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Abstract: A sulfanyl porphyrazine derivative with peripheral phthalimide moieties was metallated
with cobalt(II) and iron(II) metal ions. The purity of the macrocycles was confirmed by HPLC, and
subsequently, compounds were characterized using various analytical methods (ES-TOF, MALDI-
TOF, UV–VIS, and NMR spectroscopy). To obtain hybrid electroactive electrode materials, novel
porphyrazines were combined with multiwalled carbon nanotubes. The electrocatalytic effect de-
rived from cobalt(II) and iron(II) cations was evaluated. As a result, a significant decrease in the
overpotential was observed compared with that obtained with bare glassy carbon (GC) or glassy
carbon electrode/carbon nanotubes (GC/MWCNTs), which allowed for sensitive determination of
hydrogen peroxide in neutral conditions (pH 7.4). The prepared sensor enables a linear response
to H2O2 concentrations of 1–90 µM. A low detection limit of 0.18 µM and a high sensitivity of
640 µA mM−1 cm−2 were obtained. These results indicate that the obtained sensors could potentially
be applied in biomedical and environmental fields.

Keywords: electrocatalysis; hydrogen peroxide; porphyrazine; voltammetry; carbon nanotubes

1. Introduction

Hydrogen peroxide is a significant molecule widely used in biomedicine and the
food and environmental industries [1]. Moreover, it is a strong chemical oxidant and is an
important by-product of many biochemical reactions of enzymes from the oxidase family.
Increased levels of hydrogen peroxide can potentially cause serious disorders/diseases,
such as cancer, cardiovascular disease, and Alzheimer’s [2,3]. Hence, developing efficient
and sensitive H2O2 sensors is required for human health and industrial process monitoring.
An electrochemical method is the perfect tool for monitoring H2O2 due to the low cost
of equipment, simplicity, and potential of miniaturizing the final sensing devices [4,5].
However, the detection of hydrogen peroxide on conventional electrodes requires high
overpotentials, which might trigger interference from coexisting substances. To overcome
such a drawback, various modified electrodes have been extensively constructed by the
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immobilization of efficient and selective catalysts, such as metal nanoparticles [6], metal
oxides [7], metal hexacyanoferrates [8], and metal porphyrinoids (phthalocyanine, por-
phyrin, porphyrazine) [9–11]. The surface of the electrode may be also modified to produce
an electrocatalyst-grafted electrode surface or the surface of the electrode may express
electrocatalytic behavior itself [12,13]. The electrocatalyst takes part in the electrochemical
processes and aids in the electron transfer between the electrode and the reactants in the
analyte, and it may facilitate chemical transformation. Furthermore, by utilizing differ-
ent electrode materials, the electrocatalysis offers the possibility of generating different
electrode kinetics [14–16]. Among these electrocatalysts, porphyrinoids have attracted
much attention in recent years. The desired electrocatalytic properties are dependent on the
central metal ion (e.g., Co, Fe, Mn, Ni) as well as on substituents attached to the macrocyclic
rings [17]. The application of functional macrocycles can allow the monitoring of H2O2 at
lower potentials compared with ordinary electrodes.

Porphyrazines (Pzs) are synthetic tetrapyrrolic macrocycles, aza analogs of naturally
occurring porphyrins. The highly conjugated porphyrazine ring grants the molecule unique
properties, including optical, electrical, and photochemical, rendering it potentially useful
in fields such as medicine, sensors, or photocatalysis [18,19]. The sole unmodified Pz ring is
highly nonpolar and prone to π–π stacking, which hampers its broad use. Thus, Pzs may be
modified in two main approaches—by changing the element complexed in the coordinating
center, usually a metal cation, or by peripheral substitution at the β-positions. In this way,
the physicochemical properties of the macrocycle may be tailored to a specific application.
Among Pzs, sulfanyl Pzs have gained attention as they were found to express good solu-
bility and have interesting biological [20,21], photocatalytic [22,23], electronic [24,25], and
optical properties [26]. Sulfanyl Pzs bearing nitrophenoxy [27,28] and isophthaloxyalkyl
substituents [29,30] recently synthesized in our group revealed a plethora of interesting
photochemical and electrochemical properties. Additionally, phthalimide moieties were
reported to strongly influence the macrocycles they were attached to. When phthalimide
rings are fused to the macrocycle, they lower the LUMO energy of the macrocycle, which
was shown by Cai et al. for naphthalocyanines [31]. Rodriguez et al., on the other hand,
reported the properties of topical formulations of peripherally octasubstituted phthalocya-
nines, one of which was tetrasubstituted with N-alkylphthalimides [32].

