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Abstract

The neuronal ceroid lipofuscinoses (NCLs) are lysosomal storage disorders characterized by 

progressive neurodegeneration and declines in neurological functions. Pathogenic sequence 

variants in at least 13 genes underlie different forms of NCL, almost all of which are recessively 

inherited. To date 13 sequence variants in 8 canine orthologs of human NCL genes have been 

found to occur in 11 dog breeds in which they result in progressive neurological disorders similar 

to human NCLs. Canine NCLs can serve as models for preclinical evaluation of therapeutic 

interventions for these disorders. In most NCLs, the onset of neurological signs occurs in 

childhood, but some forms have adult onsets. Among these is CLN12 disease, also known as 

Kufor-Rakeb syndrome, PARK9, and spastic paraplegia78. These disorders result from variants 

in ATP13A2 which encodes a putative trans-membrane ion transporter important for lysosomal 

function. Three Australian Cattle Dogs (a female and two of her offspring) were identified with 

a progressive neurological disorder with an onset of clinical signs at approximately 6 years of 

age. The affected dogs exhibited clinical courses and histopathology characteristic of the NCLs. 

Whole genome sequence analysis of one of these dogs revealed a homozygous c.1118C > T 

variant in ATP13A2 that predicts a nonconservative p.(Thr373Ile) amino acid substitution. All 3 

affected dogs were homozygous for this variant, which was heterozygous in 42 of 394 unaffected 

Australian Cattle Dogs, the remainder of which were homozygous for the c.1118C allele. The high 

frequency of the mutant allele in this breed suggests that further screening for this variant should 

identify additional homozygous dogs and indicates that it would be advisable to perform such 

screening prior to breeding Australian Cattle Dogs.
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1. Introduction

Dogs suffer from many of the same hereditary progressive neuro-degenerative diseases 

that occur in humans. Among these are a group of disorders designated the neuronal 

ceroid lipofuscinoses (NCLs). In people these diseases are characterized by apparently 

normal development followed by progressive declines in cognitive and motor functions, 

loss of vision, seizures, and in most cases premature death [1]. These clinical signs are 

accompanied by progressive degeneration of the central nervous system and usually the 

retina as well. The human NCLs are designated CLN1 through CLN14 based on the gene 

in which the pathological sequence variant occurs. DNA sequence variants that underlie the 

NCLs occur in at least 13 genes [2] (Table S1). The ages of onset of clinical signs and 

the rates of disease progression vary depending on the gene in which the causative variant 

occurs and the nature of the variant [3]. The disease phenotype can vary substantially with 

each form of NCL [1]. Onset of disease signs ranges from infancy to adulthood.

Diseases with clinical signs similar to the human NCLs have been reported in over 20 dog 

breeds [4,5]. The causes of the majority of these canine disorders have been found to be 

variants in the canine orthologs of genes associated with human NCLs. To date, sequence 

variants in 9 canine orthologs of human NCL genes have been associated with NCLs in dogs 

[4,5]. Among these are diseases with onset of clinical signs ranging from a few months to 7 

years of age.

Australian Cattle Dogs are one of the breeds affected by NCL for which a genetic basis has 

been identified. The disease-causing genetic variant identified in the breed is a truncating 

nonsense variant in CLN5 [6]. This same variant causes NCL disease in Border Collies [7]. 

The onset of clinical signs in dogs with this variant becomes apparent around the age of 12 

months and affected dogs reach end-stage disease with severe neurological signs at 20 to 

27 months of age. Three closely-related Australian Cattle Dogs presented with progressive 

neurological signs typical of the NCLs that did not become apparent until the dogs were 

approximately 6 years of age with disease progression from onset to end-stage of up to 

more than 2 years. None of these dogs had the CLN5 sequence variant previously associated 

with NCL in this breed. Studies were therefore undertaken to determine whether these dogs 

suffered from another form of NCL, and to determine whether their disease was associated 

with a sequence variant in one of the known NCL genes.

2. Materials and methods

2.1. Ethics statement

The dogs in this study were examined and blood and tissue samples were collected 

with the consent of their owners. The studies were performed with the approval of the 
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Cantonal Committee for Animal Experiments (Canton of Bern; permit BE75/16). All animal 

experiments were done in accordance with local laws and regulations including the U.S. 

National Institutes of Health Guide for the Care and Use of Laboratory Animals.

2.2. Animals

This study included 397 Australian Cattle dogs. Three closely related dogs presented clinical 

signs characteristic of NCL and were designated as cases. These signs are described in detail 

in the Results section of this paper. The three affected Australian Cattle Dogs in this study 

consisted of a female (dog A) and two offspring from one of her litters (one male [dog B] 

and one female [dog C]). Also included is dog D, the father of dogs B and C. DNA samples 

from the remaining 393 Australian Cattle Dogs were collected in the context of other 

ongoing research projects. They included 26 Australian Cattle Dogs older than 6 years that 

did not show any signs of neurological disease and 367 Australian Cattle Dogs, for which 

no phenotype information was available and which were considered population controls. 

Samples which had been donated to the Vetsuisse Biobank from 555 additional dogs of 70 

diverse breeds were also used as controls (Table S2). Genomic DNA was extracted from 

whole blood of each of these dogs.

