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OBJECTIVE

Observational studies have demonstrated that type 2 diabetes is a stronger risk
factor for coronary heart disease (CHD) in women comparedwithmen. However, it
is not clear whether this reflects a sex differential in the causal effect of diabetes on
CHD risk or results from sex-specific residual confounding.

RESEARCH DESIGN AND METHODS

Using 270 single nucleotide polymorphisms (SNPs) for type 2diabetes identified in a
type 2 diabetes genome-wide association study, we performed a sex-stratified
Mendelian randomization (MR) study of type 2 diabetes and CHD using individual
participant data in UK Biobank (251,420 women and 212,049 men). Weighted
median, MR-Egger, MR-pleiotropy residual sum and outlier, and radial MR from
summary-level analyses were used for pleiotropy assessment.

RESULTS

MR analyses showed that genetic risk of type 2 diabetes increased the odds of CHD
for women (odds ratio 1.13 [95% CI 1.08–1.18] per 1-log unit increase in odds of
type 2 diabetes) and men (1.21 [1.17–1.26] per 1-log unit increase in odds of type 2
diabetes). Sensitivity analyses showed some evidence of directional pleiotropy;
however, results were similar after correction for outlier SNPs.

CONCLUSIONS

ThisMRanalysis supports a causal effect of genetic liability to type2diabetes on risk
of CHD that is not stronger for women than men. Assuming a lack of bias, these
findings suggest that the prevention and management of type 2 diabetes for CHD
risk reduction is of equal priority in both sexes.

Type 2 diabetes is a major risk factor for coronary heart disease (CHD) (1). A meta-
analysis of observational studies demonstrated that type 2 diabetes is associated
with a 44% greater relative risk of CHD in women compared with men (2). However,
whether this reflects sex differences in the causal effect of type 2 diabetes on CHD or
arises from confounding in observational studies is not well understood. Most
observational studies adjust for traditional cardiovascular risk factors, yet novel
biomarkers, social and behavioral factors, or women-specific risk factors, such as
gestational diabetes mellitus, are not generally adjusted for andmay explain some of
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the sex difference (3–5). Sex differences
in screening for and treatment of type
2 diabetes might also contribute to the
greater excess risk of CHD conferred by
type2diabetesamongwomen relative to
men (6).
Mendelian randomization (MR) anal-

ysis exploits the natural random alloca-
tionof genetic variants at conception and
is an increasingly used approach that
can limit potential confounding in human
research (7). Under the assumption that
differences in the risk of disease arising
from genotype mimic changes in the
risk of disease acquired during life, MR
can be used to detect causal effects. MR
studies have supported a causal relation-
ship between genetic predisposition to
type 2 diabetes and CHD (8,9). However,
these studies did not evaluate sex differ-
ences in the causal role of type 2diabetes
in CHD risk. If type 2 diabetes has a
stronger causal effect on CHD risk in
women compared with men, randomly
allocated genetic variants that are risk
alleles for type 2 diabetes should also be
more strongly associated with the risk of
CHD in women than in men. Therefore, in
this study, we conducted an MR analysis
toexaminethesex-specificcausaleffectof
the genetic risk of type2 diabetesonCHD.

RESEARCH DESIGN AND METHODS

Data Sources and Study Participants
Data from the UK Biobank and a consor-
tiumof genome-wide association studies
(GWAS) for type 2 diabetes were used.
The UK Biobank is a large prospective
study of.500,000 individuals (10). Base-
line data collection in the UK Biobank
was conducted between 2006 and 2010
across 22 assessment centers. Participants
aged 37–73 years completed touchscreen
questionnaires, were interviewed by
trained researchnurses, andhadphysical

measurements taken and blood samples
extracted and frozen. The presence of
type 2 diabetes and CHD was self-reported
at study baseline and confirmed by a
trained nurse. Genotyping was performed
using the Affymetrix UK BiLEVE Axiom
arrayor theAffymetrixUKBiobankAxiom
array. A combined reference panel in-
cluding UK10K samples was used for
imputation (11). In accordance with the
National Research Ethics Service and
the governing research ethics committee
of UK Biobank, generic Research Tissue
Bank approval was obtained, and study
participants provided written informed
consent (10).

