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ABSTRACT

Detecting in vivo transcription factor (TF) binding
is important for understanding gene regulatory cir-
cuitries. ChIP-seq is a powerful technique to empir-
ically define TF binding in vivo. However, the multi-
tude of distinct TFs makes genome-wide profiling for
them all labor-intensive and costly. Algorithms for in
silico prediction of TF binding have been developed,
based mostly on histone modification or DNase I
hypersensitivity data in conjunction with DNA mo-
tif and other genomic features. However, technical
limitations of these methods prevent them from be-
ing applied broadly, especially in clinical settings. We
conducted a comprehensive survey involving multi-
ple cell lines, TFs, and methylation types and found
that there are intimate relationships between TF bind-
ing and methylation level changes around the bind-
ing sites. Exploiting the connection between DNA
methylation and TF binding, we proposed a novel
supervised learning approach to predict TF–DNA
interaction using data from base-resolution whole-
genome methylation sequencing experiments. We
devised beta-binomial models to characterize methy-
lation data around TF binding sites and the back-
ground. Along with other static genomic features, we
adopted a random forest framework to predict TF–
DNA interaction. After conducting comprehensive
tests, we saw that the proposed method accurately
predicts TF binding and performs favorably versus
competing methods.

INTRODUCTION

A fundamental goal of functional genomic research is to
understand gene regulation. Gene expression can be con-
trolled by epigenetic mechanisms via the coordinated bind-
ing of transcription factors (TFs), histone modifications,
and DNA methylation (1). An important first step toward
deciphering the complexities of gene regulatory networks is
detecting the activities of functional elements, such as TF
binding sites in the genome.

Advances in high-throughput sequencing technologies
such as ChIP-seq (2–4) and ChIP-exo (5) allow the com-
prehensive genome-wide profiling of protein–DNA binding
sites. In recent years, enormous efforts have been made to
map TF binding sites under different biological contexts;
for example, by consortiums like ENCODE (6) and mod-
ENCODE (7). In spite of the successes, the application of
ChIP-seq is still limited by the availability of high-quality
antibodies and a requirement for fresh cells/tissues. The
multitude of distinct proteins makes genome-wide profiling
for all of them labor-intensive and costly. Furthermore, in-
dividual profiling of TF binding is a challenge in clinical
settings because the amount of biological materials avail-
able is often limited. For these reasons, developing in silico
approaches to predict in vivo TF binding sites that do not
rely on ChIP-seq is desirable.

Traditionally, DNA sequence motifs have been used to
predict TF binding (8,9). However, such an approach only
works well for proteins with binding motifs that are highly
specific. For proteins with weak binding motif patterns, the
predictions suffer low specificity. In addition, the DNA mo-
tif is insufficient to determine whether a TF will bind to
DNA in vivo, which means cell type-specific binding cannot
be determined; additional information is needed to make
that prediction. Recent studies revealed that TF binding is
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associated with nucleosome positions (10), histone marks
(4,11), and hypersensitivity to cleavage by DNase I (12,13).
Based on these findings, a number of statistical methods and
software tools have been developed to integrate motif infor-
mation with other data types and genome annotations to
achieve better prediction results (10,14–20). All these meth-
ods use histone or DNase I data, as well as the genome an-
notations and DNA motifs for prediction. One of the com-
mon limitations is that the histone modification or DNase I
hypersensitivity studies require large amounts of fresh start-
ing material (at least from 106 cells). This makes the exist-
ing prediction methods (Supplemental Materials Table S1)
practically inapplicable to clinical samples.

DNA methylation is an important epigenetic mod-
ification with essential roles in many biological pro-
cesses (21,22). Methylation of cytosine at carbon five (5-
methylcytosine, or 5mC) regulates gene expression, de-
termines cell development, and affects numerous disease
pathogeneses (22,23). Exploiting next-generation sequenc-
ing technologies, a powerful experimental assay called bisul-
fite sequencing (BS-seq) was developed that measures DNA
methylation at base resolution genome-wide (24–26). The
experiment starts by treating DNA molecules with sodium,
which induces deamination and conversion of unmethy-
lated cytosine to uracil, while methylated cytosine is pro-
tected by the methyl group and remains unchanged. The
uracil will be amplified as thymine during amplification.
The bisulfite-treated and PCR-amplified DNA segments
then go through high-throughput sequencing. After align-
ment and preprocessing, BS-seq data can be analyzed by
counting the number of sequencing reads for each CpG
site where either a thymine or a cytosine is observed. The
count of thymine represents the number of sequenced DNA
strands that are unmethylated, and the count of cytosine
represents the number of DNA strands that are methylated
at this CpG site.

