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Accurate detection of RNA stem-loops in structurome data reveals widespread 
association with protein binding sites
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ABSTRACT
RNA molecules are known to fold into specific structures which often play a central role in their 
functions and regulation. In silico folding of RNA transcripts, especially when assisted with structure 
profiling (SP) data, is capable of accurately elucidating relevant structural conformations. However, such 
methods scale poorly to the swaths of SP data generated by transcriptome-wide experiments, which are 
becoming more commonplace and advancing our understanding of RNA structure and its regulation at 
global and local levels. This has created a need for tools capable of rapidly deriving structural assess-
ments from SP data in a scalable manner. One such tool we previously introduced that aims to process 
such data is patteRNA, a statistical learning algorithm capable of rapidly mining big SP datasets for 
structural elements. Here, we present a reformulation of patteRNA’s pattern recognition scheme that 
sees significantly improved precision without major compromises to computational overhead. 
Specifically, we developed a data-driven logistic classifier which interprets patteRNA’s statistical char-
acterizations of SP data in addition to local sequence properties as measured with a nearest neighbour 
thermodynamic model. Application of the classifier to human structurome data reveals a marked 
association between detected stem-loops and RNA binding protein (RBP) footprints. The results of our 
application demonstrate that upwards of 30% of RBP footprints occur within loops of stable stem-loop 
elements. Overall, our work arrives at a rapid and accurate method for automatically detecting families 
of RNA structure motifs and demonstrates the functional relevance of identifying them transcriptome- 
wide.
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INTRODUCTION

Beyond serving as a carrier of genetic information, RNA plays 
key mechanistic roles in diverse cellular processes. These 
functions are regularly attributed to the molecule’s ability to 
fold into specific structures [1–7]. Driven by its flexible back-
bone and the complementarity of nucleotide bases comprising 
it, the structures of RNA are intricate and dynamic [1,8]. 
Although high-quality structure models of RNA transcripts 
are important in understanding their function and dysfunc-
tion, accurate determination of structures, especially in vivo, is 
challenging. High-resolution structure models can be 
obtained with experimental measurements from X-ray crystal-
lography [9], nuclear magnetic resonance [10], and cryo-EM 
[3,11], yet these methods are low-throughput and incapable of 
measuring structures in living cells. Comparative sequence 
analyses can also glean structural information from sequence 
homologies, but this process depends on a sufficiently large 
and suitably divergent set of related sequences, which limits 
the scope of their application [12–14]. The advent of nearest- 
neighbour thermodynamic models (NNTM) combined with 
efficient energy minimization algorithms were a critical step 
in increasing the throughput of structural predictions by 
enabling computational folding based on nucleotide 
sequences [15,16]. Despite their popularity, however, the 

accuracy of predictions is generally poor, especially when 
applied in vivo or to long transcripts [17]. Structure profiling 
(SP) experiments have emerged as a practical and high- 
throughput approach to measuring the structure of RNA 
molecules [18,19]. Although these methods are diverse, they 
help inform structure models by providing nucleotide-level 
measurements of conformational characteristics. Importantly, 
they are broadly applicable (e.g. viable in vivo or in other 
conditions), and, with the advent of next-generation sequen-
cing, are scalable to entire transcriptomes.

SP experiments follow common principles [20]. Briefly, 
they expose RNA to chemical reagents or enzymes that react 
with parts of the molecule in a structure-dependent manner; 
for example, when using common acylation reagents, single 
stranded nucleotides (ssRNA) react more strongly than dou-
ble stranded regions. This reaction induces the formation of 
adducts or cleavages, which can then be detected during 
sequencing as either truncations or mutations in reverse- 
transcribed cDNA fragments [18–23]. The rate of truncation 
or mutation at each nucleotide is then quantified and con-
verted into a measure called reactivity that summarizes the 
nucleotide’s structural context; the reactivities across 
a transcript are termed its reactivity profile [20,24]. The 
incorporation of these data in NNTM-based folding algo-
rithms was shown to greatly improve their accuracy [25,26]. 
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In this regard, SP data have traditionally served to supple-
ment the thermodynamic models by providing direct infor-
mation on the measured conformation. That said, SP 
experiments have scaled massively, enabling the profiling of 
an entire transcriptome, termed the structurome. NNTM- 
based folding, however, is a computationally intensive pro-
cess that scales as O(L3) with the length of an RNA in most 
applications. For transcriptomes, which contain many tens of 
thousands of transcripts – each of which may be thousands 
of nucleotides long – the computational cost associated with 
folding has begun to inhibit comprehensive NNTM-based 
analyses of structurome data. This has warranted the devel-
opment of methods designed to accommodate the growing 
scale of SP data in deciphering the extensive regulatory 
functions of mRNA structures. Such methods are useful 
when seeking to inspect and quantify biologically relevant 
changes in the structurome – for instance, to detect struc-
tural changes between different cellular conditions [27–30], 
inspect the structural context of relevant regions, such as 
splice sites, miRNA targets, or alternative polyadenylation 
sites [31–33], profile the degree of structure across different 
types of mRNA [33], study the effects of RNA helicases on 
RNA structure during transcription and translation [34–37], 
or explore the interplay between the structurome and RNA- 
protein interactome [38]. Beyond elucidating these regula-
tory paradigms, though, precise detection of specific struc-
tures might also provide information on certain evolutionary 
trends. For instance, the position, spacing, and composition 
of codons comprising putative stem-loops in prokaryotic 
coding sequences could be used to explore hypotheses 
related to codon usage bias and the origins of early mini- 
genes [39]. In short, structure characterization and mining 
have the potential to clarify the structural landscape of RNA 
and its regulatory processes.

We previously introduced patteRNA as a method to 
address this need for scalable analysis of SP data [40]. 
Rather than perform complete RNA folding, it was developed 
to rapidly mine local structure elements from reactivity pro-
files via an unsupervised, versatile, and NNTM-free approach. 
In short, the method couples a statistical reactivity model – 
e.g. a Gaussian mixture model (GMM) or discretized obser-
vation model (DOM) – to a Hidden Markov model of struc-
ture [40–42]. A parameterized model subsequently enables 
rapid quantitative scanning for locations that are likely to 
harbour a specific structure element. Versatility is a key char-
acteristic; namely, it leverages an unsupervised training step 
to learn the properties of any type of SP dataset (i.e. to 
parameterize the reactivity-structure model) before mining 
it. This is crucial for the automated and adaptive handling 
of data from diverse SP experiments that consequently have 
disparate statistical properties. Currently, standard practice is 
to use methods tailored for specific reactivity distributions 
(i.e. in vitro SHAPE) characteristic of highly structured non- 
coding RNAs. Such workflows do not capture the full diver-
sity of probes, conditions, and SP pipelines, rendering them 
suboptimal, especially for mRNA-centric in vivo structurome 
studies [43]. Moreover, the NNTM-free nature of patteRNA 

helps it scale to the structurome level and also confers flex-
ibility to rapidly mine complex structural elements such as 
pseudoknots or self-contained tertiary interactions without 
any significant increase in computational complexity [40]. 
In short, any target that can be defined via a local reactivity 
pattern can be quickly mined.

By scanning reactivity profiles alone, patteRNA was able 
to achieve reasonable accuracy when mining canonical 
motifs, such as hairpins/stem-loops [42]. However, there 
was room for improvement via integration of NNTM- 
derived sequence information, which we believed could 
likely assist in situations where reactivities are inconclusive. 
However, effective integration of NNTM with the statistical 
framework underpinning our approach is itself non-trivial. 
This is because we sought to not only improve performance, 
but also to maintain speed and versatility. To address this 
issue, we pursued a data-driven approach in which a large set 
of reference structures guided the construction of an inte-
grative scoring classifier which considers statistical charac-
terization of SP data in additional to local thermodynamics. 
This is a deviation from the unsupervised nature of our 
approach; nevertheless, we ensured that the classifier main-
tains the method’s automated adaptability in analysing any 
type of SP dataset. The impact of including thermodynamics 
on the method’s efficiency was also carefully considered, as 
we sought to maintain a balance between improvements to 
prediction quality and the increased computational overhead 
triggered by thermodynamic modelling.