2.3. Disease phenotype characterization

Characterization of the behavioral abnormalities in the three affected dogs was based 

primarily on information provided by the dogs’ owners on a symptom survey form that 

has been in use for over 10 years for identifying dogs with various forms of NCL or by 

information provided by the owners in a similar manner. Dog A was euthanized at the age of 

8 years and 2 months due to the progression of disease signs. Before her death, blood was 

obtained for DNA isolation, but no tissues were collected at the time of euthanasia. Dogs 

B and C were euthanized at the age of 6 years and 9 months and at 7 years and 7 months 

respectively due to progression of disease signs, and tissues were collected at the time of 

euthanasia, as described below. Dog D lived to the age of 16 years and did not exhibit any 

behavioral or neurological abnormalities.

At the time of euthanasia, samples of cerebellum, parietal cerebral cortex, eyes, and heart 

ventricular wall were collected from dogs B and C and a section of cervical spinal cord was 

collected from dog C. From each dog, one eye and a portion of each other tissue was fixed in 

10% buffered formalin or “immuno fix” (3.5% paraformaldehyde, 0.05% glutaraldehyde, 

120 mM sodium cacodylate, 1 mM CaCl2, pH 7.4), and the other eye and a portion 

of each other tissue was fixed in cacodylatebuffered glutaraldehyde or glutaraldehyde­

paraformaldehyde [8]. The formalin and “Immuno”-fixed tissues were embedded in paraffin 

or Tissue-Tek embedding medium (Sakura Finetek, Tokyo, Japan) and sections were cut 

and stained as described in the Results section. Immunostaining of paraffin sections for the 

lysosomal marker LAMP1 was performed with a polyclonal rabbit anti-LAMP1 primary 

antibody (Abcam ab24170) using previously described techniques [9]. In addition, unstained 

sections of the paraffin-embedded samples were deparaffinized and examined unstained with 

fluorescence microscopy as described previously, as were cryosections of the Tissue-Tek 

embedded samples [10]. Cryoscections of cardiac muscle samples were also examined after 

staining with the lipid dye Sudan Black III and counter-staining with Mayer’s Hematoxylin. 
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Portions of the glutaraldehydefixed tissues were post-fixed in osmium tetroxide, embedded 

in epoxy resin and 70 to 90 nm thick sections were cut from the embedded samples. 

The sections were collected on 200 mesh thin-barred copper grids, stained with uranyl 

acetated and lead citrate, and were then examined and photographed with a JEOL 1400 

transmission electron microscope equipped with a Gatan digital microscope. Sections of the 

resin-embedded tissues were also cut at a thickness of 0.4 to 0.8 μm, mounted on glass 

slides, stained with toluidine blue, and photographed with conventional transmitted light 

microscopy.

2.4. Reference sequences

All analyses were performed using the dog CanFam 3.1 genome assembly as reference 

sequence. Numbering within the canine ATP13A2 gene refers to NCBI RefSeq accessions 

XM_005617949.3 (mRNA) and XP_005618006.1 (protein). Numbering within the 

human ATP13A2 gene refers to NCBI RefSeq accessions NM_022089.3 (mRNA) and 

NP_071372.1 (protein).

2.5. Whole genome resequencing and variant filtering

An Illumina TruSeq PCR-free library with an insert size of 350 bp was prepared from 

one affected Australian Cattle dog (dog B) and 195 million 2 × 150 bp paired-end 

reads were obtained on an Illumina HiSeq 3000 instrument (21.6× coverage). Mapping 

and variant calling was done as described [11]. The sequence data were deposited under 

study accession PRJEB16012 and sample accession SAMEA104500413 at the European 

Nucleotide Archive. Functional effects and genomic context of the called variants were 

annotated using SnpEff software [12] together with the NCBI Canis lupus familiaris 
Annotation Release 104. For private variant filtering we used control genome sequences 

from 8 wolves and 209 dogs. These genomes were either publicly available [13] or produced 

during other previous projects in our laboratory (Table S3).

2.6. DNA extraction, PCR and Sanger sequencing

Genomic DNA was extracted from EDTA blood samples using the Maxwell RSC Whole 

Blood DNA Kit in combination with the Maxwell RSC machine (Promega). We used 

a Sanger sequencing protocol for targeted genotyping of the ATP13A2:c.1118C > T 

variant. Specifically, a 593 bp PCR product was amplified from genomic DNA using the 

AmpliTaqGold360Mastermix (Life Technologies) together with primers 5’-GAT GCC TGC 

ATG TAT GGT TG-3’ (forward) and 5’-GTG GGC GGT TTC ACT TTT TA-3’ (reverse). 

After treatment with exonuclease I and alkaline phosphatase, amplicons were sequenced on 

an ABI 3730 DNA Analyzer (Life Technologies). Sanger sequences were analyzed with the 

Sequencher 5.1 software (GeneCodes).