For the current study, we included in-
dividual participant data on 463,469 UK
Biobank participants who had concor-
dant genetic and self-reported sex, who
clustered with the Great Britain popula-
tion in 1000 Genomes (12), whose ge-
netic data were of sufficient quality (13),
and who provided data on type 2 di-
abetes and CHD at baseline. Individuals
with self-reported type 1 diabetes, ges-
tational diabetes mellitus only, or a di-
abetes diagnosis before the age of 18
years were excluded. CHD was defined
as a self-reported history of angina or
myocardial infarction, and linkage with
hospital admissionsdataand thenational
death register was used to also identify
incident diagnoses of CHD after the
baseline visit through ICD-9 or ICD-10
codes (410–414 and I20–I25, respectively)
using follow-up data from recruitment
through the end of February 2016 (mean
5.3 [SD 2.4] years), with 3,453 incident
cases of CHD for women and 7,420 in-
cident cases for men. Myocardial infarc-
tion was also defined using the UK
Biobankalgorithm(https://biobank.ctsu.
ox.ac.uk/crystal/crystal/docs/alg_outcome_
mi.pdf).

Sex-specific summary-level data (b-
coefficients and SEs) for the genetic con-
tribution of type 2 diabetes risk were
obtained from the European Diabetes
Meta-Analysis of Trans-Ethnic Associa-
tion Studies (DIAMANTE) GWAS of in-
dividuals with type 2 diabetes (30,053
women and 41,846 men) and control
participants (434,336 women and 383,767
men) of European descent (14). The UK
Biobank was excluded from GWAS esti-
mates used in our analyses to avoid
sample overlap.

MR and Selection of Single Nucleotide
Polymorphisms for Analyses
MR studies exploit the random assort-
ment and independent inheritance of
genetic variants in the population, which
removes bias that is due to reverse
causation and, if conducted appropri-
ately, greatly reduces bias from residual
or unmeasured confounding (15). How-
ever, three key assumptionsmust bemet
for genetic variants to serve as instru-
mental variables of an exposure in MR
analyses (16) (Supplementary Fig. 1).
First, the variants must be associated
with the exposure of interest; second,
they must not be associated with con-
founders of the relationship between the
exposure and the outcome; and third,
they must be independent of the out-
come except for their association through
the exposure. This third assumption re-
lates to the issue of horizontal pleiotropy
inwhich one ormore variants used in the
instrumental variable influences the out-
come through a pathway other than the
exposure of interest. When horizontal
pleiotropy has a net effect to bias the
properties of the genetic instrument,
the summaryMR estimate can be biased
either toward or away from the null. In
this situation, horizontal pleiotropy leads
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to bias of the underlying “true” causal
effect, and it is termed unbalanced hor-
izontal, or directional, pleiotropy.
In this study, we used data from the

UK Biobank for individual participant MR
analysis. Single nucleotide polymorphisms
(SNPs) with significant associations (P ,
5 3 1028) with type 2 diabetes from the
sex-combinedEuropeanDIAMANTEGWAS
were selected (Supplementary Table 1).
We assessed linkage disequilibrium (r2 .
0.2) using PLINK (17) on a reference panel
consisting of a random selection of 50,000
individuals from UK Biobank. Of 291
genome-wide significant SNPs from the
European DIAMANTE GWAS, 270 were
found in UK Biobank that were biallelic,
were not in linkage disequilibrium, and
were not derived from GWAS that ad-
justed for BMI. The SNPs were aligned to
the same effect allele, and effect allele
frequencies were checked for concor-
dance. These 270 SNPs were used to gen-
erate sex-specific weighted genetic risk
scores as the instrumental variable for
analyses(18). Individual SNPswerecoded
as 0, 1, or 2, depending on the number of
type 2 diabetes risk alleles. Each SNP
was weighted by the corresponding
sex-specific b-coefficient obtained from
the European DIAMANTE GWAS and
then summed for all SNPs. This method
reduces the risk of false-positive results
and bias toward the confounded obser-
vational association that may occur when
all data (SNPs, exposure, outcome) are
obtained from a single sample (19).

