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Abstract: In this study, the physiological control algorithm using sliding mode control method is implemented to track the
reference input signal. The controller is developed using feed-forward part, reference model, and steady-state flow estimator.
The proposed control method is evaluated using a dynamic heart-pump interaction model incorporating descriptions of the
cardiovascular system – rotary blood pump. The immediate response of the controller to preload as well as afterload was
studied. Stability and feasibility of the control system were demonstrated through the tests. The results showed that the present
controller, which allows the left ventricular to automatically adjust to the right ventricular output, reduces the risk of suction.

1 Introduction
The incidence of advanced heart failure (HF) continues to double
every 10 years [1]. Whilst medical and surgical advances continue
to occur, an ever-increasing number of patients are listed for
cardiac transplantation each year. However, the number of donor
organs remains limited and the short-term treatment of HF disease
using continuous intravenous inotrope support may improve
symptoms but may worsen mortality [2, 3]. Therefore, lack of
effective pharmaceutical and transplant options has driven HF
therapy to look toward mechanical pumping assistance [4].

The mechanical circulatory support type implantable rotary
blood pumps (IRBPs) represent a major advantage in the
management of end stage HF [3, 5]. However, the morbidity and
mortality associated with their use are still unacceptably high. The
interaction between native failing heart and IRBP is poorly
characterised and is associated with both morbidity and
preventable mortality [6]. A complete understanding of the
physiological and anatomical interaction between IRBPs and the
diseased ventricles will facilitate strategies to optimise the hearts
dynamic geometry, promote myocardial recovery and develop
diagnostic pathways to optimise IRBP management [7].
Translating this research into practice will optimise the potential of
such poorly managed devices, enabling improved lifestyle and
mortality of patients.

One of the challenges is the wide range of degrees of HF that
need to be accommodated, poor ventricular function with virtually
no pulsatility to accurate ventricular function where significant
aortic valve flow exists [4]. Some observers initially claimed that
the flatter pressure differential/flow characteristics of centrifugal
devices at a fixed average speed offered an inherent flow
adaptation for different levels of preload. However, some
researchers show these rotary devices to be preload insensitive
meaning that additional sensors are required to give these systems
a natural Frank–Starling behaviour [8]. Most commercial rotary
ventricular assist devices (VADs) currently operate at a fixed speed
which is set and adjusted by an expert clinician. Many researchers
have reported bench-based (mock loop) experiments, e.g.
Giridharan et al. [9] who purports that regulation of VAD head
pressure provides physiological control. Some rotary VADs do
have controllers which can be adjusted for different activity levels.
Flow maker [10] allows patients to manually switch to three
different speeds set by an expert clinician which correspond with
low, medium, and high levels of activity.

In this field, the traditional control strategy, which maintains a
constant pump speed, demonstrates a limited degree of adaptability
to cardiac demand and clinical conditions of the heart. For
instance, We et al. [11] designed physiological control algorithm
using an optimal proportional–integral (PI) controller to maintain
aortic pressure and prevent suction. This algorithm allowed for an
automatic response to the changing metabolic demands of the
circulatory system. However, maintaining aortic pressure at a
constant value may increase the risk of suction under low systemic
vascular resistance/blood volume conditions, while producing
lower than optimal cardiac output under higher blood volume
conditions. Furthermore, Choi et al. [12] developed a physiological
controller to optimise the blood flow using the fuzzy logic
controller to prevent ventricular collapse. The main drawback
related to this control strategy is the selection of a suitable pump
flow level.

To overcome the issue, the novel method of an advanced
physiological control algorithm is proposed and implemented to
drive a pump rotational speed in accordance with the body
metabolic demand. The proposed method is designed using the
reference model of sliding mode control (SMC) method where the
sliding surface is implemented using error states of the original
model and designed the reference model [13].

2 Methods
2.1 VAD model

In order to simulate a wide range of cardiovascular states and pump
operating conditions, a software model of the cardiovascular
system (CVS) together with the left VAD (LVAD) was used to
evaluate the control strategy. The model has been developed based
on experimental measurements obtained from five greyhounds
implanted with an IRBP, over a wide range of operating conditions,
including variations in cardiac contractility, systemic vascular
resistance and total circulatory volume [14]. Least square
parameter estimation methods were utilised to fit a subset of model
parameters in order to achieve better agreement with the
experimental data and to evaluate the robustness and validity of the
model under various operating conditions.