3. Results

3.1. Characterization of disease phenotype

The onset of neurological signs in the affected dogs occurred at approximately 6 years of 

age and progressively worsened over time. Among the disease-related signs reported by 

the dogs’ owners were anxiety, impaired ability to recognize and respond to previously 
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learned commands, increased sensitivity to loud or unexpected sounds, sleep disturbances, 

inappropriate or persistent vocalization, impaired ability to navigate stairs and to jump up 

or down from furniture, trembling, seizures, stiffness or weakness, loss of coordination, 

and ability to see in both bright and dim light. In addition to these signs, neurological 

examination findings in affected dog C included hypersensitivity to tactile stimuli, 

clumsiness, a broad-based stance in the pelvic limbs, mild ataxia, unsteady gait on slippery 

surfaces, intermittent pacing gait, hopping gait in pelvic limbs while trotting, reduced 

palpebral reflex and reduced menace response in both eyes, normal pupillary light reflexes 

in response to bright stimuli, and decreased nasal sensation. In addition, the affected dog that 

underwent a neurologic exam exhibited slightly delayed proprioception in the pelivic limbs, 

delayed and reduced hopping in all 4 limbs, and reduced extensor postural thrust. Spinal 

reflexes were normal. Dog B was euthanized at age 6 years and 9 months, and his littermate 

dog C was euthanized at age 7 years and 8 months due to the progression of these signs. Dog 

A, the mother of dogs B and C, was euthanized at age 8 years and 2 months. In addition to 

exhibiting the signs described above, she became very aggressive starting at about 8 years of 

age to the point of being dangerous, even toward her owner, and euthanasia was elected for 

this reason. Dog D, the father of dogs B and C, lived to be 16 years of age without exhibiting 

any of these behavioral abnormalities.

Although the behavioral signs exhibited by the affected dogs are consistent with the canine 

NCLs, other causes are possible, including other inherited neurological diseases or brain 

tumors. A universal characteristic of both canine and human NCLs is the progressive 

accumulation of autofluorescent lysosomal storage bodies in cells of the central nervous 

system, as well as many other tissues [1]. The presence of these storage bodies can be used 

to distinguish the NCLs from other neurological disorders. Therefore, unstained sections of 

brain, retina, and heart from affected dogs B and C were examined for the presence of these 

characteristic autofluorescent storage bodies.

The cerebellum of dogs B and C exhibited massive accumulations of autofluorescent 

storage bodies primarily in the Purkinje cell layer, the meninges and large neurons in 

the deep cerebellar nuclei (Fig. 1). These autofluorescent aggregates were also present to 

a lesser extent in the molecular layer of the cerebellar cortex. In the Purkinje cell layer 

autofluorescent inclusions were abundant within the perinuclear areas of the Purkinje cells 

(Fig. 1A), as well as in clumps much larger than typical Purkinje cell bodies (Fig. 1 

B). Abundant autofluorescent storage material was also present in the cerebellar meninges 

(Fig. 1C). Massive accumulations of the storage bodies in the deep cerebellar nuclei were 

localized to the perinuclear regions of large neurons (Fig. 1D).

In the cerebral cortex of both affected littermates, autfluorescent storage material was 

present in almost all neurons (Fig. 2). This material appeared as aggregates of small granules 

in the perinuclear regions of the cells. When the neurons were cut in the appropriate plane 

of section, these aggregates could be seen to be concentrated in one region of the cell 

body rather than being evenly distributed throughout the cell (Fig. 2B). Neurons in both the 

ventral and dorsal horns of the cervical spinal cord of dog C contained massive amounts of 

auto-fluorescent storage material (Fig. 3). As in other forms of canine NCL, disease-specific 

autofluorescent material was observed in retinal ganglion cells and along the outer limiting 
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membrane from affected dog C (Fig. 4A). At the electron microscopic level, the storage 

material in the ganglion cells consisted on membrane-bounded inclusions containing whorls 

of condensed membrane-like structures sometimes embedded in a granular matrix (Fig. 4).

As in some other forms of canine NCL, strands of autofluorescent storage bodies were 

present between the muscle fibers of the cardiac muscle (Fig. 5A). Based on their location 

and topography, it appears that these storage bodies are located in the cardiac Purkinje 

fibers. Substantial aggregates of autofluorescent storage bodies were also present in the 

neurons of cardiac ganglia (Fig. 5B).

The ultrastructural appearances of the disease-related cellular inclusion bodies in the tissues 

of affected dog B were quite distinctive. In the cerebellar Purkinje layer, these consisted 

of membrane-bounded structures as large as 4 to 5 μm in diameter (Fig. 6). The contents 

of most of these inclusions consisted primarily of whorls and stacks of membrane-like 

structures (Fig. 6A). However the contents of some inclusion bodies consisted largely of 

curvilinear material similar that which is characteristic of the storage material typical of 

the CLN12 form of NCL (arrows in Fig. 6A). A small minority of the inclusion bodies in 

the cerebellum consisted of tightly packed fine membrane-like material that was randomly 

oriented (arrowhead in Fig. 6B).

The contents of the membrane-bounded disease-related inclusions in cerebral cortical 

neurons of the affected dogs consisted primarily of clusters of membrane-like structures, 

much like those in the cerebellum (Fig. 7). However, for the most part these clusters did 

not occur in the whorl-like arrangements observed in the cerebellum. The sizes and shapes 

of the individual inclusion bodies were variable and range about 3 to as much as 20 μm 

in diameter. No inclusions with curvilinear contents were observed in the cerebral cortical 

samples, but some of the storage bodies contained scattered dark amorphous inclusions that 

were 0.5 to 1 μm in diameter.