Our results describe the development of a data-driven 
logistic regression classifier to better identify the locations of 
target structural elements. It considers the thermodynamic 
properties of local regions in addition to reactivity profiles 
when making predictions, which strongly improves precision, 
especially for shorter structure motifs. The classifier is suita-
ble for all types of canonical local structure motifs and main-
tains the versatility of patteRNA in handling diverse types of 
SP data. In this process, we also create a large-scale set of 
RNAs with known structures from RNA STRAND [44] and 
use it in conjunction with data simulations to extensively 
train and validate our approach. Although underpinned by 
simulated data, we find this resource to be more effective at 
training data-driven classifiers than smaller sets of real data 
and believe it can serve as a useful resource for machine 
learning method development. Moreover, we apply the clas-
sifier to an integrative transcriptomic dataset on human cells 
that quantifies both structure and RNA binding protein 
(RBP) interactions [38]. We demonstrate that stable stem- 
loops are almost always associated with evidence of RBP 
binding, and that this association exists across a diverse set 
of stem-loop configurations. In the context of the latest RBP 
studies, our results expand on previous observations of the 
RNA-protein interactome and refine our understanding of 
the roles played specifically by stem-loops. This also high-
lights the power of stem-loop profiling, a task for which 
alternative specialized tools are currently lacking. Overall, 
our work provides a major improvement to patteRNA while 
simultaneously enhancing our understanding of the 
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functional roles canonical structure elements play in RNA- 
protein interactions.

MATERIALS AND METHODS

patteRNA overview

patteRNA works in two phases: training and scoring. The 
training phase involves the utilization of an unsupervised 
Expectation-Maximization (EM) scheme coupled to 
a Hidden Markov Model (HMM) to estimate the reactivity 
distributions for unpaired and paired states, respectively. 
With these distributions in hand, patteRNA searches for 
a target motif in SP data as previously described [40,41]. 
Briefly, all subsequences (referred to as sites) which satisfy 
the sequence constraints underlying the base pairing arrange-
ment of the target motif are considered. These sites are then 
each assigned a score, which quantifies the overall consistency 
of the reactivity data within the site with the pairing state 
sequence of the target (a higher score indicates a better agree-
ment between the reactivity profile and target motif). Scores 
are further processed into c-scores via a normalization scheme 
based on an estimated distribution of scores associated with 
null sites (sites that do not harbour the target motif). For 
details on the core patteRNA algorithm, see [40] and [42]; 
for details on score normalization, see [41].

All applications of patteRNA in this study used default 
hyperparameters unless otherwise noted. When mining hair-
pins, the ‘–hairpins’ flag was used, which searches for all 
hairpins/stem-loops with stem length between 4 and 15 nt 
and loop length between 3 and 10 nt. This representative 
collection of motifs is referred to as regular hairpins or regular 
stem-loops throughout our work. When mining loops, the 
‘–loops’ flag was used, which searches for runs of unpaired 
nucleotides length 3 to 10 nt flanked by one base pair.

The Weeks set

The Weeks set is a dataset of 22 diverse RNA transcripts 
(totalling 11,070 nt) with high-quality SHAPE data and 
known reference structures. We use the Weeks set in this 
study as a reference set to benchmark the performance of 
patteRNA’s analyses and related methods on real data. This 
dataset was initially introduced in [40] and contains reactivity 
data from [25,45,46], see Supplementary Table S1 for further 
details on the RNA molecules in the Weeks set.

Classifier training data

In order to construct a larger set of reference data by which to 
develop a scoring classifier, we compiled all RNA secondary 
structures from RNA STRAND (4,666 transcripts). Due to the 
presence of highly similar sequences within the data, we used CD- 
HIT-EST [47] to remove redundant sequences at an 80% similar-
ity threshold, yielding 1,191 final transcripts (totalling 706,306 nt). 
In order to utilize these secondary structures for patteRNA-related 
analyses, we generated artificial SP data for the transcripts accord-
ing to a three-state reactivity model (0: unpaired, 1: paired, 2: 
helix-end) with associated state reactivity distributions devised in 

[48], which we refer to as the Heitsch distributions. The distribu-
tions are defined as follows; unpaired states: exponential distribu-
tion with λ = 1.468, paired state: generalized extreme value 
distribution with μ = 0.04, σ = 0.040, ξ = −0.763, helix-end state: 
generalized extreme value distribution with μ = 0.09, σ = 0.114, 
ξ = −0.821. Five replicates of SP data were produced. The Python 
module SciPy was used to sample reactivities from the corre-
sponding distributions. The scripts used to sample reactivities 
for STRAND transcripts in addition to the STRAND data itself 
(including the sampled reactivities used in this work) are available 
at http://doi.org/10.5281/zenodo.4667909, reference number [49]. 
To assist in verification and benchmarking of classifiers, addi-
tional datasets were also generated by resampling (with replace-
ment) the empirical reactivity distributions observed in the 
Weeks set.

Feature generation

Several features were investigated insofar as their potential to 
provide additional information on the presence of target motifs 
during scoring. After preliminary investigations, we focused on 
the following features, in addition to the patteRNA c-score: 
cross-entropy loss (CEL) between patteRNA posteriors and the 
target state sequence, Gini coefficient of SHAPE data in a site, 
the local minimum free energy (LMFE), the local constrained 
minimum free energy (LCMFE; the local MFE with the target 
motif enforced as a folding constraint), and the motif energy loss 
(MEL; the difference between LMFE and LCMFE). Cross- 
entropy loss was computed as

CEL ¼
X

i
� yi log pi þ 1 � yið Þ log 1 � pið Þð Þ

where yi is the pairing state of the target motif (e.g. yi ¼ 0 for 
unpaired states and yi ¼ 1 for paired) and pi is the posterior 
pairing probability at nucleotide i of a scored site. The Gini 
coefficient was computed as

Gini ¼

Pn
i
Pn

j xi � xj
�
�

�
�

2n2�x 
where xi is the reactivity at nucleotide i of a site and n is the 
length of the target motif. The remaining three features 
(LMFE, LCMFE, and MEL) all depend on the thermodynamic 
model employed in RNA structure prediction and were com-
puted using the ViennaRNA package (version 2.4.17) Python 
interface using a local window extending 40 nt in both direc-
tions from the boundaries of the target site (c ¼ 40).

Feature selection

To identify the set of features which best predict the presence of 
a target motif, we used a factorial-like approach to test various 
combinations of features and their potential scoring efficacy. To 
do this, we used the scoring feature set generated from the 
Weeks set hairpins. We used the c-score as a base feature in 
all experiments while iterating through pairwise combinations 
of the other features on top of it (see Fig. 1). Specifically, we 
tested all of the 2-feature approaches underpinned by the 
c-score and one of the other features. We then tested all of the 
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3-feature approaches underpinned by the c-score and all of the 
pairwise combinations of the other features. To quantify scoring 
efficacy, a logistic classifier was trained on the feature combina-
tions and the average precision of its predicted motif probabil-
ities was used to assess scoring potential.

Classifier selection
After converging on a 3-feature set of c-score, CEL, and MEL, 
we explored the capacity of various binary classifiers to pre-
cisely identify true positive sites from these features as well as 
their ability to generalize to other datasets and target motifs 

Figure 1. Auxiliary feature development for assisting in structure motif mining from SP datasets. (A) Illustration of the local window considered when computing 
thermodynamics-based features for scoring, such as motif energy loss (MEL). The considered window extends a distance, c (the local context size), from the 
boundaries of the scored site. (B) Preliminary scoring performance of considered feature sets. A combinatorial approach was used to test the performance of feature 
combinations. Features were benchmarked by using them to train a logistic classifier and then computing their average precision on a hairpin test set across five 
replicates; mean average precision is shown. (C) Determination of a suitable context size to use for MEL computations in patteRNA. Shown is the scoring precision 
when using a logistic classifier with c-score, cross-entropy loss (CEL), and MEL across various context sizes. Also shown is the measured runtime at each context 
length. Highlighted in red is the chosen default context size (40 nt), which strikes a balance between scoring precision and computational overhead relative to 
patteRNA’s original speed on the utilized data.
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beyond hairpins. After a preliminary analysis of an initial 
collection of standard classifiers, we explored in more detail 
logistic binary classification (LBC; ‘LogisticRegression’ object 
in Scikit-learn), random forest classification (RFC, 
‘RandomForestClassifier’ object in Scikit-learn), linear discri-
minant analysis (LDA, ‘LinearDiscriminantAnalysis’ object in 
Scikit-learn), and quadratic discriminant analysis (QDA, 
‘QuadraticDiscriminantAnalysis’ object in Scikit-learn). In all 
cases, default parameterizations were used as provided by 
Scikit-learn.