5mC is known to interfere with DNA–protein interac-
tions, thereby directing transcriptional states (27). For ex-
ample, a recent publication reported that 5mC is strongly
correlated with TF binding, where the binding sites are usu-
ally hypomethylated (28). Regulation of DNA–protein in-
teractions can occur either through affinity of methyl-CpG-
binding proteins for 5mC, or through the refractory ef-
fects of 5mC on some DNA–protein interactions. The lat-
ter is known to directly influence binding of a number of
TFs, such as CTCF (29). Furthermore, more recent obser-
vations have implicated the iterative oxidation of 5mC to
5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC)
and 5-carboxylcystosine (5caC) in pathways that serve to
offset 5mC levels and facilitate TF binding (30). All these
findings indicate that DNA methylation levels offer clues as
to whether TF binding occurred at a particular locus, which
may be exploited as an alternative to the DNase I or histone
data for the purpose of predicting TF binding in vivo. This
is important because DNA methylation profiles are more
stable and much easier to obtain than DNase I profiles in a
clinical setting.

To investigate the viability of this hypothesis, we aligned
profiles of DNase I, methylation and TF binding obtained
by DNase-seq, BS-seq and ChIP-seq, respectively, in which
the ChIP-seq data are used as the gold standard for TF

Figure 1. Concordances between ChIP-seq, DNase I and methylation on
a genomic locus. A comparative view of DNase I-hypersensitive, methyla-
tion (5mC) and ChIP-seq profiles on a genomic locus on chromosome 10.
Good concordances are shown between ChIP-seq peaks (used as the gold
standard for TF binding), DNase I peaks and methylation ‘dips’. All data
shown are from the H1-hESC cell line.

binding. Visual inspection showed there are good concor-
dances between ChIP-seq peaks, DNase I peaks, and methy-
lation ‘dips’. As an example, Figure 1 shows one CTCF
binding sites in H1-hESC, which is located at the tran-
scription start site (TSS) of a protein-coding gene. One can
clearly see that at the TF binding sites (indicated by ChIP-
seq peaks), the DNase-seq data indicates enrichment of
DNase I hypersensitivity sites. At the same locations, the
DNA methylation levels are altered and show strong hy-
pomethylation.

For a more comprehensive view of the methylation pro-
files around TFBSs, we explored whole-genome BS-seq data
from two human cell lines (embryonic stem cell H1-hESC
and fibroblast IMR90) and one mouse cell line (embryonic
stem cell mESC). We calculated the average methylation lev-
els of three types of methylation: CG methylation (5mC),
CG hydroxymethylation (5hmC), and non-CG (CH) methy-
lation around putative TF binding sites (motif sites covered
by a ChIP-seq peak) and compared these levels to those
from non-TF binding sites (motif site not covered by any
ChIP-seq peak). A ‘meta-gene’ style plot is shown in Fig-
ure 2, with more such plots shown in Supplemental Mate-
rials Figure S1) From these plots, we make three important
observations. First, there are differences in the methylation
levels between actual TF binding sites and random regions,
with 5mC patterns showing the most pronounced differ-
ence. Second, the methylation profiles are distinct for dif-
ferent TFs. Third, the methylation patterns for the same TF
are similar across cell types. Taken together, these findings
indicate that methylation profiles, similar to the DNase-seq
data, can be used to distinguish TF binding sites from the
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Figure 2. Methylation profiles from different cell lines/TFs/methylation
type. Methylation patterns around binding sites of several TFs from differ-
ent cell lines. Curves represent average methylation (CG/5hmC/CH) lev-
els around ChIP-seq peaks (solid lines) and motif sites without ChIP-seq
peaks (dashed lines). (A–C) CG methylation profiles for CTCF from differ-
ent cell lines (H1-hESC, IMR90 and mESC). (D–F) CG methylation pro-
files for several TFs (GABP/MAX/OCT4) from H1-hESC. (G-I) Different
types of methylation profiles (CG/5hmC/CH) for CTCF from H1-hESC.

genomic background. Despite the empirical evidence con-
necting methylation level variation and TF binding, how
to develop a rigorous statistical approach to quantify the
methylation profiles around TF binding sites is non-trivial.
Another key question is how to integrate methylation infor-
mation along with DNA sequence motif and other genomic
features in a coherent framework to predict TF binding in
vivo.

