processes in multiple cancer types, while spe-
cific CRs were related to the cancer-specific processes (Sup-
plementary Figure S14D). In summary, distinct functional
features contributed to common and specific CR prioritiza-
tion in cancer. Common CRs play basic and extensive roles
while specific CRs hold special and intensive responsibilities
in carcinogenesis.

Functional CRs contribute to cancer subtyping with clinical
relevance

It is well known that cancers exhibit multiple subtypes with
different molecular perturbations and clinical outcomes
(42). The identification of clinically meaningful subtypes
based on these molecular profiles is helpful for personal-
izing therapy in cancer. We therefore sought to explore the

contribution of CRs to cancer subtyping. Based on cancer-
context functional CR–associated transcriptome data, we
performed subtype classification for the 33 cancer types.
As a result, tumor samples were clustered into 3–6 sub-
types across cancer types. The patients in different cancer
subtypes showed significantly different survival for 21 of
33 cancer types (log-rank P < 0.05, Supplementary Fig-
ure S15). These observations suggest the validity and effec-
tiveness of molecular classification based on cancer-context
functional CR–associated multi-omics data.

Next, we analyzed the molecular patterns and clinical dif-
ferences across different subtypes for each cancer type. For
instance, we classified adrenocortical carcinoma (ACC) tu-
mor samples into four subtypes (Figure 6A, Supplemen-
tary Figure S16, and Supplementary Table S9). The classi-
fication result was highly consistent with that of a previous
study (43). Subtype 4, which was seen in only one sample,
was excluded from further analyses. Comparing the clinical
and pathological features across the three remaining sub-
types of ACC, we found that patients in subtype 1 had the
most invasive and malignant tumors. We found that several
CRs, TFs, and miRNAs that contribute to the subtype iden-
tification were associated with cancer. RB1 is an example,
which was found to be associated with aggressive ACC pre-
viously (44). Moreover, the differences between these three
subtypes were also demonstrated by other independent CR
features, including different mutation frequencies and the
different DNA methylation patterns. Patients in subtype 1
of ACC showed the highest mutation frequency of TP53
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Figure 6. Cancer subtypes based on functional CRs. (A) Molecular patterns and clinical behaviors of ACC subtypes. The top panel represents the COCA
results. Comparison section indicates the consistency of the subtype classification with previous studies. The Clinical section shows the difference in clinical
factors between the subtypes. The Mutation section shows the differential mutation of the ACC-related functional CRs. The Methylation section denotes
the hypermethylation and hypomethylation of subtypes. The CR, TF, and miRNA sections represent the differentially expressed CRs, TFs, and miRNAs.
The bottom panel shows the overall survival (OS) outcomes for subtypes. (B and C) Molecular subtypes of LGG and BLCA. Detailed legends are shown
in Supplementary Figure S16.

and CGI methylation, while patients in subtype 3 showed
high mutation of KDM6B and the lowest open sea methy-
lation. In addition, we identified several subtypes for LGG
and bladder urothelial carcinoma (BLCA) tumor samples.
Differential molecular patterns across the subtypes were
demonstrated by the CR-associated multi-omics features
and showed different clinical behaviors for different sub-
types (Figure 6B and C and Supplementary Table S9). In
particular, we found that TP53, which is a common CR
related to 25 cancer types, showed different somatic mu-
tation frequencies across different subtypes of ACC, LGG
and BLCA and was overexpressed in the LGG subtype 2.
These results indicate that functional CRs not only charac-
terize the tumor samples but also contribute to cancer sub-
typing.

Specific CRs contribute to pan-cancer reclassified types

Exploration of the shared molecular alterations across can-
cer types spanning multiple tissues of origin has been mean-
ingful and challenging, as these findings can bring novel ap-
proaches for personalizing therapy (45). In the above anal-
yses, we divided single cancer types into subtypes with dif-

ferential molecular patterns and clinical behaviors. Next,
we extended the analysis in another direction to seek the
possible convergence of different cancer types that share
similar molecular patterns. Here we used the transcriptome
datasets of 193 cancer specific CRs to reclassify all pa-
tients using the COCA method (described in Materials and
Methods). Finally, we mainly obtained 37 reclassified types,
which included >1% of pan-cancer samples or >20% sam-
ples of any cancer type. We found that the pan-cancer re-
classified types showed a considerably consistent correspon-
dence with the tissue-of-origin types (Figure 7A). Kaplan–
Meier analysis was performed to investigate the prognosis
of patients from 37 types. We found that the patients in
different subtypes significantly differed in survival (Supple-
mentary Figure S17).