Statistical Analysis
The strength of the genetic risk score as
an instrument for type 2 diabetes was
assessed using the F-statistic, where an
F-statistic.10provides evidence against
the possibility of bias arising because of a
weak instrument (20). The association of
sex-specific genetic risk scores with po-
tential confounders was evaluated to
assess the validity of the second assump-
tion ofMR (i.e., the genetic instrument is
not associated with potential confound-
ers) and was also compared with the
observational association of type 2 di-
abetes statuswith potential confounders.
Two-stage residual inclusion (TSRI)

estimation using logistic regression at
the second stage (21) and Terza SEs
(22) were used to evaluate the associa-
tion of the genetic risk scores for type 2
diabetes with CHD to estimate the odds
of CHDper 1-log unit increase in the odds

of type 2 diabetes. This method in-
cludes first-stage residuals to correct
for endogeneity (21) since application
of traditional instrumental variable estima-
tion approaches can be problematic for
models that include a binary exposure
and a binary outcome (23). Models were
adjusted for age, genotype array, and the
first fourprincipal componentsof ancestry.

To assess and account for potential
directional horizontal pleiotropy, we also
performed summary-level MR analyses
using SNP to type 2 diabetes estimates
from DIAMANTE and SNP to CHD esti-
mates in UK Biobank. For summary-level
analyses, we obtained odds ratios (ORs)
and 95% CIs for the causal effect of a 1-
log unit increase in the odds of genetic
liability to type 2 diabetes on the odds
of CHD using the weighted median, MR-
Egger, MR-pleiotropy residual sum and
outlier (PRESSO), and radialMRmethods
(24–27). The weighted median method
calculates a median of the SNP-specific
causal estimates from the ratio method
for each SNP (25). It has been shown to
yield consistent estimates when the
weights of up to half the instruments are
not valid. TheMR-Eggermethod is equiv-
alent to an inverse variance–weighted
method but does not constrain the in-
tercept to zero, and as such, the MR-
Egger estimate is the slope of the modified
linear regression equation, and the in-
tercept represents the average pleio-
tropic effect across SNPs (24). A nonzero

intercept provides evidence of unbal-
anced horizontal pleiotropy, and the
slope of the regression coefficient should
provide an estimate that is free from bias
induced by unbalanced horizontal pleio-
tropy. Analyses were conducted using
theMendelianRandomization package in
R Studio version 1.2.1206. TheMR-PRESSO
test detects and corrects for horizontal
pleiotropy and was performed using the
MRPRESSO package in R (26). The first
part of the test (MR-PRESSO global test)
identifies the presence of horizontal
pleiotropy, the second part corrects the
causal estimate for identified pleiotropy
through outlier removal, and the third
part (MR-PRESSO distortion test) tests
whether the causal estimate significantly
differs before and after correction. Ad-
ditional analyses for pleiotropy assess-
ment used radial MR-Egger models to
identify outliers in the UK Biobank anal-
ysis using the WSpiller/RadialMR pack-
age in R with modified second-order
weights (27), andanalyseswere repeated
after exclusion of sex-specific outliers.
P values for the test of interaction for
estimates from separate analyses were
used to assess interaction by sex for each
analysis (28).