Motivated by these findings, we developed a novel com-
putational approach to predict TF binding. Our method,
named Methylphet, is a supervised learning strategy that
is able to combine methylation profiles and multiple ge-
nomic features to make TF binding predictions. Using
ChIP-seq data as surrogates for putative TF binding, we
show that Methylphet achieves higher accuracy than pre-
diction method using motif score alone or DNase I profiles.
Compared with histone ChIP-seq or DNase-seq, BS-seq
can be accomplished using very little material (nanograms
of genomic DNA) with highly sensitive bisulfite conversion-
based methods, making a prediction method based on BS-
seq data a good alternative means for inferring gene reg-
ulatory mechanisms from samples in which ChIP-seq and
DNase I hypersensitivity studies are not feasible.

MATERIALS AND METHODS

Description of the Methylphet method

The workflow of Methylphet is illustrated in Figure 3. The

Figure 3. A flow chart for Methylphet method.

method consists of candidate site selections, a training mod-
ule and a testing module. The first step is to identify candi-
date binding sites by genome-wide motif scan using motif
PWMs in both training and testing data. The detailed pro-
cedure of selecting candidate sites is provided in the ‘Data
and Processing’ section, and summary of candidate sites for
the 19 TFs used in this study can be found in Supplemen-
tary Table S2-1. Then a predictive model is constructed in
the training module, and then the model is put to work for
TF binding prediction in the testing module. We use Ran-
dom Forest (RF) (31) to build the predictive model. RF is
an ensemble learning method for classification that recently
became popular in genomics because of its flexibility, effi-
ciency and ability to avoid over-fitting. Moreover, RF pro-
vides importance measurements for all predictors, which are
key to deciding whether to remove an unrelated predictor or
add a new promising one.

The required inputs for the training module include the
ChIP-seq peak locations (as the gold standard), a set of
whole-genome BS-seq data, and other static genomic fea-
tures, such as DNA motif and evolutionary conservation
scores. Optionally, 5-hydroxymethylcytosine (5hmC) data
from Tet-assisted BS-seq (TAB-seq) (29) can also be in-
cluded. The training module contains two steps: the con-
struction of a methylation model and a RF model respec-
tively. Motif information is not used in the methylation
model training step, but used in constructing the RF model.
With the candidates available, we first identify the putative
binding sites (those inside a ChIP-seq peak) from all candi-
date regions using the gold standard ChIP-seq data. Next
in the estimation of methylation models, we characterize
the methylation count data in a genomic window around
the true TF binding sites as a series of beta-binomial distri-
butions (details are provided in the next section). Then the
same procedure is applied to candidate regions without TF
binding. At the end of this step, we obtain two sets of beta-
binomial distributions for the methylation profiles from TF
binding and background regions. For example, means of
the beta-binomial distributions represent the shapes of the
methylation levels around TF binding or background re-
gions (as shown in Figure 2). Based on the estimated dis-
tributions, for each candidate region we compute multiple
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‘methylation scores’, which are defined as the likelihood ra-
tios of the site being a true binding site versus being the
background. The methylation scores include 5mC scores,
CH methylation scores and 5hmC scores if TAB-seq data
are available. Next for the training of the RF model, in addi-
tion to methylation scores, we also include genomic features,
such as motif scores, conservation scores and distance to
TSS. A complete list of genomic features used is presented
in Supplementary Table S3. Subsequently, the methylation
and RF models produced from the training module are em-
ployed for prediction. It is important to note that a different
predictive model is constructed for each TF due to the TF
specificity of the methylation profiles.

Methylation models

We used the following model to characterize methylation
(including 5mC, 5hmC and CH methylation) patterns at a
genomic region. Given a candidate site, we treat the motif
site as a window, and then add ten 30 bp window to each
side. The methylation profiles in these 21 windows are used
to capture methylation patterns for TF binding sites and
backgrounds. We choose 30 bp as the window size for the
sake of balancing the needs of model parameter estimation
accuracy and spatial resolution of the methylation profile.
To gauge the impact of the window size selection, we re-
peat the whole analysis procedure using window size of 20
bp and compare the two sets of results. We found that the
two sets of results are very similar and the 30-bp results are
slightly better overall (Supplemental Materials Figure S11).
In the software implementation of Methylphet, we provide
option for user to specify the window size.

Inside each window, if there was at least one CG din-
ucleotide covered by at least one read (either methylated
or not), we recorded the total number of methylated and
unmethylated reads. Assume there are n candidate sites. In
the jth window ( j = 1, 2, . . . , 21) of the ith candidate site
(i = 1, 2, . . . n), we used xi j and yi j to denote the number of
methylated and unmethylated reads and let ni j = xi j + yi j .

Similar to (32), we used a beta-binomial compound dis-
tribution to model the count data from BS-seq. The counts,
given underlying ‘true’ methylation levels, are assumed to
follow a binomial distribution:

xi j |ni j , p j ∼ Binom
(
ni j , p j

)
, i = 1, 2, . . . n; j = 1, 2, . . . 21.