The set of hairpins mined from the STRAND dataset was 
used to train each classifier, and the average precision of their 
trained predictions was computed. Trained classifiers were 
then tested against the generated feature set for Weeks set 
hairpins and for Weeks set loops. Lastly, the classifiers were 
verified against feature sets obtained when mining 5 
resampled replicates of the empirical data in Weeks set (for 
hairpins and for loops) and when mining 5 replicates of 
simulated STRAND sets (for hairpins and for loops). In all 
cases, performance was assessed by the average precision of 
the classifier.

Final scoring classifier training and selection

To train the definitive classifier used in patteRNA, we utilized 
the 5 replicates of Heitsch-simulated reactivity data for the 
pruned STRAND transcripts and used each replicate to gen-
erate a scoring feature set at the sites scored when mining for 
hairpins. These scoring feature sets were each used to train an 
associated logistic classifier – i.e. 5 distinct classifiers were 
trained simultaneously, 1 for each replicate of simulated 
data. Each resulting classifier was then used to process the 
other four feature sets (i.e. the other simulations not used to 
train that classifier) as well as the feature set associated with 
the empirical Weeks set data. The overall performance of the 
classifiers was assessed as the sum of the performance on the 
other 4 STRAND replicates (computed as the mean average 
precision for hairpins across the 4 replicates) and the perfor-
mance on the Weeks set (average precision for hairpin 
mining). The classifier with the greatest total performance 
via this assessment was selected as the final model to utilize 
for distribution in the patteRNA method.

Performance benchmarks and verification

The accuracy of patteRNA and tested binary classifiers was 
primarily assessed via the area-under-the-curve of the preci-
sion-recall (PR) curve, referred to as the average precision 
(AP) of the classifier. Precision-recall curves were computed 
by varying a theoretical score threshold between positives and 
negatives, then computing the true-positive rate (recall) and 
precision (PPV) at each threshold. Sites were deemed true 
positives if all base pairs in the target motif are also present in 
the corresponding location of the reference structure. The 
Scikit-learn Python module was utilized to perform these 
computations. Scripts that perform this quantification (and 
others, including the receiver-operating characteristic) are 
available in [42].

Partition function analysis

We benchmarked the performance of partition function 
approaches to detect hairpins in the Weeks set by using the 
‘RNAsubopt’ command from ViennaRNA to generate 1000 
structures for each transcript in the Weeks set, using that 
transcript’s SHAPE data as soft constraints (‘RNAsubopt -p 
1000– shape ${SHAPE_FILE} < ${SEQUENCE}’). For each 
hairpin in the generated structural ensemble, a ‘score’ was 
assigned as the fraction of structures in the structural ensem-
ble which contain the base pairs comprising that hairpin. 
Predicted hairpins and their scores were organized into 
a single list which was then processed into a precision-recall 
curve as was done for patteRNA’s predicted hairpins.

Analysis of structurome and RBP binding data

We used patteRNA with the latest logistic scoring classifier 
described above to mine hairpins in the in vitro and in vivo 
icSHAPE data from K562 and HepG2 cells published by 
Corley et al. [38]. patteRNA was trained on each dataset/ 
condition independently (e.g. K562 in vitro icSHAPE, K562 
in vivo icSHAPE, HepG2 in vitro icSHAPE, etc.) and then 
used to mine them for hairpins (referred to in this analysis as 
stem-loops) using the ‘–hairpins’ flag and default hyperpara-
meters. We then cross-referenced the locations of high- 
scoring stem-loops with the fSHAPE profiles (interpreted as 
RBP binding signal) obtained by Corley et al. on the same cell 
lines.

To combine and visualize the fSHAPE profiles from 
searched sites which differ in terms of their stem and loop 
lengths, we utilized an interpolation scheme to bring fSHAPE 
profiles to a common length basis. fSHAPE profiles from the 
left and right sides of the stem (which vary from 4 to 15 nt in 
length) were each processed to a length of 10, respectively. 
fSHAPE profiles from the loop regions were processed to 
a length of 6. This processing was achieved by linearly inter-
polating the fSHAPE profiles to a number of equally spaced 
points (e.g. 10 points for stems and 6 points for loops). For 
example, a stem of length 6 nt would be linearly interpolated 
to the local coordinates (1, 1.56, 2.11, 2.67, 3.22, 3.78, 4.33, 
4.89, 5.44, 6), where 1 and 6 denote beginning and end of the 
fSHAPE profile along the stem, respectively.

Motif scores from both conditions were then combined 
and used to train a perceptron classifier processing condition- 
wise paired scores from the LBC into a predictor of strong 
RBP binding signal in the loop (defined as sites where 
fSHAPE >2 in the stem-loop). Only sites that received 
a valid score in both conditions were considered in this 
analysis. The multi-layer perceptron (MLP) classifier object 
(MLPClassifier) from Scikit-learn was utilized to construct 
and train the classifier; the default model parameterization 
was used, which is defined by a single hidden layer of 100 
nodes with ReLU activation following the Adam optimization 
algorithm [50]. Cross-validation during perceptron training 
was achieved by randomly setting aside 20% of the samples 
and using them to terminate training when convergence was 
observed (this behaviour was defined with the hyperpara-
meters ‘validation_fraction = 0.2’ and 
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‘early_stopping = True’ when calling MLPClassifier). Note 
that the purpose of the perceptron in this case is, essentially, 
to fit the joint distribution of condition-wide scores as an 
indicator of high loop fSHAPE. We found that this non- 
linear relationship of scores between conditions was best 
captured by a simple perceptron instead of simpler linear 
models like logistic regression and LDA.

patteRNA was also used to mine the icSHAPE data for 
stem-loops with bulges, which we defined as stem-loops 
with stem length between 5 and 15 nt with one bulge (of 1– 
2nt) on either side of the stem. Locations of high scoring 
motifs were then cross-referenced against the locations of 
high fSHAPE, as was done for the hairpin search.

The proportion of strong RBP binding signals (defined as 
fSHAPE > 2) which can be explained as occurring within the 
loop of a detected stem-loop was quantified. In this quantifi-
cation, only fSHAPE observations which coincide with valid 
reactivity data were included. In other words, fSHAPE data at 
locations lacking reactivity information was omitted, as such 
regions are not processed by patteRNA when scoring. Three 
score thresholds for calling detected stem-loops were used: 
0.9, 0.7, and 0.5.

Stem-loop detection rates were computing by counting the 
number of unique stem-loops detected within each logical 
mRNA region (5ʹ UTR, CDS, 3ʹ UTR, with non-coding 
RNAs treated as their own region) and dividing totalled 
counts by the number of reactivity observations within each 
region (to account for the fact that patteRNA only considers 
sites with SP data). Results were multiplied by 1000 to arrive 
at more interpretable rates in units of stem-loops per 1000 
nucleotides.

RESULTS

patteRNA overview

The overarching objective of patteRNA is to accurately mine 
structure elements from SP data in an automated fashion. To 
do this, patteRNA follows a two-step process (see 
Supplementary Figure S1). The first step is the training 
phase, during which reactivities are utilized to iteratively 
optimize a joint reactivity-structure statistical model (e.g. 
a GMM-HMM [40,51] or a DOM-HMM [42]). This results 
in an estimate of the distributions of reactivities associated 
with paired and unpaired nucleotides, respectively, as well as 
transition probabilities between paired and unpaired nucleo-
tides. Training is unsupervised and capable of accommodating 
diverse data types; see [40] for a complete description of the 
mathematical framework.

Once the data properties have been learned, patteRNA 
mines for structural motifs in the data via a scoring step. 
Scoring requires the description of a specific secondary struc-
ture motif (or collection of motifs) which defines the target of 
patteRNA’s pattern recognition scheme. Typically, the user 
provides this motif in dot-bracket format, but patteRNA also 
has built-in routines to automatically mine some canonical 
motifs. For instance, patteRNA can automatically mine 
a representative set of hairpins (referred to as regular hairpins 
or regular stem-loops; defined as stem-loops with stem length 

between 4 and 15 nt, and loop length between 3 and 10 nt) via 
the ‘–hairpins’ flag [42]. When mining a particular structural 
element, only loci in the provided transcripts which satisfy the 
sequence constraints necessary for the target’s secondary 
structure (via Watson-Crick and Wobble base pairs) are con-
sidered during scoring; these loci are henceforth referred to as 
‘sites’. patteRNA scores sites by computing the log ratio of 
joint probabilities between the target’s pairing sequence and 
its inverse. By default, scores are further processed into 
c-scores (comparative scores) which are a statistically normal-
ized measure computed by considering the significance of 
a score in the context of a null-score distribution constructed 
for each target [41]. Intuitively speaking, c-scores are simply 
the � log10 of a p-value, facilitating comparative analysis of 
scores from different target searches. Higher scores indicate 
a higher likelihood of the target motif, with a c-score of 2 
(corresponding to a p-value of 0.01) generally interpretable as 
a strong signal.