The ultrastructural appearances of the disease-related auto-fluorescent inclusions of the 

cardiac muscle from the affected dog were quite different from those of the inclusions 

present in the brain. The disease-related inclusions in the cardiac muscle consisted of 

tightly-packed aggregates of membrane-bounded rounded structures and structures that 

appear to have been round but to have been compressed into other shapes by crowding from 

the surrounding inclusion bodies (Fig. 8). These inclusions consisted of a mixture of two 

distinctly different types based on the appearance of their contents. The contents of some of 

the storage bodies had a uniform electron-dense appearance with no structural detail. The 

contents of the remaining inclusions consisted of uniform flocculent material. The two types 

of inclusions were randomly intermixed and ranged in size from less than 0.2 μm to greater 

than 6 μm. No nerve ganglia were present in the cardiac samples that were preserved for 

electron microscopic examination.

The ultrastructural appearances of the uniformly electron dense structures within the cardiac 

muscle inclusions are typical of lipid droplets [14]. Indeed, these structures stained with 

the lipid stain Sudan Black III in cryostat sections of cardiac muscle (Fig. 9A), whereas 

the disease-related inclusion bodies in neural tissues did not stain with this dye. Within 
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the inclusions in the heart, a subset of the granular particles stained with the periodic acid­

Schiff (PAS) reagent, which is specific for the carbohydrate moieties of polysaccharides, 

glycoproteins, and glycolipids (Fig. 9B). The staining pattern in the heart suggested 

that only the structures with flocculent material and not the lipid droplet-like structures 

contained carbohydrate components. The disease-specific inclusions in the cardiac muscle 

also exhibited LAMP1 immunostaining (Fig. 9C) indicating that these inclusions were 

derived from lysosomes. The disease-specific cellular inclusion bodies in cerebral cortex 

and cerebellum also stained strongly with PAS, but those in the retina did not (data not 

shown). As with the cardiac muscle, the disease-specific cellular inclusions in the cerebral 

cortex, cerebellum and retinal ganglion cells stained with an anit-LAMP1 antibody (Fig. 10), 

suggesting that these inclusions were also derived from lysosomes.

In addition to exhibiting a characteristic autofluorescence, the storage material that 

accumulates in many of the NCLs has been shown to stain with Luxol fast blue in paraffin 

sections [15–17]. This was also the case for the storage bodies in every tissue from affected 

dog B that was examined (Fig. 11). Within the Purjkinje cell layer were clusters of cells 

variable in shape and size that were filled with autofluorescent material (Fig. 1B) that 

stained intensely with Luxol fast blue (g in Fig. 11B). These cells may be microglia-derived 

phagocytic cells (gitter cells) that have taken up large amounts of storage material that 

originated in Purkinje cells that have degenerated. Non-Purkinje cells in or near the Purkinje 

cell layer that contain disease-related storage material have been reported in other forms 

of canine NCL [6,18], and a similar clustering of these cells in the Purkinje layer of the 

cerebellum occurs in at least one of these other NCLs [6]. Whether these cells represent 

phagocytic cells that have taken up storage material originally generated in Purkinje cells 

remains to be determined.

In earlier-onset forms of canine as well as human NCL, the diseases are characterized by 

pronounced astrogliosis [6,18–21]. Immunostaining (IHC) of brain and retinal tissues of the 

affected Australian Cattle Dogs for glial fibrillary acid protein (GFAP), a marker for reactive 

astrocytes, indicated that astrogliosis is also a prominent feature of this late-onset disease, 

although not in the cerebellar cortex (Figs. 12 and 13). In addition, pronounced GFAP 

immunostaining was observed in small number of cells adjacent to large blood vessels in 

heart ventricular muscle and surrounding large blood vessels in the inner retina (Fig. 13).

3.2. Genetic analysis

We performed whole genome sequencing on one affected offspring and searched for private 

heterozygous and homozygous protein-changing variants in the case by comparing them 

with genome sequences from 8 wolves and 209 dogs from genetically diverse breeds (Table 

S3). We did not have any specific information regarding a potential NCL phenotype in the 

controls. However, as this is a rare condition, we assumed the control dogs and wolves to be 

homozygous wildtype at the causative variant.

The variant calling pipeline detected 4,028,278 variants in the genome of the sequenced 

case. Of these, 151 were absent from the control genomes and predicted to be protein­

changing. We prioritized 13 known candidate genes, which had previously been identified 

in human and animal neuronal ceroid lipofuscinoses (Table S1). Only one variant was 
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located in one of these candidate genes (ATP13A2), while the other 150 were in genes 

that we did not consider to be likely functional candidate genes (Table 1; Table S4). The 

ATP13A2 variant was a missense variant, XM_005617949.3:c.1118C > T, predicted to 

result in a non-conservative exchange of a threonine into an isoleucine, XP_005618006.1:p.

(Thr373Ile). The predicted amino acid substitution is located in the cytoplasmic E1-E2 

ATPase domain (pfam00122). The wildtype threonine is conserved in ATP13A2 orthologs 

across phylo-genetically diverse vertebrates (Fig. 14).