The methylation levels p j ’s are assumed to follow a beta
distribution, but with different parameters at TF binding
sites and background. When there is no TF binding at a
candidate site, the methylation levels from all 21 windows
are assumed to be identical and similar to those from the
genomic background (close to fully-methylated). Thus, we
assume p j ’s follow the same beta distribution. For candi-
date sites that are bound by TFs, we found (Figure 2) that
the methylation levels are different at different windows, e.g.
methylation levels dip toward the motif site from both direc-
tions. Therefore, we assume that each p j follows a different
beta distribution. Defining indicator zi to denote binding
(zi = 1) or not (zi = 0) for candidate site i, we have

p j |zi = 1 ∼ Beta
(
α j , β j

)
, p j |zi = 0 ∼ Beta

(
α′, β ′) .

For quality control purposes, we removed all windows
with less than five total reads and candidates within CpG is-
lands from the training set and used the method of moment
(MOM) to estimate parameters α j , β j and α′, β′. More de-
tails about this can be found in the Supplemental Materials.
With parameters estimated at each motif site, we calculated
the likelihood ratio comparing the two methylation patterns
(TF binding or no binding) as methylation score λi for the
ith candidate sites in test data:

λi =
m∑

j :#of CG>0

log

(
p

(
xi j |ni j , zi = 1

)
p

(
xi j |ni j , zi = 0

)
)

Higher methylation scores indicated stronger evidence for
a candidate site to have TF binding. The same procedure
was applied to obtain CH methylation scores, as well as
5hmC scores if whole-genome TAB-seq data were available.

Other genomic features

Other genomic information used in the predicting model
included: sequence conservation, distance to TSS, overlap
with repetitive region, and other genomic features. Con-
servation scores were downloaded from the UCSC genome
browser, hg18 phastCons44way table. Repeat masker, which
marks the repetitive regions, was downloaded from the
UCSC genome browser. We also calculated the nearest dis-
tance between candidate binding sites. For other genomic
features, we used a binary indicator (0 or 1) to show if the
motif overlapped with: TSS, TES, exons, introns, or CpG
islands, and the distance to TSS. All the genomic Feature
annotations were calculated using R and Bioconductor.

Prediction

Several supervised learning approaches were investigated,
and RF performed the most accurately and robustly among
all the approaches (Supplementary Figure S8). Hence, re-
sults were demonstrated using RF, which was achieved with
R package randomForest (33).

In the RF, a binary classification model was trained us-
ing methylation score together with genomic features. In
each trained model, the importance of input features was
assessed using Gini gain importance. The number of trees
used in the model was determined by the stability of out-of-
bag error (see Supplemental Materials 6.3). The predicting
result is represented by the probability of getting a vote from
the randomly generated classification tree for each class.
The predicting performance was evaluated using the ChIP-
seq peaks as the gold standard. ROC based on the class
probability and the gold standard was computed to show
the overall predicting performance of our method.

Data and processing

5mC data from bisulfite sequencing (BS-seq) studies. The
BS-seq data from human embryonic stem-cell (hESC) lines
H1-hESC and IMR90 were downloaded from Gene Expres-
sion Omnibus (GEO) with ID GSE16256 (24). The 5mC
BS-seq data from the mouse embryonic stem-cell (mESC)
line was downloaded from GEO with ID GSE30202 (28).
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The 5mC BS-seq data from the mouse dentate gyrus (DG)
cells was downloaded from GEO with ID GSM1263221
(34)

Bisulfite-seq paired-end read processing and methylation call-
ing. Paired-end reads were first pre-processed to remove
adapter sequences, as well as low-quality sequence on both
the 3′ and 5′ ends using Trimmomatic 0.20 (35), with the
following parameters: LEADING:3 TRAILING:3 SLID-
INGWINDOW:4:15 MINLEN:36. This was followed by in
silico conversion of each C to T (Read 1) and each G to A
(Read 2). Preprocessed reads were then aligned to both C-
to-T and G-to-A converted chromosomes that were compu-
tationally derived from NCBI mm9 genomic sequence us-
ing Bowtie 0.12.9 (36) (-m 1 -l 30 -n 0 -e 90 -X 550). Reads
mapping to both genomes were discarded and non-aligned
pairs were reprocessed as single-end data using the same
alignment parameters. For both paired-end and single-end
alignments, only uniquely mapping reads were retained, and
PCR duplicates were removed using MarkDuplicates (Pi-
card Tools 1.82). To avoid counting reference positions cov-
ered by overlapping paired-end reads, overlapping regions
were clipped, keeping the region of the overlap with higher
quality. The original computationally converted C’s and G’s
were reverted, and for each reference cytosine position the
number of C reads and T reads were counted using SAM-
Tools mpileup. We kept the number of 5mC reads as well as
total read coverage at each CG dinucleotide where 5mC is
present for the processed data.