RESULTS

Characteristics of the UK Biobank par-
ticipants are presented in Table 1 and
Supplementary Table 3. Themean agewas
57 (SD 8) years, and 46% of participants

Table 1—Population characteristics, UK Biobank (N 5 463,469)

Women (n 5 251,420) Men (n 5 212,049)

Age (years), mean (SD) 56.6 (7.95) 57.0 (8.12)

Array type, n (%)
BiLEVE 24,920 (9.9) 24,897 (11.7)
Axiom 226,489 (90.1) 187,147 (88.3)

Type 2 diabetes, n (%) 9,964 (4.0) 16,917 (8.0)

BMI (kg/m2), mean (SD) 27.0 (5.1) 27.9 (4.2)

Waist circumference (cm), mean (SD) 84.6 (12.5) 97.1 (11.4)

Smoking history, n (%)
Never 146,521 (58.3) 102,139 (48.2)
Previous 81,252 (32.3) 82,970 (39.1)
Current 22,574 (9.0) 26,011 (12.3)

Dyslipidemia, n (%) 25,549 (10.2) 33,843 (16.0)

Hypertension, n (%) 57,721 (23.0) 64,668 (30.5)

Systolic BP (mmHg), mean (SD) 135.3 (19.1) 141.1 (17.4)

Diastolic BP (mmHg), mean (SD) 80.5 (9.9) 84.0 (9.9)

CHD, n (%) 12,716 (5.1) 26,344 (12.4)

Myocardial infarction, n (%) 3,807 (1.5) 12,871 (6.0)

Angina, n (%) 4,864 (1.9) 10,219 (4.8)

BP, blood pressure.
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were men. The prevalence of type 2 dia-
betes was 4% in women and 8% in men.
CHD was documented among 5% of
women (n 5 12,716) and 12% of men
(n5 26,344), with myocardial infarction
diagnosed in 1.5% of women (n5 3,807)
and6%ofmen (n512,871).Bothwomen
and men with CHD were more likely to
have traditional CHD risk factors (older
age, type 2 diabetes, and history of
smoking, dyslipidemia, and hyperten-
sion) (Supplementary Table 3).
The sex-specific 270-SNP genetic risk

score showed a strong association with
type 2 diabetes in both sexes (F-statistic
683 for women and 1,005 for men)
(Supplementary Table 2), thus satisfying
the first assumption of MR that the genetic
instrument is associatedwith the exposure.
We evaluated whether the apparent differ-
ence in instrument strength by sexwas due
tosexdifferences intheprevalenceoftype2
diabetes. In a random subset of UK Biobank
participants with 750 cases of type 2 di-
abetes for both women (n 5 18,493) and
men (n5 9,100), the adjusted F-statistic of
47 (R2 5 0.02) for women and adjusted
F-statistic of 45 (R2 5 0.03) for men were
similar (data not shown). Thus, because the

difference in instrument strength by sex
isaproductofgreaterprevalenceoftype2
diabetes in men, it is not likely to appre-
ciably affect the comparative validity of
estimates derived from MR analyses.

Potential confounders were similarly
distributed across quartiles of the ge-
netic risk score for both women and
men (Table2). Conversely, conventional
observational analyses showed that
type 2 diabetes status was strongly
associated with all potential confound-
ers assessed (Table 2), highlighting the
need for instrumental variables in this
setting.

Individualparticipant results fromTSRI
analyses in UK Biobank showed similar
effects of genetic risk of type 2 diabetes
on CHD for each sex (OR 1.13 [95% CI
1.08–1.18] forwomen,1.21 [1.17–1.26] for
men) (Table 3). Sensitivity analyses using
the weighted median method showed
attenuated results (1.04 [1.00–1.08] for
women, 1.06 [1.03–1.09] formen) (Table
3). Using MR Egger, evidence of direc-
tional pleiotropywasobserved inwomen
(OR 1.01 [95% CI 0.96–1.06], intercept
0.004 [95%CI0.000–0.008]) (Table3) and
men (OR 1.00 [0.96–1.04], intercept