We then genotyped the variant in a cohort of 397 Australian Cattle Dogs, which included 

the 3 known cases, dog D, 26 unaffected Australian Cattle Dogs older than 6 years of age 

and 367 population controls. This revealed a perfect association of the genotypes with the 

phenotype (Table 2). All three affected dogs carried the variant in homozygous state. Dog 

D, the sire of the two affected dogs was heterozygous (obligate carrier). Among the other 

393 Australian Cattle dogs, we observed 352 dogs that were homozygous wildtype and 41 

dogs that were heterozygous and presumably carriers for the disease. These data indicate 

that among the Australian Cattle Dogs that were sampled, the carrier frequency is around 

10%. Because of sampling bias in our population, the carrier frequency among all Australian 

Cattle Dogs may be different. We also genotyped 555 dogs from genetically diverse breeds. 

None of these dogs carried the ATP13A2:c.1118C > T variant (Table S2).

4. Discussion and conclusions

A human autosomal recessive neurological disorder originally named Kufor-Rakeb 

syndrome (KRS) was first described in 1994 in members of a consanguineous Arabic family 

in which five siblings were affected [22]. The disease name was based on the name of the 

region in Jordan where the family resided. The onset of disease signs occurred at 12 to 

16 years of age and progressively worsened over time resulting in severe impairment of 

motor and cognitive functions within 2 years of onset. Initial signs were abnormal facial 

expressions and progressive slowing of all motor functions. The disease progression is 

characterized by development of levodopa-responsive parkinsonism (severe akinesia and 

rigidity), supranuclear upgaze paresis, constant drooling, speech impairment, and dementia. 

The most severely affected individuals were bedridden with a generalized flexed posture. All 

of the affected siblings had normal visual acuity and no retinal abnormalities were observed 

with fundoscopy. Significant atrophy of the globus pallidus and the pyramids, as well as 

generalized brain atrophy in later stages of disease progression were documented with 

magnetic resonance imaging. The disease was quite slow, but ultimately affected individuals 

died as a result of profound neurological decline. There was significant variability in the 

severity of clinical signs between the affected siblings. A causal genetic variant for this 

disorder was found to be a 22 bp deletion in exon 16 of ATP13A2 [23].

Subsequently, over 140 sequence variants in the coding regions of ATP13A2 have 

been identified in people, many of which have been reported to pathogenic (https://

www.ncbi.nlm.nih.gov/clinvar) [11,24–31]. Many of the pathogenic variants predict 

single amino acid changes in the protein, although partial deletions and splice site 

variants associated with neurological disease have also been identified [32]. Among the 

clinical diagnoses associated with these variants, are NCL (CLN12, OMIM 610513), a 
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Parkinsonian-like disorder designated PARK9, and spastic paraplegia78 (OMIM 617225) 

[33]. Interestingly, the latter authors found that a sequence variant in another NCL gene, 

TPP1, also resulted in spastic paraplegia that was responsive to L-DOPA. This represents 

one of a number of overlaps between phenotypes associated with ATP13A2 variants 

and variants in other NCL genes and supports the classification of ATP13A2 pathogenic 

variants as NCL types. In most cases of neurologic disease associated with a variety of 

ATP13A2 sequence variants, at least some of the signs were typical of recognized NCL 

disorders, including diffuse brain atrophy, myoclonus, progressive cognitive decline, tremor, 

hallucinations, and behavioral abnormalities. For more detailed information and citations to 

relevant publications, see OMIM entry 610,513.

The spectrum of clinical signs associated with these mutations varies both among 

individuals homozygous for the same variant and between indivuals with different variants 

in ATP13A2 [34–36]. The bases for this heterogeneity in clinical signs is unknown, but 

differences in ages of disease onset, progression, and clinical signs among individuals 

homozygous for the same variant suggest that other genetic differences modulate the effects 

of abnormalities in or absence of ATP13A2. Environmental factors are less likely to play 

a significant role in this heterogenity, since the disease pheontype can vary significantly 

among siblings.

Given the variability in phenotypes associated with different mutations or even with the 

same variant in ATP13A2 [29], one may be tempted to assign subsets of the disorders 

resulting from variants in this gene to either the NCLs, Parkinsonian disorders, spastic 

paraplegias, or other groups depending on the phenotype, but in some cases this would 

result in siblings with the same variant but different phenotypes being classified as having 

different diseases. On the other hand, it has become the convention in the NCL field to 

classify diseases in this group by the gene in which the variant occurs rather than by disease 

phenotype. This makes sense with respect to understanding the primary disease mechanisms 

and potential approaches to therapy. Therefore, because of the variability in phenotypes 

among patients with ATP13A2 variants, there is an advantage to grouping these disorders 

together under one designation based on the gene in which the causal variants occur, which 

we propose to be the currently accepted CLN12. As with the other NCL types, one can 

differentiate patients within the overall NCL groups as being “variants” of CLN12 based on 

phenotype. We discourage continued use of the disease names KRS, PARK9, and spastic 

paraplegia78 because it would be cumbersome and not particularly helpful to use a separate 

disease name for each different pathogenic ATP13A2 variant. Rather, we encourage future 

use of CLN12 to designate all disorders resulting from pathogenic variants in ATP13A2, 

with the addition of descriptive terms related to phenotype to describe subtypes of these 

disorders. This practice is well established in the NCL field for all forms of NCL, so 

for consistency, should be applied to all disorders resulting from pathogenic variants in 

ATP13A2.