5hmC data. The base-resolution maps of 5hmC in human
and mouse ES cells were generated previously (29). We used
the same procedure described above to process 5hmC data
and call methylation.

DNase data. The DNase I cutting sites were derived from
the ENCODE dataset. We downloaded the Human H1-
hESC DNase sequencing alignment files from ENCODE
Crawford–Duke chromatin Map dataset via ENCODE
Data Coordination Center (DCC); we downloaded the
mouse mESC DNase sequencing alignment files from EN-
CODE Uw Dnase dataset from ENCODE DCC; DNase-
seq alignment files for the IMR90 cell line were first down-
loaded from ENCODE Duke OpenChromDnase dataset
on ENCODE DCC, and then converted to the hg18 coor-
dinate system using liftover (37).

ChIP-seq data. The ChIP-seq mapping results for all the
TFs in H1-hESC cells, IMR90 cells, and CTCF in mouse
mESC Cells were downloaded from UCSC ENCODE col-
lection (38). We performed the ChIP-seq experiment on
mouse mESC for OCT4.

ChIP-seq experiment. ChIP-seq experiments were
performed following the protocol from the laboratory
of Richard M. Myers (http://myers.hudsonalpha.org/
documents/Myers%20Lab%20ChIP-seq%20Protocol%
20v041610.pdf). Briefly, 2 × 107 mouse ES cells were
cross-linked with 1% formaldehyde at 25◦C for 10 min
and sonicated to generate chromatin fragments of 100–500
bp. Chromatin fragments from 2 × 107 cells were im-
munoprecipitated using OCT4 antibody (Abcam ab8895).

ChIP-seq library construction and Illumina sequencing
were performed following the manufacturer’s instructions.

ChIP-seq data processing. For bam files that listed ge-
nomic coordinates in hg19, we first converted them to ge-
nomic coordinates in hg18 using liftover (37). We next used
HPeak (39) for peaking calling. Peak intersections of bio-
logical replicates are retained and employed for model train-
ing to maintain enhanced ChIP signal strength.

Selection of candidate regions. The candidate TF binding
regions are selected based on sequence motif scores. The
position-specific weight matrices (PWM) for CTCF, MAX,
SIX5, USF1, BCL11A, EGR1, NANOG, RAD21, RFX5,
SRF, USF2, GABP, NRSF, YY1, CJUN, JUND, OCT4
and TCF12 were downloaded from JASPAR (40) and fac-
torbook (38). We used PWM matching functions from Bio-
conductor package ‘Biostrings’ to scan the entire genome to
identify candidate sites for TFBS. The cutoff for candidate
sites leaves between 200 000 and 600 000 candidate sites for
most TFs (more details can be found in Supplemental Ma-
terials).

Data access

ChIP-Seq data in mESC have been submitted to GEO
(GEO accession number GSE65093).

RESULTS

TF binding prediction results

We conducted extensive real data analyses to evaluate the
performance of Methylphet. In total, we performed TF
binding prediction of 19 TFs for human embryonic stem
cell line H1-hESC and five TFs for human fibroblast cell
line IMR90. We randomly split candidate sites into equal-
sized training set and testing set. Prediction performance is
evaluated on the testing set only. We compared the predic-
tion performance of Methylphet with CENTIPEDE (16),
which is a widely used unsupervised method using DNase-
seq data to predict TFBS. CENTIPEDE takes other ge-
nomic features to construct the prior for TF binding pre-
diction. For a fair comparison, we fed the same set of non-
cell-type-specific, static genomic features, such as conser-
vation score, motif score, etc. to both CENTIPEDE and
Methylphet. Besides those, DNase data were used in CEN-
TIPEDE, and methylation data were used in Methylphet.
We did not include methylation data for CENTIPEDE, nor
did we include DNase data for Methylphet. We also com-
pared with predictions using sequence motif only (candi-
date regions are ranked by their motif scores). Receiver Op-
eration Characteristic (ROC) curves are used to represent
the overall predicting performance of each method (Fig-
ures 4 and 5). Considering that a majority the candidate
sites are negative for some TFs (Supplementary Table S2-
1), we also generate precision-recall curves for performance
evaluation (Supplementary Figures S9 and S10).