0.008 [0.004–0.011]) (Table 3). Results
fromMR-PRESSO after outlier correction
were slightly attenuated compared with
those fromTSRI analyses forbothwomen
(three outliers removed, OR 1.08 [1.05–
1.13]) and men (five outliers removed,
1.13 [1.10–1.17]) (Table 3). Analyses
excluding SNPs from the genetic instru-
ment that were identified as outliers by
radialMR showed similar effect estimates
as the TSRI results (OR 1.09 [1.05–1.14]
for women, 1.24 [1.20–1.29] for men)
(Table 3). We used additional measures
to assess for heterogeneity on the basis
of MR-Egger regression, including the
Cochran Q test and I2 statistic. The Q test
showed evidence of heterogeneity in the
effect of type 2 diabetes SNPs on CHD for
both women (Q-statistic 395.8) and men
(666.0). The I2 statistic measures het-
erogeneity in the genetic associations
with the exposure, and results (I2 5
84.7% for women and 87.1% men)
showed some evidence of heterogene-
ity in the associations of SNPs with
type 2 diabetes. Such heterogeneity
could be reflective of multiple causal
pathways between type 2 diabetes and
risk of CHD.

Table 2—Association of sex-specific genetic risk scores (270 SNPs) for type 2 diabetes, by quartile, with potential confounders,
and association of observational type 2 diabetes with potential confounders in the UK Biobank

Genetic type 2 diabetes risk, quartiles of genetic risk score
Type 2 diabetes diagnosis,
observational association

Q1 Q2 Q3 Q4 No diabetes Diabetes

Women
Quartile range 13.82 to ,15.94 15.94 to ,16.31 16.31 to ,16.68 16.68 to ,18.71
Participants, n 62,856 62,854 62,855 62,855 241,456 9,964
Height (cm), mean (SD) 162.8 (6.2) 162.6 (6.3) 162.5 (6.2) 162.5 (6.3) 162.7 (6.2) 161.4 (6.3)
Weight (kg), mean (SD) 70.8 (13.8) 71.3 (13.9) 71.6 (14.0) 72.0 (14.1) 70.9 (13.5) 84.6 (18.2)
BMI (kg/m2), mean (SD) 26.7 (5.1) 27.0 (5.1) 27.1 (5.2) 27.3 (5.2) 26.8 (5.0) 32.5 (6.6)
Waist (cm), mean (SD) 83.7 (12.3) 84.3 (12.4) 84.8 (12.5) 85.5 (12.7) 84.0 (12.0) 99.1 (14.8)
Current smoking, n (%) 5,543 (8.8) 5,564 (8.9) 5,755 (9.2) 5,781 (9.2) 21,585 (8.9) 1,058 (10.6)
Dyslipidemia, n (%) 5,796 (9.2) 6,108 (9.7) 6,497 (10.3) 7,148 (11.4) 51,833 (21.5) 5,888 (59.1)
Hypertension, n (%) 13,190 (21.0) 14,032 (22.3) 14,769 (23.5) 15,730 (25.0) 22,024 (9.1) 3,525 (35.4)
Type 2 diabetes, n (%) 1,204 (1.9) 1,898 (3.0) 2,560 (4.1) 4,302 (6.8)
CHD, n (%) 3,008 (4.8) 3,077 (5.0) 3,247 (5.2) 3,348 (5.3) 10,823 (4.5) 1,893 (19.0)