The function of the protein or proteins encoded by ATP13A2 has not been firmly 

established. There is evidence that the ATP13A2 protein is a lysosomal transmembrane 

ATPase ion pump that appears to be a Zn2+ transporter [30,31,37–40]. Variants that 

are predicted to alter the function of ATP13A2 result in lysosomal dysfunction and 
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the accumulatiuon of lysosomal storage bodies [11,37,40–42], as well as altering other 

celluluar functions including endosomal trafficking and functions that either depend on 

intracellular zinc homeostasis or are secondary to lysosomal dysfunction [34–36]. However, 

experimental evidence also suggests that ATP13A2 plays a direct role in mitochondrial 

bioenergetics, autophagy, α-synuclein metabolism, and endosome-mediated cargo sorting 

[29,34–36,39,43,44]. Different pathological variants in human ATP13A2 have different 

effects on the protein, including its complete absence, impaired ATPase activity, mislocation 

within the cell, enhanced proteosomal degradation, and increased protein stability [31]. 

Which of these effects are associated with the Australian Cattle Dog p.(Thr373Ile) variant 

remain to be determined.

The neuronal ceroid lipofuscinoses (NCLs) are a group of inherited progressive 

neurodegenerative disorders that are characterized by normal development followed in most 

cases by progressive declines in cognitive and motor functions, loss of vision, seizures, 

brain atrophy, retinal degeneration, and a generalized accumulation of auto-fluorescent 

lysosomal storage bodies throughout the central nervous system and in many other tissues 

[1]. Variants in at least 13 genes underlie different forms of NCL [2]. Naturally occurring 

NCLs have been described in many dog breeds, and the genetic bases for these disorders 

have been identified in genes orthologous to those associated with human NCLs [4,5]. A 

late-adult onset form of NCL in Tibetan Terriers was found to result from a truncating 

single base deletion in ATP13A2 [45]. This deletion was associated with exon skipping 

in affected dogs [46]. These discoveries led to a re-evaluation of KRS associated with 

ATP13A2 variants and its classification as an NCL with the designation of CLN12 [47]. 

The basis for this classification, in addition to the similarity in clinical signs and progressive 

neurodegeneration, is the finding that like other NCLs, individuals that are homozygous 

for variants in ATP13A2 exhibit accumulation of auto-fluorescent lysosomal storage bodies 

with ultrastructural features characteristic of the NCLs.

Unlike the variability in clinical sigs in human subjects with neurological diseases associated 

with ATP13A2 sequence variants, even between siblings homozygous for the same variant, 

the disease signs and progression among Tibetan Terriers with CLN12 disease due to a 

single base deletion in ATP13A2 were quite uniform [45]. The age of onset is approximately 

7 years of age and neurological signs in most affected dogs progress to the stage at which 

euthanasia is elected at approximately 10 years of age. The clinical signs associated with 

the Tibetan Terrier disease only partially overlap those of human subjects with ATP13A2­

related disease. The canine disease is characterized by anxiety, aggression, cognitive decline, 

loss of coordination, ataxia, tremors, seizures (primarily near disease end-stage), and 

progressive vison loss in both dim and bright lighting. Unlike most human subjects with 

ATP13A2-related disorders, Tibetan Terriers with CLN12 disease exhibited pronounced 

retinal degeneration and impaired retinal function [48].

The Tibetan Terrier disease resulted from a single base deletion (frameshift) that would be 

expected to result in a complete lack of ATP13A2 protein, whereas the mutant allele in 

the Australian Cattle Dogs is predicted to encode a p.(Thr373Ile) amino acid substitution 

in ATP13A2. Because the wildtype threonine is conserved in ATP13A2 orthologs across 

phylogenetically diverse vertebrates, and replacement of threonine by isoleucine at p.373 
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results in a disease phenotype very similar to that of Tibetan Terriers with the ATP13A2 
single base deletion, it appears likely that Australian Cattle Dog missense variant alters an 

important functional domain of the protein. This is consistent with the fact that the age of 

onset was earlier and the rate of disease progression was faster in the Australian Cattle Dogs 

than that in Tibetan Terriers with the truncating variant. Because the affected Australian 

Cattle Dogs are expected to produce a dysfunctional form of ATP13A2, biochemical 

analyses of tissues from dogs with this mutation may lead to a better understanding of 

the normal function of this protein. The predicted amino acid substitution is located in 

the cytoplasmic E1-E2 ATPase domain, suggesting that this variant may alter an important 

function of this protein. Assessment of this possibility can be achieved by analyzing tissues 

obtained from dogs with this variant. As noted earlier, however, human subjects with single 

amino acid substitutions at many dispersed locations in APT13A2 have similar progressive 

neurological disease, so it appears that most domains of the protein are important for its 

normal functioning.

The disease-related inclusion bodies that accumulated in neurological tissues were similar 

in both Tibetan Terriers and Australian Cattle Dogs with late-onset NCL. Membrane-bound 

autofluorescent inclusions (lipofuscin) also accumulate in many postmitotic cells during 

normal aging. However, the ultrastructural features of the disease-related inclusions were 

quite distinct from those of lipofuscin, both in nervous tissues and in the heart [14,49–61]. 