Figure 4 shows the ROC curves for nine different TFs
in H1-hESC. These extensive real data analyses show that
Methylphet robustly outperforms CENTIPEDE and the
motif-score-only method. To be more specific, Methylphet

http://myers.hudsonalpha.org/documents/Myers%20Lab%20ChIP-seq%20Protocol%20v041610.pdf
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Figure 4. TF binding prediction results for H1-hESC cell line. ROC curves
for Methylphet, CENTIPEDE, and motif score are shown by red, blue,
green lines, respectively. Prediction results were generated by randomly
splitting the dataset into training set and testing set of equal size for the
H1-hESC cell line. Methylphet robustly provides better predicting perfor-
mance for different transcription factors. ROC curves for other factors in
H1-hESC, IMR90, and mESC are shown in Supplementary Figures S1–
S3.

Figure 5. Cross-sample TF binding prediction results. Upper two figures
are cross-cell line predictions between IMR90 and H1-hESC; lower two
figures are cross-cell line predictions between a mESC cell line and H1-
hESC. The results demonstrate that Methylphet generally achieves more
robust and precise prediction.

outperforms motif-score-only for all TFs in all cell lines.
This is expected since Methylphet effectively combines mo-
tif score and information from methylation profiles and
other genomic features. Compared with CENTIPEDE,
which also considers motif score and other genomic fea-
tures, Methylphet also outperforms significantly in all TFs.
Although CENTIPEDE and Methylphet perform similarly
for CTCF and RAD21 when the false-positive rate (FPR)
is small (<0.1), Methylphet outperforms CENTIPEDE af-
ter the FPR is >0.1. Similar results for other TFs in H1-
hESC, more results in mESC and IMR90 cell lines are
shown in Supplementary Figures S4–S6. In order to demon-
strate the robustness of the performance, we repeat the test-
ing for 10 times. The boxplots of the 10 area under the
ROC curves values (Supplemental Materials, Figure S12)
show that Methylphet robustly outperforms motif score and
CENTIPEDE.

In addition to the difference in information sources, the
underlying strategy of Methylphet, which is an ensemble
learning approach, is also different from that of CEN-
TIPEDE, which is a mixture model type of approach. It is
of interest to find out whether the source of data, or the
underlying method is the major contributor of the perfor-
mance improvement of Methylphet. In order to answer the
above question, we replaced the methylation scores with
the DNase scores obtained from CENTIPEDE in the RF
of Methylphet and compare that to Methylphet as well as
CENTIPEDE. Results are summarized in Supplementary
Figure S13, which show that in most cases, RF with methy-
lation performs the best, followed by RF with DNase data
and then CENTIPEDE. Our comparison results between
RF with methylation data versus RF with DNase data seem
to suggest that both data source (methylation data versus
DNase data) and method used (RF versus mixture model)
contribute to the performance improvement of Methylphet
over CENTIPEDE. However, it is also possible that the sta-
tistical model, not the data source used, made the differ-
ence. Therefore, an alternative model for DNase with RF
could change, and potentially improve the predicting abil-
ity of DNase data.

The advantages of RF, an ensemble learning approach,
over the mixture model type of approach adopted by CEN-
TIPEDE can be attributed to two factors. First, due to the
high variability among TFs, a supervised learning approach
like RF is more robust. On the other hand, an unsupervised
mixture model approach may fail in adverse situations. As
an example, the EM algorithm (41) fails to converge when
the proportion of true positives in the candidate sites is low,
which often occurs for TFs with shorter motifs and fewer
putative binding sites. Second, RF does not assume inde-
pendence among the predictors, as does CENTIPEDE. Our
experience with CENTIPEDE is that the final results are
often dominated by the DNase-seq data. Since the genomic
features are diverse and many of them are highly correlated,
an RF model can better use the integrated information from
predictors.

Cross-sample TF binding prediction results

We further tested the predictive accuracy when training and
testing data were from different samples. Our approach will
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be most attractive if the model trained in one cell type can
produce robust prediction in a different cell type or sam-
ple; from Figure 2, this seems plausible since we saw that
the methylation pattern is consistent across cell lines for the
same TF.

To verify this, we conducted tests in which we trained
the Methylphet model using data from IMR90 and mESC
cell lines, and then applied the model in a different cell
line, H1-hESC, for prediction. Figure 5 shows the ROC
curve for predicting CTCF, OCT4 and MAFK binding sites
with the cross-cell-line-trained model. For MAFK (model
trained on IMR90) and OCT4 (model trained on mESC),
Methylphet outperforms CENTIPEDE significantly. For
CTCF on H1-hESC (model trained on IMR90 and mESC,
respectively), Methylphet outperforms CENTIPEDE after
the FPR is >0.15, although CENTIPEDE performs slightly
better before that. In terms of overall area under the curve,
Methylphet is superior in all TFs. These results demon-
strate that Methylphet achieves robust and precise predic-
tion when the model trained in a different cell line, show-
casing the broad utility of our method.