2.2 Flow estimator model

The control method was developed using non-invasive average
pulsatile pump flow estimator model. The estimator model
consisting of two auto-regressive (ARX) model. The first proposed
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ARX model represents the relation between average pulsatility
index of pump rotational speed and average pulse-width
modulation signal as an input signal to estimate. Then, the second
proposed ARX model represents the average pulsatile flow as
estimated from. The performance of the model was carefully
validated using different values of hemodynamic parameters
including systemic vascular resistance, total blood volume and the
left and right ventricular contractility. In addition, the stability of
this model is studied and Fig. 1 indicates that the pole-zeros of the
model estimator are located within the unit circle. A detailed
description of the model, as well as parameter values, can be
obtained from [15]. 

2.3 VAD control strategy

In the proposed method, we considered control system
implantation in combination with the estimator and VAD model as
shown in Fig. 2. The controller is designed to achieve that the flow
error tends to zero (e → 0) as the time tends to infinity (t → ∞).
Therefore, the reference model is designed as a part to drive the

control system. This reference model is used as a part of the SMC
approach to control the reference pump flow. The reference pump
flow is carefully designed using the preload (end diastolic function)
in terms of left atrial filling (end systolic volume). 

To achieve a physiological demand, the time varying of
elastance function (ev) at end systolic period is considered.
Therefore, (ev) is used where the maximum of this function has
represented the end systolic period and the phase shift of 15% for
sinusoidal reference pump flow is known as zero at the peak value
of pump flow. Thus, the reference input signal is chosen as
r(n) = α + βsin(2πt /T + γ) where α, β and γ are constants, α > β,
while T is the heart period.

2.4 Controller design

The estimator model is identified by ARX model where the
mathematical equation of this model is considered as

ξ(n + 1) = Aξ(n) + ΔAξ(n) + Bu(n) + η(n)

φ(n) = Cξ(n)
(1)

where ξ is the state of estimator model, u is the control signal, ΔA

is estimator parameter variation, η(n) is the system noise and A, B
and C are model matrices.

Assume the corresponding reference model is given as

β(n + 1) = Arβ(n) + Brr(n) (2)

where β is the state vector, r is an input signal, Ar and Br are model
reference matrices.

The controller is designed and implemented based on the error
tracking of states [16]. Therefore, if we define this error difference
between plant and model sate response as

e(n) = ξ(n) − β(n) (3)

e(n + 1) = ξ(n + 1) − β(n + 1) (4)

by updating the previous equation, we can obtain

e(n + 1) = Aξ(n) + ΔAξ(n) + Bu(n) + η(n)

− Arβ(n) − Brr(n)
(5)

manipulating (5) with the term of Arξ(n) yields

e(n + 1) = Aξ(n) + ΔAξ(n) − Arξ(n) + Arξ(n)

+Bu(n) + η(n) − Arβ(n) − Brr(n)
(6)

and by re-arranging (6), we can write

e(n + 1) = Are(n) + (A − Ar)ξ(n) + ΔAξ(n)

+Bu(n) + η(n) − Brr(n)
(7)

If we define the sliding surface as

ξ(n) = ρe(n) (8)

ξ(n + 1) = ρe(n + 1) (9)

where ρ is a constant vector and known as a switching function.
This vector is designed to guarantee that ξ(n) is asymptotically
stable [17]. Fig. 3 shows the convergence performance of the state
variables ξ1(n) and ξ2(n) as they move on the switching plane. 

In this method, to achieve strong reachability [18] we propose
the following reaching law as:

ξ(n + 1) = (1 − τT)ξ(n) − ϵTsign(ξ(n)) (10)

from (7), (9) and (10) we can obtain

Fig. 1  Poles-zeros of the system model
 

Fig. 2  Control system with the reference model, estimator and VAD model.
r(n), reference flow; u(n), control input; Hcvs, differential pressure; CVS,
cardiovascular system; Qp, instantaneous pump flow; Qp, mean pump flow;
ev, elastance function; T, heart period; α, constant

 

Fig. 3  System response
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(1 − τT)ξ(n) − ϵTsign(ξ(n))

= ρ(Are(n) + (A − Ar)ξ(n) + ΔAξ(n)

+Bu(n) + η(n) − Brr(n))

(11)

by solving the above equation for u(n) yields

u(n) = − (ρB)
−1

(ρAre(n) + ρ(A − Ar)ξ(n)

− ρBrr(n) − (1 − τT)ξ(n) + ϵTsign(ξ(n)))

−(ρB)
−1

(ρΔAξ(n) + ρη(n))

(12)

As ΔA and η(n) are unknown, we may assume that the upper and
lower bounds of the value (ρΔAξ(n) + ρη(n)) are known