Men
Quartile range 14.58 to ,16.67 16.67 to ,17.05 17.05 to ,17.43 17.43–19.54
Participants, n 53,014 53,011 53,012 53,012 195,132 16,917
Height (cm), mean (SD) 176.0 (6.8) 175.8 (6.8) 175.8 (6.8) 175.7 (6.8) 175.9 (6.8) 174.7 (6.8)
Weight (kg), mean (SD) 85.9 (14.4) 86.0 (14.3) 86.3 (14.3) 86.5 (14.2) 85.4 (13.7) 95.4 (17.5)
BMI (kg/m2), mean (SD) 27.7 (4.3) 27.8 (4.3) 27.9 (4.3) 28.0 (4.2) 27.6 (4.0) 31.2 (5.2)
Waist (cm), mean (SD) 96.8 (11.5) 96.9 (11.4) 97.2 (11.3) 97.4 (11.2) 96.2 (10.8) 106.3 (13.2)
Current smoking, n (%) 6,417 (12.1) 6,492 (12.2) 6,670 (12.6) 6,555 (12.4) 23,931 (12.3) 2,203 (13.0)
Dyslipidemia, n (%) 7,925 (14.9) 8,349 (15.7) 8,473 (16.0) 9,096 (17.2) 27,627 (14.2) 10,749 (63.5)
Hypertension, n (%) 15,205 (28.7) 15,784 (29.8) 16,386 (30.9) 17,293 (32.6) 53,919 (27.6) 6,216 (36.7)
Type 2 diabetes, n (%) 2,157 (4.1) 3,248 (6.1) 4,495 (8.5) 7,017 (13.2)
CHD, n (%) 6,136 (11.6) 6,512 (12.3) 6,663 (12.6) 7,033 (13.3) 21,132 (10.8) 5,212 (30.8)

Q, quartile.
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CONCLUSIONS

In this MR study of the sex-specific effect
of type 2 diabetes on CHD, we found that
genetic predisposition to type 2 diabetes
does not confer a greater excess risk of
CHD for women than for men. While our
results are consistent with previous sex-
combined MR studies providing support
for a causal role of type 2 diabetes in
CHD risk (8,9), the finding that the causal
effect of genetic liability to type 2 di-
abetes on CHD risk is not stronger for
women than for men is novel and differs
from sex-specific estimates from the
accumulated observational evidence (2).
This includes a recent analysis in the UK
Biobank, which showed a stronger asso-
ciation of type 2 diabetes with CHD for
women than for men (29).
There are several potential explana-

tions for the differences between the
findings of our MR study and the obser-
vational evidence. As with any observa-
tional study, studies of sex differences in
the association of type 2 diabetes with
CHD may not have controlled for all
relevant confounders or may have con-
trolled for confounders that were poorly
measured, leading to residual confound-
ing. If this residual confounding differs
between the sexes, a sexdifference in the
observational association of type 2 di-
abetes with CHD could arise. For exam-
ple, men are typically at higher absolute
risk of CHD, and the prevalence of many
cardiovascular risk factors is higher for
men than for women (1). However, car-
diovascular risk factors, including type 2
diabetes, appear to confer a greater

relative CHD risk forwomen than formen
in observational analyses (29). Further-
more, among individuals with type 2
diabetes compared with those without
type 2 diabetes, several studies have
shown that the differences in cardio-
vascular risk factors, including blood
pressure, dyslipidemia, andparticularly
anthropometric variables, are greater
among women than among men (3,6).
Althoughwomengenerally display amore
favorable cardiometabolic risk profile
than men, this favorable risk profile de-
clinesandultimately reverses asglycemic
control deteriorates (30).

Yet observational evidence of sex dif-
ferences in theassociationofothermajor
risk factors with CHD is not universally
observed, suggesting that mechanisms
other than confounding alone may be
involved. An alternative explanation is
that sex differences in the effect of di-
abetes on CHD risk seen in observational
studies reflect the more adverse de-
terioration in cardiovascular risk profile
along the glucose intolerance spectrum
in women compared with men. A recent
MR study showed that the association
of BMI with the risk of diabetes was
stronger for women than for men (31).
Accordingly, a pathwayof type2diabetes
progression and glycemic dysregulation
that leads tomore adverse complications
of diabetes for women than for men
may underpin the observational findings
rather than a direct sex difference in the
effect of diabetes on CHD risk.