Cross-TF prediction results

We further investigated the TF-specificity of Methylphet
model by cross-TF training and predicting (more details
in Supplemental Materials, Section 8.6). This result (Sup-
plementary Figure S15) shows that even though cross-TF
prediction is possible, TF-specific Methylphet model pro-
vides the best results. The methylation profile and other ge-
nomic characteristics of TF binding are important in the
Methylphet model and better to be modeled in a TF-specific
manner.

Experimental validation in mouse dentate gyrus cells

We performed NRSF binding site prediction in mouse den-
tate gyrus (DG) cells using Methylphet model trained from
mES data. Because NRSF ChIP-seq data in mouse DG
cells are not available, we performed qPCR in randomly
selected sites as validation. Ten positive and ten negative
sites are randomly selected from top 1000/bottom 1000
Methylphet-predicted binding sites respectively. Then five
positive and five negative sites have suitable qPCR primers
were tested (details in Supplemental Materials, section 8.5).
Fold enrichment is calculated on both positive sites and neg-
ative sites in order to compare the prediction performance.
Among the selected sites, we can see clear enrichment inside
positive predicted sites compared to negative predicted sites
(Supplementary Figure S14). Detailed information about
the selected sites are listed in Supplementary Table S3 in
Supplemental Materials.

Contribution of different features in Methylphet

It is important to understand the relative predictive power
of methylation levels and other genomic features used in
Methylphet. We present the Gini importance (Supplemen-
tal Materials 6.2) of predictors in the RF model for CTCF
and SOX2 using bar plots in Figure 6A and C. Gini im-
portance is the measurement of classification efficiency for

Figure 6. Relative predictive power of genomic features used in
Methylphet. (A) and (C) show the contribution of each feature in RF. (B)
and (D) show the ROC curves with or without adding CG methylation and
CH methylation information. Among them, (A) and (B) were generated
using CTCF TFBS prediction results in H1-hESC; (C) and (D) were
generated using SOX2 TFBS prediction results in H1-hESC. (E) Boxplot
of Gini importance for each feature used in RF.

each feature, which is defined as the level of decrease in the
class impurity. Please see the Supplemental Materials 6.2
about the details of feature importance evaluation. Simi-
lar figures for other TFs are provided in Supplemental Fig-
ure S7. Based on these analyses, we found that 5mC scores
play the most important role in predicting CTCF binding,
whereas the CH score is the most important predictor for
SOX2. Motif is the second most important for CTCF, but
its importance is very low for SOX2. This is because the
SOX2 motif has much lower specificity compared to the
CTCF motif. For both TFs, CH and 5hmC methylations
play rather important roles. We compared the predictive
performances with or without 5hmC and CH methylations.
Figure 6B and D shows the ROC curves from such compar-
isons. These results demonstrate that including both 5hmC
and CH methylation scores in the model improves the pre-
diction power. Figure 6E shows the distributions of Gini
importance of each predictor across all TFs we tested. We
can see clearly that the 5mC score contributes the most on
average among all features, next being the CH and motif
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scores, followed by sequence conservation and distance to
the closest TSS.

Comparison with other predicting tools and other machine
learning methods

We chose Random Forest as the ensemble algorithm to in-
tegrate all the features. During the RF model construction,
one single variable was used at a time, and by integrating
this information after sampling, it can give an automatic
measure of feature importance. This is important since our
work requires integrating different types of information
and evaluating feature importance. We also compared with
other popular supervised machine learning tools, such as
Neural Network (42), SVM (43) and adaBoost (44). Sup-
plemental Figure S8 shows the ROCs of the methods com-
pared. In general, we can obtain reasonably good results
with all these choices because of the rich information in the
methylation scores and other genomic features. Among all
the methods we saw robust performance from RF across all
the TFs. Even though the predicting result is not sensitive
to model selection, we prefer RF for its additional advan-
tages, such as its efficiency on large datasets, ability to avoid
over-fitting, and its inherently non-parametric structure. In
addition, it can provide more details in the importance of
features without extra cost. The evaluation of Gini impor-
tance is done as the learning goes, which lead to one of the
major discoveries in our study that 5mc and 5hmc profile
can contribute as the top predictor in Methylphet.