−αT < (ρΔAξ(n) + ρη(n)) < αT (13)

then the control algorithm can be given as

u(n) = − (ρB)
−1

(ρAre(n) + ρ(A − Ar)ξ(n)

− ρBrr(n) − (1 − τT)ξ(n) + ϵTsign(ξ(n)))

−(ρB)
−1

αTsign(ξ(n))

(14)

Now consider the control law is structured as

u(n) = u1(n) + u2(n) = ul(n) + unl(n) + u2(n) (15)

here, the linear part is known as

ul(n) = − (ρB)
−1

(ρAre(n)) (16)

and the non-linear part is known as

unl(n) = − (ρB)
−1

( − 1(1 − τT)ξ(n) + ϵTsign(ξ(n)))

+αTsign(ξ(n))
(17)

To understand u2(n) better let us consider the following theorem
with non-proof in linear algebra [16].
 
Theorem 1: For the following system denoted by:

RX = Y

has only one solution if and only if

rank[RY] = rank[R]

here, if the following conditions hold:

rank[BAr − A] = rank[B] (18)

rank[BBr] = rank[B] (19)

then there are existing terms which are (F) and (G) can be written
as

Ar = A + BF (20)

Br = BG (21)

it also follows that the control law u2(n) can be expressed as

u2(n) = Fξ(n) + Gr(n) (22)

where G and F are known as feed-forward gain and state feedback
matrices, respectively. The feed-forward part can be obtained as

G = − (C(A + BF)
−1

B)
−1 (23)

and the design of F can be easily calculated using the Ackermann's
formula or the pole placement method [19, 20]

u2(n) = − (ρB)
−1

ρ((A − Ar)ξ(n) − Brr(n))

= Fξ(n) + Gr(n)
(24)

3 Simulation protocols
To assist the performance of the control algorithm, preload and
afterload scenarios are presented. In preload scenario test, the total
blood volume Vtotal  was linearly decreased by 500 ml over a
period of 60 s. Here, the model parameters were linearly changed
at 30 s and the HF condition was taken as the baseline state. These
changes associated with the linear decrease in the reference pump
flow from (4 + 3.4sin(2πt /T + 1.5)) to (2.5 + 3.4sin(2πt /T + 1.5)).
Next, at the afterload scenario, the ability of the control algorithm
to adjust to more severe circulatory perturbations was evaluated.
Here, a sustained severe fall in LV contractility to track the
reference pump flow was simulated. The model parameters have
been changed linearly at 30 s. These changes include a linear
increase in the reference pump flow from (4 + 3.4sin(2πt /T + 1.5))

to (5.5 + 3.4sin((2πt + 1.5)/T)), Rsa (decreased linearly by 20%),
Vtotal (increased linearly by 500 ml), Elv and Erv (increased linearly
by 15%).

In all scenarios, the model parameters have been changed
linearly over the period of 60 s. This period has been chosen to
verify the system stability at time instants. For this period, the
system has been induced at the middle (30 s) and the simulations
are continued for another half of the time. The design parameters
of the switching function in (14) are ρ = [11], τT = 0.05,
ϵT = 0.025 and αT = 0.5. The resulting values of F and G are [–
0.53 0.0805] and (–408.3333), respectively.

4 Results
4.1 Preload scenario

The simulation results of preload scenario can be shown in Fig. 4.
The reduction of Vtotal by 500 ml at 30 s, the controller responds to
produce a leftward shift of the LV and RV (right ventricular)
pressure volume loops, resulting in decreased LV and RV end-
diastolic and end-systolic volumes, as well as end-diastolic and
end-systolic pressures as shown in Fig. 4a. Consequently this
action, decrease mean pump speed from ∼2100 to 1740 rpm and
subsequently mean pump flow decreased from 4.7 to 2.8 l/min. In
addition, Fig. 4d shows that the simulated pump flow accurately
tracks the desired reference flow within an error of ± 0.21 l/min. 

4.2 Afterload scenario

The ability of the controller to adjust to longer term circulatory
perturbations that were sufficient to track the reference pump flow
is illustrated in Fig. 5. In this scenario, LV contractility was linearly
decreased at t = 30 s, over a period of 10 s. A sustained severe fall
in LV contractility produced a rightward shift of the LV pressure
volume loops, resulting in increased LV end-diastolic and end-
systolic volumes. Peak-systolic LV pressure, as well as stroke
volume (SV), were decreased. The large fall in the LVAD flow and
associated changes to flow pulsatility is handled initially by a
tracking the reference pump flow. It can be observed that the
rotational pump speed successfully increases speed from 2900 to
3400 rpm to increase the mean pump flow when the flow falls
below the lower limit of 3 l/min. Also, Fig. 5d shows that the
simulated pump flow is accurately tracked the desired reference
flow within an error of ± 0.22 l/min. Table 1 shows the test results
of different hemodynamic variables for the HF condition. 