In addition to scoring, patteRNA can also use a trained 
statistical model to compute posterior pairing probabilities 
(i.e. for each nucleotide, the probability that it is paired or 
unpaired), Viterbi paths (the most likely sequence of pairing 
states for each transcript), and hairpin-derived structure level 
(HDSL) profiles (a nucleotide-wise measure of local structu-
redness [42]).

Supervised context-aware scoring

patteRNA was developed as an NNTM-free method. It 
inspects and quantifies patterns in reactivity profiles to iden-
tify sites consistent with the presence of a sought structure 
motif. Sequence information is only taken into account when 
determining whether sites are compatible with a target motif, 
i.e. satisfying the sequence constraints associated with base 
pairs in the target. This approach has facilitated the algo-
rithm’s rapid speed when mining transcriptomic data; how-
ever, information encoded in the sequence has the potential to 
improve its predictions. Here, we aimed to improve 
patteRNA’s accuracy by including an assessment of informa-
tion in nucleotide sequences (e.g. NNTM-based quantifica-
tions of sequence energetics). We also explored the use of 
additional SP data-related metrics in improving performance.

The integration of NNTM-based predictions with 
a statistical metric like the c-score is non-trivial. Therefore, 
we pursued the development of a data-driven scoring classi-
fier, through which multiple features from sites would be 
processed in assessing the likelihood of a motif. This is 
a departure from the unsupervised nature of patteRNA. 
Despite this departure, we sought to maintain the broad 
applicability of the method to diverse data types. As such, 
we focused on features that we believed to generalize well 
across SP datasets (i.e. are data invariant).

We explored various features in conjunction with the 
c-score to underpin the classifier. Five features emerged as 
promising candidates and their potential was further explored 
in a combinatorial set of experiments. The first was the cross- 
entropy loss (CEL) between the target motif’s pairing 
sequence and patteRNA’s computed posterior pairing 
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probabilities (see Methods). This feature relates closely to the 
c-score but highlights the cumulative disagreement between 
the data and the motif more explicitly. Specifically, CEL is 
influenced more strongly by nucleotide-level disagreements 
(compared to agreements, see Supplementary Figure S2) 
which may otherwise be masked by the c-score. As such, we 
speculated that this metric could assist scoring as it helps 
discriminate between sites that score moderately well across 
their entire span and sites that score strongly for some nucleo-
tides but have strong disagreement in others. This is particu-
larly relevant in the context of RNA structure where distinct 
motifs are often highly similar outside of a small number of 
decisive nucleotides. For example, when determining the 
length of a loop within a stem-loop, nucleotides near the 
end of the stem may inform the precise extent of the loop 
(e.g. a loop length of 4 nt versus 6 nt). Local disagreement can 
distinguish between such competing structures.

The second feature was the Gini index of the reactivities at 
the target site, which is often used in the context of reactivity 
analysis [20,52]. Gini index has previously been used to assess 
structural homogeneity. For instance, we expect stable con-
formations to yield more distinct reactivities between paired 
and unpaired states (high Gini index) and less stable struc-
tures or regions characterized by multiple conformations yield 
more intermediate values (low Gini index) [53]. As such, we 
speculated that Gini index could serve as a simple proxy for 
data quality and structural homogeneity in a site, and there-
fore might assist in informing where a c-score is more or less 
meaningful.

The third, fourth, and fifth features relate to the thermo-
dynamic prediction of the local region’s minimum free energy 
(MFE) structure. It has been shown that incorporating ther-
modynamic models with SP data tends to improve predictions 
[25,43,54]. Therefore, we utilized their predictions in different 
ways to potentially assist as features in a scoring classifier. As 
such, the third feature was the local minimum free energy 
(LMFE) of the region around a site, where local is defined as 
the target site window extended in both directions by some 
distance (e.g. 40 nt; see Fig. 1A). The fourth feature was the 
local constrained minimum free energy (LCMFE) of the 
region around the site, which amounts to folding with the 
target motif strictly enforced as a hard constraint. We thought 
that these two metrics, or perhaps their combination, could 
assist in interpreting the stability of the local region and the 
motif’s influence on it. We also considered a fifth feature, 
which was the difference between LMFE and LCMFE, which 
we termed the motif energy loss (MEL). This measure sum-
marizes the energetic favourability associated with the pre-
sence of the motif.

Feature selection

To test the scoring potential of various feature combinations, 
we established a simple train-and-test pipeline for mining 
hairpins in a reference dataset (the Weeks set, see Methods). 
Various feature combinations were used to train a logistic 
classifier whose scoring precision was then quantified (using 
an 80%/20% test/train split). For each feature combination, 
this procedure was repeated 5 times. Mean scoring precision 

on the test sets was then used to assess the scoring potential of 
that feature combination.

We performed benchmarks in a simple combinatorial 
manner to investigate which features and feature combina-
tions were most effective. The c-score was used as a base 
feature in our analysis, meaning that it was included in all 
combinations. The results of our preliminary feature analysis 
are in Fig. 1B. In the 2-feature experiments, all candidate 
features except Gini index yielded a detectable improvement 
in precision over just using the c-score (which achieves an 
average baseline precision of 0.62), and we found that MEL 
yielded the strongest enhancement (to an average precision of 
0.69, an 11% improvement over baseline). The 3-feature 
experiments were only able to incrementally improve scoring 
precision beyond this level. The best 3-feature combination 
was c-score, CEL, and MEL, which yielded an average preci-
sion of 0.70. Interestingly, the combination of c-score, LMFE 
and LCMFE yielded an average precision approximately equal 
to the observed precision with c-score and MEL. We also 
observed that none of the 4, 5, or 6-feature classifiers signifi-
cantly outperformed the best 3-feature classifier on any of the 
benchmarks (data not shown), further validating the effi-
ciency of the chosen scheme. We chose this set of features 
to use as inputs when developing and optimizing the scoring 
classifier to utilize in patteRNA’s scoring pipeline.

To determine an appropriate local context size to use for 
MEL, we investigated the precision of the selected feature set 
at regular intervals of local context length from 20 nt to 100 nt 
(note that the full context size used for folding is 2cþ n, 
where c is the context length and n is the motif length). We 
simultaneously measured the respective compute times. Our 
results, shown in Fig. 1C, demonstrate a trade-off between 
feature quality and compute time as one increases the local 
context size. We observe that the scoring quality plateaus 
approximately at c ¼ 40, yet the extra compute time (relative 
to NNTM-free scoring) rapidly grows for longer context 
lengths. For this reason, we decided to use c ¼ 40. We note, 
however, that larger contexts do provide a slightly better 
structural interpretation. Thus, although a length of 40 nt is 
used for the remainder of our work in the manuscript, this 
parameter may to be tuned by the user when calling 
patteRNA.

Classifier selection and optimization
Having converged on using c-score, CEL, and MEL, we 
devised a more intensive classifier training pipeline and used 
it to investigate a set of standard binary classifiers for their 
ability to robustly model these features. Specifically, we exam-
ined logistic binary classification (LBC), random forest classi-
fication (RFC), linear discriminant analysis (LDA), and 
quadratic discriminant analysis (QDA).

Our classifier training pipeline was underpinned by the use 
of RNA STRAND [44]. STRAND has 4,666 high-quality sec-
ondary structure models spanning a large set of RNA families, 
including regulatory elements, ribosomal RNA, ribozymes, 
synthetic RNAs, and more. After removal of highly redundant 
sequences with CD-HIT-EST [47], 1,191 transcripts remained, 
providing a much more expansive structural snapshot to use 
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for classifier training than the Weeks set, which comprised 22 
transcripts. Importantly, STRAND transcripts do not gener-
ally have SP data associated with them. Thus, we utilized 
simulations to generate artificial data. Reactivities were mod-
elled as (and sampled from) the three-state model (unpaired, 
stacked, and helix-end) devised in [48].