Description of the software

R package Methylphet is freely available from https://
github.com/benliemory/Methylphet and will be submitted
to Bioconductor (45) soon. Methylphet accepts 5mC, 5hmc
and CH methylation profiles individually or in combina-
tion. As the example in the package shows, training about
7000 candidate sites and predicting on about 10 000 can-
didate sites with both CG and CH information takes less
than one minute on a MacBook Pro laptop computer with
2.7 GHz i7 CPU and 16G RAM. Training time varies de-
pending on number of candidate sites. For most of the cases
in this study, training time is <30 min.

DISCUSSION

In this work, we developed Methylphet, a novel computa-
tional method and software package to predict TF binding
using a combination of methylation profiles and genomic
features. The idea is based on the observation that in vivo
TF binding events often co-occur with altered methylation
levels. Methods for in silico prediction of TF binding using
epigenetics data have been proposed before, mostly based
on histone ChIP-seq or DNase-seq data. Our method ex-
ploits methylation data instead, which is much easier to col-
lect experimentally. In this respect, our method provides a
more practical means of in silico TF binding prediction and
will be more useful in the clinical setting.

We show that Methylphet performs very well in the cross-
sample and even cross-species predictions. These results im-
ply that a predictive model trained under a certain biolog-

ical context can be applied for prediction in different sam-
ples, which is important because it indicates that the model
building procedure (which is the most time consuming) only
needs to be performed once, and then the model can be
applied elsewhere for the same TF. It is important to note
that the predictive models are TF-specific, i.e. each TF will
have its own model. This is because around the binding sites
of different TFs, both the methylation patterns and the ge-
nomic features are different (Figure 2).

Disruption of epigenetic processes is known to contribute
to the pathogenesis of multiple human diseases. For exam-
ple, aberrant epigenetic modifications occurring at the earli-
est stages of neoplastic transformation are believed to be an
essential player in cancer initiation and progression (46,47).
Using our method, a change of epigenetic status, particu-
larly DNA methylation status, at a given locus could imply
dynamics of in vivo TF–DNA interactions. Advances in epi-
genetics have not only offered a deeper understanding of the
mechanisms underlying disease pathogenesis, but have also
allowed the identification of putative epigenetic biomark-
ers for early detection and diagnosis. Nevertheless, it would
be very challenging to collect patient tissues/cells that are
fresh enough to perform chromatin immunoprecipitation
or DNase I-hypersensitive assays. However, DNA methy-
lation analyses could be performed routinely with clinical
samples. So, the development of a DNA methylation-based
in vivo TF–DNA interaction predicting algorithm is criti-
cal for uncovering effective biomarkers for human diseases
(48).

One constraint of the application of the method is that
whole-genome BS-seq experiment is very expensive. How-
ever, with the predictive model pre-built from public data, it
is possible to use BS-seq data from selected regions (such as
reduced representation of BS-seq or RRBS (49)) for binding
prediction. Such an approach, although the prediction will
not be genome-wide, still provides valuable information at
important regions. Potentially, with small modifications of
the methylation model, data from methylation microarrays
can be used for binding prediction. This will be our research
plan in the near future.

Unlike plant genomes, where enzymes for generating and
erasing CH methylation have been well characterized (50),
CH methylation in mammalian genomes has not been stud-
ied extensively until recently. Recent whole-genome bisul-
fite sequencing revealed that CH methylation is abundant
in hESCs and hiPSCs, as well as brain (25). In brain, CH
methylation accumulates during neuronal maturation, sug-
gesting a potential role for CH methylation in normal brain
function (34). The role of CH methylation in gene regula-
tion remains elusive. Our analyses presented here suggest
that CH methylation is among the best predictors of in vivo
TF–DNA interactions along with 5mC, pointing to an ac-
tive role for CH methylation in gene regulation. It is possible
that the coordination between CpG and CH methylations
regulate the dynamics of TF–DNA interaction in vivo.

5hmC shares similar characteristics with 5mC data. Since
our model is very robust to capture the methylation pat-
tern between TF binding sites and non-binding sites, we
extended our model to summarize 5hmC data to calculate
5hmC score. Although 5hmC data are far more sparse than
5mC data, they could provide additional information to

https://github.com/benliemory/Methylphet
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predict TF binding sites. Figure 6 shows the ROC curve with
and without the 5hmC data. (More results on other TFs can
be found in Supplemental Materials Figure S7.)

Beyond TF binding, there are other genomic features that
are also related to methylation, such as active/poised tran-
scription, active/poised enhancers, RNA splicing and chro-
mosomal translocation. In the future, we could potentially
adapt our machine learning algorithm to detect other ge-
nomic elements of interest that play a regulatory role. It
would be highly interesting to see whether there are any
methylation signatures associated with these events.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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