5 Discussion
In general, our physiological control computer simulation studies
have demonstrated the feasibility of a non-invasive sensor
approach based on accelerometery. The reliability of this signal to
represent cardiac preload requires integration with other
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physiological signals such as heart rate and respiratory rate.
However, HF patients are observed to often have limited changes
in these signals. So, we believe that the integration of an invasive
pressure sensor may be required to effectively monitor and control

cardiac preload and so give the pump system a natural Frank–
Starling behaviour.

In this field, different research groups are designed and
implanted valuable physiological algorithms for IRBP output. For
instance, Choi et al. [12] used a fuzzy logic controller that relied on

Fig. 4  Hemodynamic variables results in the preload scenario
(a) LV volume versus LV pressure before and after parameter change, (b) Mean pump rotational speed; ω: pump speed, (c) Pump flow compared with desired reference flow at the
initial time, (d) Pump flow compared with desired reference flow at the induced time

 

Fig. 5  Hemodynamic variables results in the afterload scenario
(a) LV volume versus LV pressure before and after parameter change, (b) Mean pump rotational speed; ω: pump speed, (c) Pump flow compared with desired reference flow at initial
time, (d) Pump flow compared with desired reference flow at induced time

 

IET Syst. Biol., 2018, Vol. 12 Iss. 2, pp. 68-72
This is an open access article published by the IET under the Creative Commons Attribution-NoDerivs License
(http://creativecommons.org/licenses/by-nd/3.0/)

71



the pulsatility index as the input to the controller. This index is
used to drive the pump at a level that provides maximum possible
flow without ventricular suction occurring. The flow is not
measured, rather a model of the pump is used to determine the
flow, based on pump speed and current. Similarly, Casas et al. [21]
used a fuzzy Logic controller to maintain pump flow within
specific limits. Feedback inputs were pressure difference across
pump and the pump speed – a model of the pump flow was used
for calculating an estimated pump flow using these variables.
However, none of them have achieved the regulation of differential
pressure and pump flow at variable speed.

Generally, pump flow pulsatility increases with increasing
pump speed once suction occurs [22]. This raises a serious concern
with the present control strategy which uses pump flow pulsatility
as an input, as it could lead to inappropriate increases in pump
speed if suction occurs. A number of measures were suggested to
minimise this possibility: (i) introduction of a lower limit for pump
flow pulsatility; (ii) proportional and integral gains of the controller
were set to allow the controller to respond quickly to a change (i.e.
a reduction) in preload to avoid the occurrence of suction; (iii) a
suction detection algorithm [12, 23] is implemented to force a
change in the pump speed and to produce an alarm if suction is
detected. In addition, as with all types of pulsatility control, the
present control strategy assumes that the left ventricle has some
residual contractility to provide pump flow pulsatility.

In this work, the transient overshoot is a significant issue which
can be observed in the first two seconds in Fig. 4c at the first
scenario and Fig. 5c at the second scenario. Despite, the transient
response is high at the initial time; the average pump flow stays
within the acceptable clinical ranges without any occurrence of
over-pumping. Future studies may include other advanced modern
control methods such as robust linear quadratic control [24], H-
infinity control based robust stabilisation [25], robust controller
switching [26], communication-limited control [27].

6 Conclusion
In this work, the innovative of a physiological control algorithm
that mimics the metabolic demand of the human body is presented.
The immediate response of the controller to short term and longer
term of circulatory changes were evaluated. Stability and feasibility
of the control system were demonstrated through the tests. Results
showed that the present controller allows the LV to automatically
adjust to the RV output and reduces the risk of suction.
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Table 1 Changes of hemodynamic variables at preload and
afterload
Variables HF + LVAD

Units Normal Preload Afterload
LV end diastolic pressure Plved mmHg 9.50 8.50 21.79
LV end systolic volume Vlves l/min 40.50 39.00 62.00
LV end diastolic volume Vlved l/min 140.70 141.90 152.4
SV ml 102.00 100.0 100.0
average of actual flow Qact l/min 4.50 3.40 5.05

average of estimated Qest l/min 4.95 3.65 5.52
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