Fig. 2A demonstrates the interplay between the Weeks set 
data and the STRAND transcripts as used in our analysis. In 
short, we used simulated data on STRAND transcripts for 
classifier training. The Weeks set was then used to benchmark 
the performance of classifiers trained from STRAND simula-
tions. We found that using STRAND transcripts (with simu-
lated data) yielded the best results in terms of performance on 
the Weeks test set benchmarks, even outperforming classifiers 
trained on the Weeks set directly. Verification sets were also 

generated by resampling additional replicates of the Weeks set 
and simulating additional replicates on STRAND (see 
Methods for details). The overall objective was to identify 
the best possible motif classifier for the three investigated 
features (Fig. 2B).

Our results are presented in Fig. 3. Overall, we found that 
the LBC provided the best results in terms of scoring consis-
tency and translatability to verification benchmarks against 
other data and other motifs. Generally, we observed similar 
results for LBC, LDA, and QDA – all classifiers strongly 
improved scoring when compared to c-scores on the bench-
mark and verification sets – yet the LBC slightly exceeded the 
others’ performance on all tests. We also observed that the 
LBC was the fastest of the tested classifiers (data not shown). 
Interestingly, we observed that a random forest classifier was 

Figure 2. Data processing scheme for feature set generation in training, verifying, and benchmarking a binary motif classifier. (A) Data sources and computational 
flow for generating features sets used for training, benchmarking, and verification. Transcripts in RNA STRAND were used for classifier training; however, because 
these transcripts lack SP data, simulations were used to generate artificial reactivities on known secondary structures. The Weeks set was used to benchmark 
classifiers as it contains RNAs with known structures and high-quality real-world reactivity data. The reactivities in the Weeks set were also resampled to generate 
additional replicates, which were also used for verification steps in addition to replicated simulations on RNA STRAND. (B) Schematic of the binary classification 
approach utilized in patteRNA. c-score, CEL, and MEL were used as the features driving assessments of motif probability.

Figure 3. Results of experiments testing the ability of standard classifiers to fit the training set and generalize to various benchmarks and verifications. (A) Results on 
classifier performance on the training set (hairpins in RNA STRAND) and benchmark sets (hairpins and loops in the Weeks set). (B) Performance of trained classifiers 
on 5 resampled replicates of the Weeks set and 5 simulation replicates on RNA STRAND. LDA: linear discriminant analysis; QDA: quadratic discriminant analysis.
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able to achieve remarkable performance on the training set 
but did not translate effectively to other benchmarks or vali-
dations. We presume that the classifier was overfitted due to 
its parameterization (described by a large number of decision 
trees); efforts to reduce the size and complexity of the para-
meterization (e.g. by reducing the number of estimators) were 
unsuccessful in improving performance beyond what was 
observed with logistic regression. Moreover, we found the 
compute time in applying random forest classification to 
scale poorly in situations where a large number of sites (i.e. 
more than tens of thousands) were scored.

Due to these results, we decided to use an LBC trained on 
c-scores, CEL, and MEL from STRAND hairpin sites. We 
developed the final classifier by generating five replicates of 
SP data for the STRAND transcripts and using each to train 
a respective LBC. We benchmarked the classifiers against the 
Weeks set hairpins and STRAND hairpins in the other repli-
cates and assessed their overall performance as the sum of (1) 
average precision on the Weeks set and (2) mean average 
precision on the other STRAND hairpin replicates. The clas-
sifier with the highest cumulative performance was chosen as 
the specific parameterization to use in patteRNA’s scoring, 
although there was little difference between the five 
candidates.

The final LBC performance is compiled in Fig. 4. In short, 
when benchmarking on the Weeks set, we observe an increase 
in average precision from 0.62 with c-scores to 0.74, a relative 
improvement of almost 20%. Importantly, the precision at the 
highest scores (i.e. when recall is low), is significantly 
increased compared to c-scores, and roughly matches the 
performance seen when utilizing full transcript folding (i.e. 
full-length transcript partition function analysis) (see Fig. 4A, 
dashed box). We confirmed that the LBC yielded slightly 
improved scoring when using larger contexts in computing 
MEL, similar to that observed in Fig. 1C. We also utilized the 
entire 4,666 STRAND transcripts to benchmark patteRNA’s 
performance on various RNA classes (Fig. 4B). As the struc-
tural properties of RNA are diverse, we observe differential 
performance at hairpin mining for different types of RNA. 
Structured transcripts defined by a high prevalence of hairpins 

score the best, for example, regulatory elements, small RNAs, 
and ribozymes. Other classes which tend to be less structured 
or a have large proportion of non-local base paring score 
relatively worse, for example, tmRNA, SRP RNA, and 5S 
rRNA.

Runtime benchmarks demonstrate that our approach 
scales linearly and allows for transcriptome-wide mining of 
hairpins within an hour (see Supplementary Figure S3). This 
speed is one to two orders of magnitude faster than processing 
the data via local partition function workflows with windows 
of length 150 or 3000 nt.

Mining structurome data reveals strong association 
between stem-loops and RBP binding signals

The interplay between RNA structure and RBPs has been of 
significant interest for several decades [55]. Such interactions 
are widespread, dynamic, and known to underpin important 
regulatory processes like splicing, trafficking, and translation 
[56–60]. Although it is believed that many RBPs prefer to 
associate in unstructured regions, recent in vitro and in vivo 
experiments have indicated that a significant portion of RBP 
binding occurs in structured contexts and in a structure- 
dependent manner [38,42,61–63]. That said, a mechanistic 
understanding of RBP binding exists only for a very small 
number of RBPs which have been subject to targeted research. 
The global trends and dynamics of RNA–protein interactions 
are still poorly understood, and as such, significant efforts 
have been directed at disentangling the complex relationships 
between RNA transcripts, their regulation, and the proteins 
which interact with them.

Corley et al. recently harnessed structure probing to detect 
RBP binding sites in an experiment called fSHAPE and 
applied it transcriptome-wide to human cell lines [38]. The 
result of their work is a large set of data encompassing in vivo 
and in vitro icSHAPE reactivities and fSHAPE scores, the 
latter of which capture differential reactivity in the presence 
and absence of RBPs. They demonstrated that strong fSHAPE 
signals are highly correlated to RNA nucleotides that are 
unpaired and known to engage in hydrogen bonding with 

Figure 4. Performance of patteRNA when using the finalized iteration of a logistic binary classifier (LBC) natively during its scoring phase. (A) Precision-recall curves 
for hairpin detection in the Weeks set for LBC probabilities, full NNTM-Ensemble predictions, and regular c-scores absent any additional classifier processing. Dashed 
box indicates the region associated with the highest scores, where the LBC is able to match the precision of full-length partition function analyses. Also indicated are 
the performance points associated with thresholding to c = 2 and Prob(SL) = 0.9. (B) Average precision by RNA class when mining 5 replicated simulations on RNA 
STRAND transcripts. Error bars indicate standard error of the mean.
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proteins, meaning that high fSHAPE signals are evidence of 
an RBP interaction. These data enable quantitative compar-
isons between RNA structure (via icSHAPE reactivity profiles) 
and RBP binding (high fSHAPE signals).

Corley et al.’s analysis further demonstrated that strong 
fSHAPE signals preferentially occur in stable structural con-
texts, and our previous work harnessing patteRNA expanded 
on this result by indicating a global association between 
a nucleotide-wise measure of structuredness (HDSL) and 
high fSHAPE [42]. Both of these results, however, were 
obtained from ‘bird’s-eye view’ approaches in which low- 
resolution global trends were utilized to elucidate general 
properties of RNA–protein interactions. In this work, we 
sought to utilize patteRNA to associate specific structure 
motifs with RBP binding in a more mechanistic ‘bottom-up’ 
approach. Specifically, we sought to address the questions, ‘to 
what extent does RBP binding occur in the context of stable 
stem-loops?’ and ‘what fraction of stable stem-loops can be 
associated with RBP binding?’