In the COCA results, some tumor samples from similar
tissues were clustered into one class, such as the GBM and
LGG samples in class 1 as well as the COAD and READ
samples in class 4. Moreover, tumor samples that derived
from different tissues could be converged owing to their
similar molecular mechanisms, as in the tumor samples in
classes 6, 13, 20, and 21. Focusing on the top 12 genes
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Figure 7. The reclassified molecular subtypes of pan-cancer patients. (A) Comparison between the COCA reclassified types and the tissue-of-origin types
for pan-cancer samples. The colors of COCA classes are explained in Supplementary Figure S16. (B) The top 12 genes mutated in the tumor types,
which are converted into class 6. Mutations shared across tumor entities are depicted by colored boxes. Functional CRs are marked with colored borders.
(C) The differential molecular patterns and clinical behaviors between KIRP samples in class 15 and those in class 16. KIRP-specific CRs and related
TFs/miRNAs are marked. (D) The clinical outcomes for KIRP, LUSC, BLCA, and MESO samples in different COCA classes. Detailed legends are shown
in Supplementary Figure S16.

with mutations in the different cancer types in these classes,
we found that these genes were greatly shared across dif-
ferent tumor entities (Supplementary Figure S18). For ex-
ample, for patients in class 6, which mainly spanned five
cancer types (esophageal carcinoma (ESCA), BLCA, cer-
vical squamous cell carcinoma and endocervical adeno-
carcinoma (CESC), HNSC, and LUSC) and involved 455
squamous-like tumor samples, 65% of mutated genes such
as TP53 and KMT2C were shared across these five cancer
types (Figure 7B).

We next focused on the cancer types that were classified
into multiple classes. Differential expression of the cancer-
related CRs, TFs, and miRNAs was observed among differ-

ent classes for a given cancer type (Supplementary Figure
S19). These molecular differences suggest different molec-
ular mechanisms in different subtypes. For instance, KIRP
samples were clustered into two independent classes (class
15 and class 16). RNA expression analysis showed that
not only the KIRP-specific CRs, TFs, and miRNAs that
were used to do the classification but also other CRs, TFs,
and miRNAs exhibited differential expression between the
classes, indicating a significant difference between these two
classes (Figure 7C and Supplementary Table S10). More-
over, other independent omics data also showed a differ-
ence between the two classes, as the KIRP tumor samples
in class 15 showed significantly higher hypermethylation



Nucleic Acids Research, 2018, Vol. 46, No. 19 10031

and hypomethylation (P = 5.10e–6 and P = 2.86e–3, re-
spectively) compared with the KIRP samples in class 16.
In addition, comparing clinical behaviors between class 15
and class 16, we found that class 15 was enriched for ma-
lignant type 2 samples and showed higher mortality with
worse clinical outcomes (Figure 7C). Moreover, survival
analyses of sub-cohorts showed significantly different out-
comes in several cancer types, including LUSC, BLCA and
mesothelioma (MESO) (Figure 7D). Taking these results
together, we propose an integrated molecular taxonomy for
pan-cancer patients based on cancer-specific CR molecu-
lar datasets, which present molecularly defined cancer types,
unlike prior tissue classification systems.

DISCUSSION

CRs play various roles in tumorigenesis. In this study,
we proposed feature-based classifiers and prioritized func-
tional CRs on a genome-wide scale for each individual can-
cer type. Analysis of the functional features revealed recur-
rent multi-omics effects of functional CRs across 33 can-
cer types. Comparing the recurrence levels of seven features,
we found that the mutation and interaction network fea-
tures were the most contributory features, which were de-
fined as the elements of most effective combined features
in 25 and 29 cancer types. Analysis of functional CRs in-
dicated that histone modifiers and chromatin remodelers
are ubiquitously prioritized, while DNA methylators are
rewired across cancer types. Moreover, readers and writers
for histone modification as well as chromatin remodelers
have common roles across cancer types. Furthermore, we
classified the functional CRs depending on the number of
cancer types they occurred in, and we found that common
CRs are associated with basic cellular processes and play
general roles in multiple cancer types, while specific CRs
are enriched in cancer-related biological processes and play
intensive roles in specific cancer types. By comparison be-
tween common, specific and mixed CRs as well as DNA
methylators, histone modifiers and chromatin remodelers,
we found that DNA methylation readers as well as histone
modification readers and writers were with more common
CRs, suggesting that these three categories of CRs tend to
be aberrant across cancer types. We also found that DNA
methylation erasers and histone modification erasers tend
to be dysregulated in specific cancer type. Moreover, molec-
ular reclassification of pan-cancer samples based on specific
CRs provides independent prognostic information beyond
tumor stage and tissue of origin. These observations suggest
that functional CRs could act as biomarkers that contribute
to classification of cancer subtypes and pan-cancer samples.