Multiwalled carbon nanotubes (MWCNTs) were found to be outstanding electrode
materials due to their high porosity, good electrical conductivity, and high chemical stabil-
ity [33]. The surface of MWCNTs can easily be modified by strong noncovalent π–π stacking
interactions between MWCNT and hydrophobic porphyrinoid molecules [17]. Such an
approach improved the electron transfer from the electrode surface to the redox-active
complexes [34]. Recently, there has been a growing interest in studying the application
of macrocyclic compounds integrated with carbon nanostructures for the construction of
hydrogen peroxide sensors. This is due to their attractive physicochemical properties and
high catalytic activity. For instance, Hosu et al. examined that the electrocatalytic activity
of cobalt(II) phthalocyanine tetracarboxylic acid (CoPc–COOH) loaded reduced graphene
oxide (rGO) films to detect peroxynitrite and hydrogen peroxide [35]. In other works, Wang
et al. applied cobalt(II) phthalocyanine nanorods, which were noncovalently absorbed onto
graphene (Gr) through a one-step microwave-radiation-assisted synthesis, for hydrogen
peroxide and glucose sensing [36]. The covalent immobilization of cobalt(II) phthalocyanine
on phenylamine functionalized single-walled carbon nanotubes was reported by Mashazi
et al. for the efficient sensing of H2O2 [37]. One of our previous works presented the
synthesis of magnesium sulfanyl porphyrazine derivatives with peripheral hyperbranched
groups and their deposition on the surface of multiwalled carbon nanotubes. The resulting
hybrid electrodes with dendrimeric porphyrazines were utilized for the electrocatalytic
determination of hydrogen peroxide concentration [38].

In this work, we report the synthesis and properties of a novel sulfanyl porphyrazine
derivative with peripheral phthalimide moieties that was metallated with electrochemi-
cally active cobalt(II) and iron(II) cations. The voltammetric data in organic electrolytes



Molecules 2022, 27, 4409 3 of 15

clearly indicated defined redox features corresponding to one-electron reactions of the
π-conjugated porphyrazine ring, metal center, and phthalimide substituents in the pe-
riphery. The novel porphyrazines were combined with multiwalled carbon nanotubes
to obtain hybrid electroactive electrode materials. The electrochemical behavior of the
immobilized phthalimide porphyrazines was consistent with the reduction mechanism
involving ring- and metal-based processes together with reversible phthalimide transitions.
The porphyrazine/multiwalled carbon nanotube hybrid electrodes were utilized for the
electrocatalytic determination of hydrogen peroxide concentration. The electrocatalytic
effect derived from the presence of cobalt(II) and iron(II) cations was evaluated. As a result,
a significant decrease in the overpotential was observed compared with that obtained using
a bare glassy carbon (GC) or glassy carbon electrode/carbon nanotubes (GC/MWCNTs),
which allowed for the sensitive determination of hydrogen peroxide concentration in
neutral conditions (pH 7.4).

2. Results and Discussion
2.1. Synthesis and Characterization

A magnesium(II) porphyrazine containing phthalimide substituents (1) and its free-
base analog (2) were synthesized using a three-step published procedure [39]. Pz2 was
metallated in DMF with iron(II) bromide and cobalt(II) chloride hexahydrate to give iron(II)
sulfanyl porphyrazine 3 and cobalt(II) sulfanyl porphyrazine 4, respectively (Scheme 1).
All compounds were purified using flash column chromatography and characterized by
mass spectrometry and UV–VIS spectroscopy. NMR experiments were carried out to unam-
biguously identify the isolated Pz3. The 1H and 13C NMR resonances were assigned using
a combination of 1D (1H, 13C) and 2D (1H–1H COSY, 1H–13C HSQC, and 1H–13C HMBC)
experiments. A detailed analysis of the NMR spectra is presented in the Supplementary
Information. In the case of Pz4, such characterization was not performed due to the
paramagnetic nature of Co(II) [40]. Moreover, HPLC analyses of macrocyclic compounds
performed in three different solvent systems confirmed the purity of new macrocycles at a
level of around 100%, detecting at 380 and 670 nm (see Supplementary Information).
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Scheme 1. Synthesis of compounds 3-4. Reagents and conditions: (i) trifluoroacetic acid, room 
temperature, 30 min; (ii) FeBr2, DMF, 75 °C, 24 h; (iii) CoCl2 × 6H2O, DMF, 75 °C, 24 h. 

Scheme 1. Synthesis of compounds 3-4. Reagents and conditions: (i) trifluoroacetic acid, room
temperature, 30 min; (ii) FeBr2, DMF, 75 ◦C, 24 h; (iii) CoCl2 × 6H2O, DMF, 75 ◦C, 24 h.

The absorption properties of porphyrazines 3 and 4 were determined by UV–VIS
measurements in organic solvents, such as dichloromethane, N,N-dimethylformamide, and
dimethyl sulfoxide (Figure 1). The change of metal cation in the macrocyclic core signifi-
cantly affected the absorption bands’ position and intensity. The short wavelength Soret
band showed a maxima between 365 and 370 nm for Pz3 and in the range of 356–358 nm
in the case of Pz4. The long-wavelength Q-band of iron(II) complex 3 was broad, had
low intensity, and was divided into two incompletely developed sub-bands with maxima
in various solvents at 641–655 and 691–695 nm. The logarithms of the molar absorption
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coefficients (log ε) were in the range 3.89–4.11. Cobalt(II) porphyrazine 4 showed a more
intense, sharp Q-band with a maxima at 643–646 nm and log ε values of 4.59–4.94 (Ta-
ble S2 in the Supplementary Information). It is worth noting that the introduction of the
cobalt(II) cation in the porphyrazine core produced a significant Q-band hypsochromic shift
of about 25–30 nm compared with the previously elaborated magnesium(II) and zinc(II)
analogues [39].
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2.2. Electrochemical Characterization of Porphyrazines in Organic Electrolyte