The disease-related inclusions in cardiac muscle of the affected dogs were quite unique and 

differed substantially from those in the brain and retina (Fig. 8). These inclusions consisted 

of a mixture of round bodies with contents that had either uniform electron density or a 

flocculent appearance. Based on their staining properties, uniformly stained bodies appear 

to be lipid droplets, whereas material within the bodies that co-localize with them appear 

to have carbohydrate moieties. Cardiac muscle pathology has not been studied extensively 

in the NCLs, so it would be of interest to determine whether similar inclusions accumulate 

in the hearts of people and dogs with all of the various forms of NCL. The disease-related 

storage material that accumulates in all cell types that were examined in the affected dogs 

were stained with an antibody that specifically labels the lysosomal marker protein LAMP1. 

Therefore, these cellular inclusions can be classified as lysosomal storage bodies.

Although only two littermate Australian Cattle Dogs and their mother have been identified 

that are homozygous for the mutant allele, a screen of 394 other Australian Cattle Dogs 

with no known close relationship to the affected dogs identified 42 dogs that were 

heterozygous for the variant, but no other homozygotes (Table 2). It is somewhat unexpected 

that with such a high carrier frequency, no dogs homozygous for the mutant allele were 

identified in the population sample. However, now that a fair number of heterozygotes have 

been identified, it should be possible to identify additional homozygous mutant dogs by 

selectively screening relatives of the carrier dogs for the mutant allele. Identification of 

additional affected dogs by such screening should open the possibility of obtaining tissues 

and cell lines to study ATP13A2 function, and in particular the function of the region 

of the protein modified by the p.(Thr373Ile) variant. Affected dogs identified by genetic 

screening may also serve as a model for preclinical therapeutic intervention studies for 

CLN12 disease. While the late onset of disease signs makes use of affected Australian 

Cattle Dogs impractical as a laboratory model for CLN12 disease, therapeutic studies could 
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be conducted by recruiting privately owned dogs for treatment studies. Such studies could 

provide preclinical data necessary for the conduct of human clinical trials for treatments for 

human CLN12 disease.

With respect to preventing the propagation of NCL in Australian Cattle Dogs, the relatively 

high incidence of the disease allele in the population tested indicates that it would be 

advisable to test dogs in the general population for the presence of this allele before using 

them for breeding. Because of the late onset of clinical signs, this is the only practical means 

by which to reduce the disease frequency in the breed. As would be expected, such screening 

for the disease alleles associated with a number of inherited diseases in purebred dogs has 

been effective in reducing the frequencies of these alleles and the associated diseases over 

time [62–66]. However, in cases where the frequency of the deleterious sequence variant is 

very high, it is important that maintaining genetic diversity within the breed be considered. 

In these cases, the best choice may be to continue to breed heterozygotes with dogs that are 

homozygous for the wildtype allele.

As with human CLN12 disease, relative to species lifespan the onset of clinical signs was 

later and the rate of disease progression slower in dogs with ATP13A2-related NCL than in 

most other forms of NCL [4]. Based on the known functions of the gene product in many of 

the other NCLs, the reason for the late onset of CLN12 disease is not clear, particularly since 

all of the known NCLs appear to result in impaired lysosomal function. The reason for this 

may become apparent with further study of the Australian Cattle Dog disease, particularly 

now that affected dogs can be identified by genetic screening prior to the onset of clinical 

signs. The relatively late onset of clinical signs in the canine and human forms of the disease 

means that with early detection via genetic screening there is a large time window during 

which therapeutic interventions may be undertaken that would prevent or delay disease onset 

and progression.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Fluorescence micrographs unstained sections of the cerebellar Purkinje cell layer (A and 

B), the cerebellar meninges (C), and a deep cerebellar nucleus (D) from dog C. Massive 

accumulations of yellow-emitting autofluorescent material was present primarily in these 

areas of the cerebellum. Bar in (A) indicates the magnification of a 4 micrographs. In 

(A) p=Purkinje cell; m=molecular layer; g=granule cell layer. (For interpretation of the 

references to colour in this figure legend, the reader is referred to the web version of this 

article.)
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Fig. 2. 
Fluorescence micrographs of unstainded sections of the parietal cerebral cortex of dog B. 

Autofluorescent storage material was present in almost all of the cerebral cortical neurons, 

and in the larger neurons could be seen to be localized within the perinuclear region of the 

cells (B). Bar in (B) indicates the magnification of both micrographs.
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Fig. 3. 
Fluorescence micrographs of the ventral (A) and dorsal (B) horns of an unstained section 

of cervical spinal cord from dog C showing massive accumulations of autofluorescent 

storage material in neurons throughout the spinal cord gray matter. Bar in (B) indicates the 

magnification of both micrographs.
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Fig. 4. 
(A) Fluorescence micrograph of un-stained section of the retina from dog C. 

Autofluorescent material was present in the cell bodies of the ganglion cells (arrows) 

and small punctate autofluorescent bodies were present along the outer limiting membrane 

(olm). (B) Electron micrograph of disease-sepdific storage bodies (s) in a retinal ganglion 

cell from dog C. Abbreviations: GCL. ganglion cell layer; IPL, inner plexiform layer; 

INL, inner nuclear layer; ONL, outer nuclear layer; OLM, outer limiting memberane; POS, 

photoreceptor outer segments.
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Fig. 5. 
Fluorscence micrographs of sections of cardiac ventricular wall from affected dog B. 