Detected stem-loops exhibit widespread association with 
RBP footprints

We used the LBC to score Corley et al.’s icSHAPE data as 
a means of exploring the association between hairpins 
(referred to in this section as stem-loops) and RBP binding 
signatures. Specifically, we mined two transcriptomes (K562 
and HepG2 cells) for the representative set of stem-loops 
introduced earlier (stem lengths between 4 and 15 nt, loop 
lengths between 3 and 10 nt) and cross-referenced the loca-
tions of highly scored sites with the fSHAPE data to elucidate 
any connections between them. The results of our analysis are 
compiled in Fig. 5, where we present findings from both 
in vitro and in vivo icSHAPE data (K562 results shown; results 
for HepG2 data were very similar and are shown in 
Supplementary Figure S4). We first examined the locations 
of a highly prevalent stem-loop motif described by a stem of 6 
base pairs and a loop length of 4 [42]. Fig. 5A depicts the 
mean fSHAPE signal of highly-scoring sites (black) versus 

Figure 5. Strong association between detected stem-loops (SL) and RBP binding evidence (high fSHAPE scores) in structurome data from K562 cells. (A) fSHAPE 
profiles for sites scored highly (in vitro: left; in vivo: right) for a stem-loop with stem length 6 nt and loop length 4 nt. Individual fSHAPE profiles for sites with score 
greater than 0.9 are shown (purple) as are the mean fSHAPE profiles for sites scored above 0.9 (black) and below 0.5 (blue), respectively. (B) Same illustration as 
shown in panel (A), but for sites scored for a stem-loop with stem length 6 nt and loop length 3 nt. (C) Combined fSHAPE properties for sites scored when searching 
for a representative set of stem-loops (stem lengths 4 to 15 nt; loop lengths 3 to 10 nt; no bulges). fSHAPE profiles from scored sites were interpolated to a fixed 
length of 26 (10 nt left stem, 10 nt right stem, 6 nt loop; see Methods). (D) Proportion of high scoring sites (Prob(SL) > 0.9) that have fSHAPE > 2 in their predicted 
loop for stem-loops for each considered loop and stem length. Shown are results when mining in vitro icSHAPE data (top) and in vivo icSHAPE data (bottom). Stem- 
loops detected in vitro were more associated with evidence of RBP binding than those detected in vivo, but both datasets demonstrate a strong association. (E) 
Proportion of sites above indicated thresholds that have high fSHAPE in their predicted loop. (F) Precision-recall curves for identifying sites with high loop fSHAPE for 
sites that were scored in both conditions. Performance is shown for a perceptron classifier trained on condition-wise paired scores (see Methods) against the 
performance observed when using the condition-wise scores on their own. (G) Perceptron-modelled relationship between condition-wise scores and evidence of RBP 
binding (fSHAPE > 2). The modelled distribution indicates that hairpins strongly detected in vitro are overwhelmingly associated with RBP binding. There is also RBP 
binding signal identified for hairpins only detected in vivo and not in vitro (top left) .
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poorly scoring sites (blue). It shows that sites which scored 
highly for this motif (Prob(SL) > 0.9) often display a high 
fSHAPE signal, interpreted as evidence of RBP binding, loca-
lized to the loop region. Specifically, greater than 70% of these 
high-scoring sites in vitro displayed strong evidence of RBP 
binding in the loop (defined as fSHAPE >2, the same thresh-
old used by Corley et al.). A score threshold of 0.9 was chosen 
as it is associated with near-perfect precision in our bench-
marks on the Weeks set (see Fig. 4A, orange dot). 
Interestingly, analysis of in vivo data arrives at a similar asso-
ciation, suggesting that data from one condition may suffice 
in determining relevant structures. A comparable signal was 
also detected when examining highly scored sites for a similar 
motif with a 6 base pair stem and a 3 nt loop (Fig. 5B).

We expanded the scope of our analysis by inspecting the 
highly scored sites across all stem-loop motifs included in our 
search (motifs with stems of length 4 to 15 nt and loop length 
3 to 10 nt) (see Fig. 5C). For the in vitro icSHAPE data (left 
side of panel C), patteRNA identified 12,969 high scoring 
stem-loops out of 289,764 considered putative sites (i.e. 
those which satisfy sequence constraints associated with the 
searched motifs), which amounts to less than 5%. To visualize 
the fSHAPE data from these sites that have different sizes, 
fSHAPE profiles were interpolated to a constant stem and 
loop length (10 nt and 6 nt, respectively; see Methods). 
When examining this larger representative set, we continued 
to observe a strong fSHAPE signal in loops and a low signal in 
stems of stable motifs. Moreover, an inspection of sites which 
score Prob(SL) <0.5 shows complete depletion of this signal, 
thereby providing a negative control that strengthens the 
conclusions drawn from high-scoring sites.

Given the seemingly universal association between highly 
scored stem-loops and RBP-binding signal, we sought to 
investigate it at the motif level for each considered target. In 
other words, we examined if particular stem-loops have 
a stronger association with RBP binding than others. Fig. 5D 
shows the fraction of highly scored sites for each considered 
motif that also have high fSHAPE signal in their loop. 
Examining this association across all motifs reveals that this 
notable propensity of RBP binding signal within loops gener-
ally applies to all of them. Nevertheless, the association appears 
significantly stronger for in vitro than for in vivo scores. This is 
presumably due to the effect RBPs have on reactivities for 
unpaired nucleotides engaging in RBP binding (i.e. reduces 
their accessibility) and/or lower data quality in vivo. Adding to 
our previous conclusion that one condition may suffice for 
determining relevant structures (Fig. 5C), our results indicate 
that in vitro structure mining is in fact preferable in some 
contexts when identifying motifs functionally relevant in an 
in vivo context. For example, differences between conditions 
are particularly stark when motif loops are short (e.g. top three 
rows of in vivo heatmap). We speculate that this difference is 
due to RBP occlusion of loop reactivities which is more detri-
mental to patteRNA’s scoring when loops are short. The dif-
ferences between the conditions are further illustrated as 
a function of the threshold by which stem-loops are declared 
stable by patteRNA (Fig. 5E). Notably, the observed associa-
tions were even stronger in HepG2 cells (Supplementary 
Figure S4).

Recent work has suggested that RBP frequently associate to 
stem-loops with loops longer than 10 nt [64], so we further 
performed an expanded stem-loop search including loops up to 
20 nt. In short, we found that stem-loops with longer loops are 
also enriched with RBP footprints (Supplementary Figure S5). 
Importantly, using only the maximum fSHAPE value of the 
loop as an indicator of RBP binding evidence inflates the like-
lihood of Type I errors as loop length increases, so we devised 
a more controlled metric to assess fSHAPE signals. Specifically, 
we considered whether detected stem-loops had at least one 
more nucleotide with high fSHAPE in their loop than would be 
expected by random chance (i.e. whether the number of nucleo-
tides with fSHAPE > 2 in the loop is greater than phLl þ 1, 
where ph is the fraction of nucleotides with fSHAPE > 2 and Ll 
is loop length). Our approach demonstrates that stem-loops 
with longer loops have a stronger association with RBP than 
those with short loops, reiterating the findings from [64]. 
Interestingly, however, such stem-loops appear less frequently 
than stem-loops with shorter loops [42]. As such, although long 
loops have a stronger association with RBP footprints than 
shorter loops at the motif level, it is likely that shorter loops 
remain responsible for a larger proportion of the overall RNA- 
protein interactome.

RBP footprints associate with in vitro and in vivo scoring 
patterns

Although both in vitro and in vivo detected stem-loops strongly 
associated with high fSHAPE signals, there were some differ-
ences between the conditions. As such, we attempted to fuse 
both scores into a single, more powerful predictor of stem-loops 
with RBP binding signals. To this end, we fitted a simple per-
ceptron model to predict from a site’s in vitro and in vivo LBC 
scores whether or not the site has high fSHAPE (fSHAPE > 2) in 
the loop (see Methods). Using the perceptron to predict motifs 
with high loop fSHAPE resulted in a slightly stronger associa-
tion (as quantified by average precision for indicating sites with 
high loop fSHAPE) between its predictions than using the 
in vitro or in vivo scores alone (Fig. 5F), suggesting that changes 
between the two conditions can offer additional insight into 
RBP-motif interactions.