Furthermore, women may be per-
ceived as having lower cardiovascular

risk, and consequently, type 2 diabetes
and comorbid cardiovascular risk factors
may be treated less aggressively (32,33).
Guidelines for the diagnosis and treat-
ment of type 2 diabetes and CHD are not
sex specific; our results of a similar causal
association of type 2 diabetes with CHD
by sex would support the notion that for
a given state of glycemic dysregulation
and burden of cardiovascular risk fac-
tors, prevention and management of
type 2 diabetes for the reduction of
CHD risk should be of equal priority for
both women and men. In addition, sex-
specific confounders, such as reproduc-
tive factors including gestational diabetes
mellitus, are rarely adjusted for in ob-
servational studies that include both
sexes; this could inflate the association of
type 2 diabeteswith CHD inwomen if the
cumulative duration of the exposure to
diabetes is greater, on average, among
women than among men. Sex-specific
residual confounding may therefore ex-
plain some of the discrepancy between
the MR and observational evidence. Al-
ternatively, the discrepancymight arise if
the MR analysis does not account for
genetic variation in the risk of type 2
diabetes that derives from sex chromo-
somes, as the GWAS data includes only
autosomal SNPs. For example, a recent
MR study observed a causal association
of genetically determined testosterone
(X chromosome) with increased type 2
diabetes risk for women but not for men
(34). Multiple other mechanisms could
also play a role in conferring higher CHD
risks for women with type 2 diabetes

Table 3—MR analysis of type 2 diabetes and risk of CHD, by sex, in UK Biobank

Women Men

OR (95% CI) P value OR (95% CI) P value

Two-stage residual inclusion estimation† 1.13 (1.08–1.18) 5.84 3 1028 1.21 (1.17–1.26) 2.31 3 10224

Weighted median‡ 1.04 (1.00–1.08) 0.067 1.06 (1.03–1.09) ,0.001

MR-Egger‡ 1.01 (0.96–1.06) 0.81 1.00 (0.96–1.04) 0.99

MR-PRESSO (outlier corrected)‡ 1.08 (1.05–1.13) 3.11 3 1025 1.13 (1.10–1.17) 1.57 3 10212

Sex-specific outliers removed†‡§ 1.09 (1.05–1.14) 6.76 3 1025 1.24 (1.20–1.29) 2.78 3 10227

Intercept (95% CI) P value Intercept (95% CI) P value

MR-Egger (intercept)‡ 0.002 (0.000–0.008) 0.027 0.008 (0.004–0.011) ,0.001

Q-test‡ 395.8 666.0

I2‡, % 84.7 87.1

Results indicate the increased risk of CHD per 1-log unit increase in genetic risk of type 2 diabetes (OR and 95% CI). Genetic instrument comprised of
270 SNPs for type 2 diabetes identified in the European DIAMANTE GWAS. †Results from two-stage residual inclusion estimation using individual
participant data and weighted genetic risk score in UK Biobank. Adjusted for age, genotype array, and principal components of ancestry. P value for
interaction5 0.02. ‡Results from summary-level analyses using SNP type 2 diabetes estimates fromDIAMANTEGWAS (excludingUKBiobank) and SNP
CHD estimates from UK Biobank. P values for interaction: weighted median5 0.43; MR-Egger5 0.76; and MR-PRESSO5 0.07. §Analysis with type 2
diabetes genetic instrument comprising 258 SNPs for women and 245 SNPs for men, after SNPs identified as sex-specific outliers using radial MR
excluded from genetic instrument. P value for interaction , 0.001.
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compared with men independent of glu-
cose dysregulation or diabetes, including
sex differences in microvasculature such
as vascular responsivity to aldosterone
(35).
The diagnosis of type 2 diabetes is

defined by a cut point along a continuum
of glycemia that is based on the risk of
associated complications, such as reti-
nopathy (36). Accordingly, an individual
with borderline glycemia who is not yet
diagnosed with type 2 diabetes may dis-
play phenotypic and genetic similarity
compared with an individual with diag-
nosed diabetes. Exposure misclassifica-
tion of this type would tend to bias
individual participant MR estimates to-
ward the null, leading to an underes-
timation of the MR results. In our
individual participant MR, this scenario
would only affect our conclusion when
prediabetes affected a differential pro-
portion of women and men in the study
population. Of note, this should not in-
fluence summary-level MR results be-
cause the exposure is fully defined by
genotype.
There are several strengths of our