Strands of autofluorescent granules were present along the cardiac muscle fibers arranged 

parallel with the longitudinal orientation of muscle fibers (A). Aggregates of autoflurescent 

inclusions were also present in neurons of cardiac ganglia (B). Bar in (A) indicates the 

magnification of both micrographs.
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Fig. 6. 
Electron micrographs of disease-related inclusion bodies in the cerbellar Purkinje layer from 

affected dog B. Individual membrane-bound inclusions occurred in tightly-packed clusters. 

The contents of the majority of the inclusion bodies consisted of whorls and stacks of 

membrane-like structures (A), but the contents of some inclusionbodies consisted primarily 

of curvilinear structures (arrows in B) or of tighlty-packed fine membrane-like material 

(arrowhead inB).
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Fig. 7. 
Electron micrograph showing disease-related inclusion in a neuron from the parietal cerebral 

cortex of affected dog C.
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Fig. 8. 
(A) Light microgaph of a large cluster of inclusion bodies in the cardiac muscle the heart 

ventricle of affected dog B. (B) Electron micrgraph of the same type of inclusion bodies in 

cells adjacent to the cardiac muscle fibers of affected dog B.
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Fig. 9. 
Light microgaphs of sections of heart ventricle cardiac muscles from an affected dog stained 

with Sudan black III (A), periodic acid Schiff reagent (B), and immunostainded with an 

anti-LAMP1 antibody. Arrows indicate disease-related inclusion bodies.
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Fig. 10. 
Light microgaphs of paraffin sections of cerebral cortex (A), cerebelum(B) and retina (C) 

from an affected dog. Sections were immunostained with an antibody against the lysosomal 

marker LAMP1. Inclusion bodies in cerebral cortical neurons (arrows in A), cerebellar 

Purkinje cells (arrows in B), and retinal ganglion cells (arrows in C) stained with the 

anti-LAMP1 antibody. Bar in B indicates magnification of all 3 micrographs.
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Fig. 11. 
Luxol fast blue stained paraffin sections of cerebral cortex (A), cerebellar cortex (B), ciliac 

ganglion (C), thalamus (D), retina (E), and cardiac muscle. Arrows indicate specific Luxol 

fast blue staining. In panel (B) the staining is apparent in both the Purkinje cells (p) and the 

large non-Purkinje cell aggregates in the Purkinje cell layer (g). In panel (E) the stained cells 

indicated by arrows are retinal ganglion cells. In the cardiac muscle the specific staining 

could be seen despite relatively high backgound staining in this tissue. In all cases, the 

localization of the stained inclusions was the same as the autofluorescence in unstained 

sections. Bar in (A) indicates the magnification of panels (A-E). (For interpretation of the 

references to colour in this figure legend, the reader is referred to the web version of this 

article.)
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Fig. 12. 
GFAP IHC stained sections of cerebellar cortex (A), a deep cerebellar nucleus (B), and the 

parietal cerebral cortex from affected dog C. No significant astrogliosis was observed in the 

cerebellar cortex, moderate astrogliosis was present in the deep cerebellar nuclei (B), and 

pronouced astrogliosis was present in the cerebral cortex (C). Purkinje cells were sparse 

in the cerbellum of dog B, but structures resembling the clusters of autoflourescent cells 

were present in the Purkinje layer (arrow in A). Purkinje cell densities were greater in 

Dog C. Aggregates of hematoxylin-stained material were present in the cell bodies on large 

neurons in the deep nuclei of the cerebellum (arrowheads in B). Bar in (C) indicates the 

magnification of all 3 micrographs.
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Fig. 13. 
GFAP IHC stained sections of cervical spinal cord ventral horn (A), cervical spinal cord 

dorsal horn (B),retina (C), and large cardiac ventricular muscle blood vessel from affected 

dog C. Significant astrogliosis was observed throughout the spinal cord gray matter (A 

and B) and in the retinal ganglion cell layer (C). GFAP-stained cells were also observed 

adjacent to blood vessels in the cardiac ventricual wall muscle (D). Bar in (A) indicates the 

magnification of all 4 micrographs.
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Fig. 14. 
Details of the ATP13A2:c.1118C > T variant. (A) Sanger electro-pherograms from dogs 

with the three different genotypes confirm the presence of the variant. (B) A multiple species 

alignment of the ATP13A2 amino acid sequence illustrates that the variant affects a highly 

conserved region of the protein. The wildtype threonine is perfectly conserved across diverse 

vertebrates.
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Table 1

Variants detected by whole genome resequencing of an affected Australian Cattle Dog.

Filtering step Variants
a

Variants in whole genome 4,028,278

Private variants in the whole genome
b 20,975

Private protein changing variants in the whole genome 151

Private protein changing variants in 12 candidate genes
c 1

a
Only variants which passed the GATK quality filter were counted.

b
Private variants were exclusively present in the affected dog and had homozygous reference or missing genotype calls in 217 control genomes.

c
ATP13A2, CLN3, CLN5, CLN6, CLN8, CTSD, CTSF, DNAJC5, GRN, MFSD8, PPT1, TPP1 (Table S1).
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Table 2

Association of the ATP13A2:c.1118C > T genotypes with neuronal ceroid lipofuscinosis.

Genotype C/C C/T T/T

Affected Australian Cattle Dogs (n = 3) - - 3

Australian Cattle Dogs, unaffected or population controls (n = 394) 352 42 -

Dogs from other breeds 555 - -
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