We attempted to interpret the perceptron’s model to gain 
insights into scoring patterns associated with RBP binding. Its 
predictions are seen in Fig. 5G and reveal two distinct pat-
terns. The first pattern is a high in vitro score (irrespective of 
in vivo score, yellow region on right side of heatmap), which 
recapitulates key results from Fig. 5A–E. However, the second 
pattern is associated with sites that score poorly in vitro but 
strongly in vivo (top left corner). These sites appear to fold 
into stem-loops only in the in vivo condition. We speculate 
that this pattern reflects motifs that are functional (i.e. engage 
in RBP binding) but only fold or become stabilized in the 
in vivo cellular context. Note, however, that this pattern is far 
rarer than the former. Whereas over 9900 sites fall into the 
first pattern (Prob(SL) >0.9 in vitro with high loop fSHAPE), 
only 66 sites were found in the second (Prob(SL) >0.7 in vivo, 
Prob(SL) <0.2 in vitro, with high loop fSHAPE). More work is 
needed to investigate the association of these sites with RBP 
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binding. Note, however, that while the second pattern 
appeared in our analogous analysis of HepG2 data, it was 
not as pronounced (Supplementary Figure S4).

Association of ssRNA with RBP footprints extends to 
stem-loop bulges

Next, we expanded the scope of our motif search to include 
stem-loops with bulges of 1 or 2 nt on either side of the stem. 
This greatly broadens the space of considered motifs and 
therefore increases the required computational overhead, as 
searching for regular stem-loops mines for 96 targets but 
allowing for bulges increases this number to 2,640. Overall, 
approximately 7.2 million sites were considered as satisfying 
sequence constraints for a searched motif (either a regular 
stem-loop or stem-loop with a bulge), 27,769 of which 
received a score greater than 0.9. We compiled the fSHAPE 
profiles of high scoring stem-loops with bulges and quantified 
their properties in a manner similar to our analysis on stem- 
loops without bulges. However, in addition to distinguishing 
loops from stems, we also distinguished bulges into their own 
group when quantifying fSHAPE tendencies. Our results are 
given in Fig. 6 and demonstrate a similar enrichment of high 
fSHAPE in apical loops of stem-loops with bulges to that 
which was observed for stem-loops without bulges. 
Moreover, we also detected a marked fSHAPE increase within 
bulge nucleotides, also implicating them in RBP interactions. 
These results expand the context of our demonstrated asso-
ciation between structure motifs and RBP binding signal.

Stem-loops represent a significant portion of 
fSHAPE-detected RBP footprints

Our analysis suggested that a significant majority of stable 
stem-loops likely interact with RBPs. This naturally raised the 
question of what fraction of RBP binding signals can be 
explained as occurring in the context of stem-loops. We 
estimated this fraction by computing the proportion of 
nucleotides with fSHAPE >2 which occur in the loop segment 
of a highly scored SL motif in the in vitro data. The results are 

given in Table 1, showing that, of the fSHAPE data that were 
included in our motif searches (i.e. nucleotides with both 
fSHAPE and icSHAPE reactivities), 19% of nucleotides with 
fSHAPE >2 fall within a stem-loop motif scored Prob(SL) 
>0.9. Conversely, only around 6% of these data are classified 
as a stable stem-loop at this threshold, indicating a strong 
enrichment of RBP footprints in stable stem-loops. Upon 
relaxing the threshold to 0.7, the proportion of nucleotides 
with fSHAPE >2 that fall within detected stem-loops increases 
to 33%. Interestingly, this result is comparable to previous 
estimates of the proportion of RBPs interacting with stem- 
loop motifs versus linear motifs [64]. Similar results were 
observed in vivo and in HepG2 cells (see Supplementary 
Table S2) and when using NNTM-free patteRNA c-scores 
(see Supplementary Table S3). Nevertheless, the scope of our 
search remains somewhat limited. For example, we did not 
exhaustively consider all feasible bulge types (e.g. bulges larger 
than 2 nt or stem-loops with bulges on both sides of the 
stem), nor did we consider internal loops. Both types of 
motifs have been previously associated with RBPs [55,65]. 
Despite the computational overhead associated with mining 
such complicated motifs, their consideration is likely to sig-
nificantly increase the proportion of high fSHAPE observa-
tions explainable as occurring in a structured element.

Figure 6. Association between RBP binding and structure motifs persists when considering stem-loop motifs with bulges in their stems. Stem-loops with bulges were 
defined as stem-loops with stem length 4 nt to 15 nt, loop length 3 nt to 10 nt, and one bulge of 1 or 2 nt on either side of the stem.

Table 1. Fraction of high fSHAPE sites in K562 cells accounted for by stem-loops 
without bulges and stem-loops with or without bulges, as detected in in vitro 
icSHAPE data. Results are given as a percentage of nucleotides with both high 
fSHAPE and valid icSHAPE reactivity. Although the identified sites do not 
account for a majority of the high fSHAPE data, the results demonstrate that 
a sizable portion of RBP binding signals can be attributed to canonical stem-loop 
motifs.

Fraction of high fSHAPE 
nucleotides explained by 
loops of detected motif 
sites

Motif 
probability 

threshold = 0.9

Motif 
probability 

threshold = 0.7

Motif 
probability 

threshold = 0.5

Stem-loops without 
bulges

16% 30% 49%

Stem-loops with or 
without bulges

19% 33% 55%
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Finally, we investigated the global trends of RNA-protein 
interactions by examining the prevalence of stem-loops within 
logical regions of mRNA transcripts – 5ʹ UTRs, CDS, and 3ʹ 
UTRs (noncoding RNAs were treated as their own group). 
Interestingly, we observed that the RBP-SL association is 
remarkably consistent between regions (Supplementary 
Figure S6). Across all considered regions, approximately 75– 
80% of detected stem-loops had a loop which coincided with 
strong RBP binging signal (values indicated for K562 data; 
percentages were approximately 80–85% for HepG2 data). 
Nevertheless, we observed large differences in the density of 
detected stem-loops between these regions. In all cell lines and 
conditions, 3ʹ UTRs have a significantly higher rate of stable 
stem-loops than other regions (see Table 2). For instance, in 
K562 in vivo icSHAPE data, patteRNA identified 9.57 stem- 
loops per 1000 nt in 3ʹ UTRs, compared to 4.86 and 4.07 in 5ʹ 
UTRs and CDS, respectively. In the context of post- 
transcriptional regulation, stem-loops are known to be 
mechanistically involved with polyadenylation and degrada-
tion [66–68]; however, this is the first stem-loop profile of 
a human structurome that systematically quantifies this at 
a global level. In the context of our observations that the 
association between stem-loops and RBP binding is fairly 
uniform across logical transcript regions and there is an 
increased prevalence of stem-loops in 3ʹ UTRs, one can infer 
that stem-loops and RBP are globally involved in 3ʹ UTR 
regulatory processes like polyadenylation and degradation. 
Our finding warrants the continued investigation of local 
structure motifs in 3ʹ UTRs and their roles in the interactome.

DISCUSSION

The evolution and growing scale of RNA structure probing 
experiments has warranted methods well-suited to the analysis 
of millions to billions of nucleotides. patteRNA is one such tool 
which was developed with the specific aim of rapidly extracting 
biologically relevant insights from such data. For genome-wide 
analyses, high precision is often a specific objective yet challen-
ging to achieve due to the large number of negative sites 
considered [69]. In this work, we took a machine learning 
approach to improve scoring precision by developing 
a classifier that accounts for local sequence energetics in addi-
tion to patteRNA’s statistical characterization of reactivities. To 
ensure broad applicability, we created a high-quality, non- 
redundant, and large-scale set of transcripts with known struc-
tures from RNA STRAND and used it in conjunction with 
a data simulation scheme to extensively train and validate our 

approach. Our work indicates this simulated data provide 
a strong suite of structural information by which to develop 
methods, which can augment real datasets that are currently 
much smaller in size. We believe this resource will be useful for 
others seeking to develop data-driven methods. Application of 
the classifier transcriptome-wide revealed that stable stem-loops 
are strongly associated with fSHAPE RBP binding signals in 
human cell lines. This association has been previously docu-
mented for individual RBPs [61,64,65], however the ubiquitous 
nature of stem-loops to interact with RBPs in vivo has not been 
previously shown. That said, it is important to note that high 
fSHAPE signals are predominantly observed at unpaired bases, 
so the characteristics of RBP interactions that occur solely on 
paired moieties (e.g. helices) are outside the scope of the current 
interpretation. Nevertheless, our analysis implicates common 
and canonical structural elements with RBPs, and it reinforces 
the notion that mining local structure elements can provide 
biologically relevant insights.