Increasing studies have showed that processes of DNA
methylation, histone modification and chromatin remod-
eling in tumors are not independent, but closely related
(46,47). For instance, histone modifiers can modulate the
genome methylation pattern by mediating the modifica-
tions on histones (46). Besides, histone modifiers and chro-
matin remodelers have been found to be able to influence
genome methylation by altering the activity of DNA methy-
lators by adding or removing histone modification marks
on DNA methylators or by changing the state of the chro-
matin. Thus, we investigated the regulation by all the CRs

of DNA hypermethylation and hypomethylation following
the approaches of a previous study to identify the functional
CRs (25). Analyzing the specific regulation of functional
CRs on epigenetics, 90% of the prioritized CRs were found
to significantly regulate the DNA methylation. Moreover,
we found that DNA methylators and histone modifiers can
induce the development of cancer by regulation of DNA
methylation and histone modifications, such as DNMT1,
DNMT3A and PHF19. We also identified several CRs that
can regulate genome-wide DNA methylation. For instance,
histone deacetylases (HDAC1, HDAC2, HDAC3, HDAC4,
HDAC5, HDAC7 and HDAC11) showed significant regula-
tion of the sample methylation in multiple cancer types. All
these clues demonstrated the complex relationship between
DNA methylation, histone modification, and chromatin re-
modeling. As additional data become available, further in-
vestigations of the regulation by CRs of histone modifica-
tion and chromatin remodeling will extend the integrative
analysis.

With the development of high-throughput sequencing
technology, datasets are increasingly being generated to
investigate TF–gene regulation. We integrated additional
transcriptional regulatory information from ChIPBase v2.0
(20), TRRUST (48) and data from Boyle et al. (49). In total,
99 497 transcriptional regulatory pairs were added (Sup-
plementary Figure S20), which was threefold the size of
the original dataset. Based on these integrated data, we re-
calculated the Ftf features for each CR. We found that the
new Ftf values of CRs significantly correlated with the origi-
nal values across cancer types (Supplementary Figure S21).
Moreover, we re-trained the classifiers on the basis of the
new features and further prioritized the CRs in cancer. We
found that the results were the same for 22 out of 33 cancer
types. For the other cancer types, the prioritized CRs sig-
nificantly overlapped with those prioritized in our original
analyses (Supplementary Table S11). All these results indi-
cate that the method is robust to differences in transcrip-
tional regulatory data.

In addition, a free, web-accessible database called
FACER (http://bio-bigdata.hrbmu.edu.cn/FACER/) was
presented (Supplementary Figure S22). The web site of-
fers three layers of information for 640 cancer-related func-
tional CRs, including basic information (biological func-
tion and involved protein complex), epigenetic category, re-
lated cancer types, and details of seven aberrant features of
functional CRs. The common and specific roles of func-
tional CRs are also stored in FACER. Users can obtain
this detailed information for CRs of interest, cancer types
of interest, or both. We believe that this database will serve
as a valuable public resource for further investigations of
CRs. Furthermore, we review the number of publications
in PubMed database for each cancer-related functional CR,
which is listed in Supplementary Table S12. This result will
help researchers understand the studies of CRs at a holistic
level.

In summary, we developed feature-based classifiers to
systematically identify cancer-context functional CRs for
33 cancer types and revealed the molecular perturbations of
CRs in different categories as well as common and specific
CRs. The global dissection of functional CRs across vari-
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ous cancer types will serve as a valuable resource for further
investigating the function of epigenetics in tumorigenesis.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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