study, including the use of MR, which
under specific assumptions can be used
to test the hypothesis that a particular
risk factor is causal for an outcome (16).
In accordance with the first assumption
ofMR, the sex-specific genetic risk scores
were very strong instruments for type 2
diabetes for both women and men.
Meeting the second and third assump-
tions of MR, the genetic risk scores were
shown to be broadly independent of
measured potential confounding factors.
Furthermore, for both women and men,
results of sensitivity analyses after cor-
rection for outliers were similar to initial
results. However, there are also limita-
tions of our study. Although the genetic
risk scores were strong instruments for
type 2 diabetes, our instruments may
havebeenunderpowered todetectmod-
est differences in sex-specific causal ef-
fects. Furthermore, our analysis used
genetic risk scores derived from 270
genome-wide significant type 2 diabetes
SNPs in the sex-combined European
DIAMANTE GWAS (14). Genetic instru-
ments obtained from the SNPs that are
associated with type 2 diabetes in sex-
specific GWASs could also have been
constructed. However, the European DI-
AMANTE GWAS observed only one sig-
nificant sex-differentiated SNP (14), and

thus, the impact of the use of a sex-
combined instrument is unlikely to have
changed our results substantially. More-
over, such an instrument would not
permit direct comparison of sex differ-
ences in the overall genetic predisposi-
tion to type 2 diabetes but, instead,
compares thecausal effectof twodistinct
sex-specific instruments on CHD risk.

SNPs included in the genetic instru-
ments for type 2 diabetes may affect
CHD risk through pathways separate
from their effect on type 2 diabetes risk,
and these pathways could differ by sex.
For example, there was some evidence
of directional pleiotropy usingMR-Egger.
However, the intercept for bothmen and
women neared zero, and MR-Egger gen-
erally lacks power. Moreover, results
from outlier-robust sensitivity analyses
were more similar to the overall results.
This suggests that our primary results
are in fact robust and that MR-Egger
results may have been influenced by
sensitivity of this method to extreme
outliers (37).

These results might reflect multiple
different scenarios (38), some of which
may have downstream effects on type 2
diabetes risk and may differentially af-
fect CHD risk by sex. Taken together, we
cannot exclude a sex-specific causal ef-
fect through other pathways not cap-
tured in our genetic instrument. Of note,
our instrumental variables for type 2 dia-
betes were derived from the DIAMANTE
GWAS effect estimates without adjust-
ment for BMI since the influence of
BMI on type 2 diabetes risk may be sex
differential (31). Considering the impor-
tant role of BMI in type 2 diabetes risk,
adjusting formeasures of adiposity in the
type 2 diabetes genetic risk score could
bias a true differential effect of type 2
diabetes on CHD to the null. In addition,
the UK Biobank and the European DIA-
MANTE GWAS used for our analyses
included primarily European populations,
and therefore, we cannot assess sex
differences in the causal effect of type 2
diabetes with CHD across ethnicities.
Furthermore, despite the large sample
size of the UK Biobank, a low overall
response rate of ;5.5% limits the gen-
eralizability of our results. Considering
that the participating population is un-
likely representative of the general U.K.
population, as recently demonstrated
(39), it is possible that our findings might
be biased if there is a sex-specific

selection bias that is associated with
both the exposure and the outcome.
Finally, a recent study demonstrated an
association of autosomal loci with sex,
which may introduce bias as a result of
sex differences in study participation
(40). If risk alleles for type 2 diabetes
were associated with study participation
in a sex-specific manner, this may have
resulted in an inability to consistently de-
tect a sex difference in the causal effect
of type 2 diabetes with CHD in our MR
analyses.

In conclusion, the present MR analysis
supports a causal effect of type 2 di-
abetes on the risk of CHD, with similar
effects seen between women and men.
In the absence of bias, these findings
suggest that the prevention and man-
agement of type 2 diabetes for the re-
duction of CHD risk should be of equal
priority for both women and men.
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