The results of our perceptron analysis of condition-wise 
paired scores demonstrated that some patterns could be lever-
aged to identify functional stem-loops beyond inspecting each 
condition independently. We found that stem-loops detected 
in vitro explain a significant (greater than 30%) fraction of 
RBP binding signals in Corley et al.’s data. Another pattern 
that emerged was the presence of stem-loops with RBP foot-
prints that score poorly in vitro (Prob(SL) < 0.2), but highly 
in vivo (Prob(SL) > 0.7), although the prevalence of such sites 
was much lower than sites associated with the former pattern. 
We note that the perceptron analysis was primarily performed 
to assist in the interpretation of score changes between condi-
tions (e.g. Fig. 5G), and that analogous statistical analysis (i.e. via 
bivariate data fitting) could arrive at similar conclusions. Lastly, 
it is possible that a more advanced perceptron approach could 
better disentangle the relationship between the two conditions. 
For instance, a perceptron or deep neural network trained on 
the underlying features from each site in each condition (i.e. 
c-score, MEL, CEL, etc.) might yield more precise predictions on 
the identification of structure motifs with RBP binding signal.

The LBC developed in this work was demonstrated to be 
significantly more accurate than patteRNA’s c-scores alone. 
Nevertheless, we were curious to what degree using c-scores 
(i.e. an NNTM-free approach) could recapitulate the stem- 
loop/RBP results obtained with the LBC. We re-analysed the 
data, but used a threshold of c > 2 to determine stable stem- 
loops instead of Prob(SL) >0.9 (see Supplementary Figure S7). 
As indicated on Fig. 4A, this threshold is roughly comparable 
to an LBC threshold of 0.9, although it yields slightly lower 
precision and recall. We found that the use of c-scores arrived 
at similar conclusions to those which were obtained with the 
LBC, but the observed association was slightly weaker. 
Specifically, we observed that the association was significantly 
weaker for stem-loops with shorter stems (6 or 7 nt) and 
longer loops (5 nt or longer), especially for the in vivo data 
(Supplementary Figure S7F). We believe that such motifs 
benefit most from the thermodynamic information contained 
in MEL, as sequence constraints are less effective in pruning 
the number of negative sites considered during scoring. 
Nevertheless, this result recapitulates that patteRNA’s 
NNTM-free implementation provides accurate detections, 

Table 2. Density of stem-loop detections in logical regions of mRNA transcripts 
from in vitro and in vivo icSHAPE data. Values are given as stem-loops per 1000 
nt.

Region K562 HepG2

In vitro icSHAPE 5ʹ UTRs 7.33 4.84
CDS 8.71 5.71
3ʹ UTRs 11.63 8.61
ncRNAs 9.78 6.31

In vivo icSHAPE 5ʹ UTRs 4.86 4.52
CDS 4.07 3.99
3ʹ UTRs 9.57 6.98
ncRNAs 6.74 4.71
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especially for high-quality data. We believe that the LBC 
assists most in situations where motifs are short, or data 
quality is low.

Translatability of data-driven mining

patteRNA was developed with a specific aim of addressing the 
need for universal and efficient tools for analysis of a growing 
breadth, scale, and diversity of SP experiments. Universality is 
important because different experiments yield reactivities with 
disparate statistical properties, meaning one-size-fits-all 
approaches are generally suboptimal. As such, the versatility 
of patteRNA is a central characteristic of the method. In the 
development of a data-driven scoring approach, we sought to 
maintain this trait. We found that the c-score naturally lends 
itself to ensuring an automatically adaptable classifier, as it 
provides a normalized measure of a site’s consistency with the 
target motif. Serving as a measure of statistical significance 
against a null distribution that captures data-level and motif- 
level biases, this metric can be considered largely data- 
invariant. Our previous work further demonstrated the suit-
ability of patteRNA’s comparative scores to accurately char-
acterize the presence structure of motifs in a diverse suite of 
simulated reactivity models [42]. Moreover, the MEL feature 
only depends on the local nucleotide sequence, meaning that 
it is invariant to different reactivity distributions. The decou-
pling of MEL from the SP data also enables insight on the 
contributions of NNTM to SP data interpretation. For exam-
ple, although we observed the LBC improves precision across 
a range of motifs, the largest relative improvement was 
observed for motifs with few base pairs, such as loops flanked 
by single base pair (see Fig. 3). This trend was also observed in 
our analysis of the Corley data, where the largest differences 
between using c-scores (NNTM-free) and the LBC (NNTM- 
dependent) was observed for the shortest stems. Our results 
suggest that, when searching for motifs harbouring many base 
pairs, folding with NNTM may not provide a significant ben-
efit over using c-scores alone.

Utility of patteRNA within the RNA structure analysis 
toolbox

From its initial development, patteRNA was not envisioned as 
a replacement or competing method to traditional NNTM-based 
approaches typically used in RNA structure analyses. Rather, it 
was developed as a tool to be used in tandem to NNTM-based 
approaches. For example, it can be used to identify candidate sites 
for a motif of interest (e.g. broadly defined motifs, such as stem- 
loops, or specific structural elements, such as iron response ele-
ments), which could then be subject to more intensive structural 
analysis with NNTM and targeted SP experiments. In any case, 
the advantages of patteRNA emerge when analysing large-scale 
data. By focusing specifically on sites that satisfy the sequence 
constraints for a target motif and performing minimal local MFE 
calculations for the LBC, our method arrives at structuromic 
insights orders of magnitude faster than partition-function- 
based analyses. This speed helps mitigate the computational over-
head associated with partition-function analysis of massive SP 
datasets, especially for those without access to cutting-edge 

computational hardware. In considering the future development 
of a method like patteRNA, we believe more work remains to be 
done, despite patteRNA’s demonstrated capabilities and scalability 
relative to transcript folding or partition function analysis. The 
primary limitation of our method is the dependence on the 
definition of specific local secondary structure motifs to use for 
mining. This dependence enables rapid scans in large datasets but 
limits the scope of the method’s analysis to elements with 
a previously known or suspected structure. One may specify 
a large set of related motifs to circumvent this limitation, but 
this comes at an increased computational cost. The current imple-
mentation is capable of mining thousands of distinct structures in 
a human transcriptome within several hours (e.g. mining stem- 
loops with bulges), however searches with increased flexibility 
(e.g. accounting for more diverse bulges, longer loops, and inter-
nal loops) result in a combinatorial explosion of considered motifs 
to counts larger than 10,000 or 100,000. This renders such 
searches impractical. Nevertheless, when specifically focused on 
canonical local motifs, for example stem-loops or stem-loops with 
bulges, patteRNA provides rapid, accurate, and biologically rele-
vant motif mining capabilities on structurome data.

NNTM-based methods have recently seen the application 
of pattern recognition in SHAPE data to improve the quality 
of secondary structure prediction. SHAPELoop [70] generates 
a Boltzmann ensemble and selects suboptimal structures in 
which loops are more consistent with SHAPE data than the 
MFE based on a learned set of loop reactivity patterns. Their 
approach, similarly to patteRNA, integrates single nucleotide 
observations to the motif level, which resulted in structure 
predictions with a slightly higher accuracy than standard 
approaches for data-directed folding. Although their pattern 
models were extracted from a small set of reference structures, 
they were shown to correlate with stereochemical properties 
of SHAPE, suggesting broader applicability to other SP 
probes. Nevertheless, their patterns are specific to SHAPE 
and likely require recalibration for different probing meth-
odologies. This relies on the availability of reference structures 
with high-quality data, which are currently lacking. In the 
context of a tool like patteRNA, SHAPELoop utilizes SP data 
towards an entirely different objective (structure prediction de 
novo versus structure mining), but the results of their work 
demonstrate that stereochemically-correlated reactivity infor-
mation can be utilized to more accurately identify loops. The 
utilization of such information when scanning large SP data 
for motifs containing loops would likely improve patteRNA’s 
accuracy. The pattern models of SHAPELoop, derived from 
a statistical analysis of reference data, should be naturally 
integrable to the data-driven approach developed in this 
work; namely, the LBC naturally extends to additional fea-
tures capturing, for example, loop-specific pattern scores. The 
previous design of patteRNA [42], however, would render 
such integration non-trivial. Nevertheless, the incorporation 
of such stereochemical trends in an automated and universal 
way (i.e. generalization outside of in vitro SHAPE data) is an 
unaddressed challenge. Moreover, identification of specific 
stereochemical patterns could likely assist in furthering our 
understanding of biological structures, such as the precise 
structural context underpinning interactions like RNA- 
protein binding.
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