The cyclic voltammetry (CV) and differential pulse voltammetry (DPV) measurements
of Pz3 and Pz4 in 0.1 M DCM/TBAP are shown in Figures 2 and 3, respectively. In ad-
dition, control measurements for Pz1 and Pz2 are presented in Figures S4 and S5 in the
Supplementary Information. All porphyrazines exhibited four well-defined redox couples.
The values of E1/2 obtained for the porphyrazines are collected in Table 1. According to the
literature data, the redox couples of magnesium(II)-based Pz1 and nonmetallated complex
Pz2 can be assigned to ring-based one-electron processes [41–44]. In the case of complexes



Molecules 2022, 27, 4409 5 of 15

Pz3 and Pz4, the couples marked as I can be ascribed to one-electron oxidation/reduction
of π-conjugated rings [45]. However, when the potential of couple II is analyzed, a dif-
ference in the redox response of Pz1 and Pz2 compared with that of Pz3 and Pz4 can be
observed. The redox peaks of couple II for Pz3 and Pz4 are significantly shifted towards
more positive potentials compared with controls Pz1 and Pz2. This suggests that couple II
corresponds to metal-based redox transitions. Metal ions, such as iron(II) or cobalt(II), in
the macrocyclic center of various porphyrinoids were reported to reveal electroactivity in
organic electrolytes [46,47].
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Table 1. Comparison of E1/2 for the studied compounds in 0.1 M DCM/TBAP electrolyte.

Compound E1/2 I/V E1/2 II/V E1/2 III/V E1/2 IV/V

Pz1 (metal-free) 0.90 −0.89 −1.13 −1.98
Pz2 (Mg) 0.63 −1.14 −1.40 −1.99
Pz3 (Fe) 0.61 −0.82/−0.62 * −1.37 −1.96
Pz4 (Co) 0.63 −0.62 −1.50 −1.96

* Value estimated for II/II’ redox couple; E1/2 estimated form CV measurements recorded at 50 mV s−1.
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Figure 3. Cyclic voltammogram (A) and differential pulse voltammograms (B) for cobalt(II) contain-
ing porphyrazine Pz4, recorded in 0.1 M DCM/TBAP.

The presence of phthalimide substituents significantly affected the electrochemical
response of the studied porphyrazines. A well-defined and very intense redox couple
appeared at ca. −2 V for all the studied compounds. According to previous studies
concerning the electrochemical behavior of phthalimide in organic electrolyte media, this
couple was assigned to the electrochemical one-electron reduction/oxidation of the eight
phthalimide substituents to their corresponding anion radicals (Scheme 2) [48].
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2.3. Electrochemical Study of Porphyrazines Deposited on MWCNT

The synthesized porphyrazines were separately immobilized on the surface of MWCNT,
and the voltammetric responses of the as-designed hybrid electrodes are presented in Fig-
ure 4. The voltammetric measurements were performed in an aqueous buffered (pH 7.4)
electrolyte to ascertain the electrochemical activity. The CV scans recorded between −0.8
and 0.6 V vs. Ag/AgCl for GC/MWCNT present typical capacitive characteristics without
redox peaks. After deposition of porphyrazines, pronounced features appeared at a nega-
tive potential range for all the functionalized electrodes. These redox couples correspond to
the electrochemical transition of phthalimide substituents. The additional peaks appearing
in the range of 0.2 to 0.4 can be assigned to an iron-based Fe2+/Fe3+ transition (Figure 4C)
and Co+/Co2+ (Figure 4D) [49,50].
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Figure 4. CVs of hybrid materials recorded in PB (pH = 7.4). Scan rate of 50 mV s−1. In all the
voltammograms, the GC/MWCNT is marked by a black line (a), and the red line (b) corresponds to
(A) GC/MWCNT/Pz1, (B) GC/MWCNT/Pz2, (C) GC/MWCNT/Pz3, and (D) GC/MWCNT/Pz4.

The electroactive metal loading can be roughly estimated based on the charge cor-
responding to the voltammetric peak. After the integration of peaks corresponding to
iron(II) and cobalt(II), we estimated the metal loadings of 9.19 and 14.5 ng for iron(II) and
cobalt(II), respectively.

In order to study the electron transfer kinetics at the surface of both GC/MWCNT/Pz3
and GC/MWCNT/Pz4, the CV measurements were conducted at various scan rates from
10 to 100 mV s−1 (Figure 5). The peak currents increased linearly with the scan rate,
which indicates surface-controlled redox processes. The π–π stacking between the highly
delocalized π-bonding network of MWCNT and the conjugated ring of porphyrazines
enables surface-confined redox characteristics. Such an experiment can also prove that Pz3
and Pz4 do not diffuse out from the electrode surface.
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2.4. The Influence of Hydrogen Peroxide on the Modification of the Surface of the GC Electrode

Electrochemical oxidation or reduction of hydrogen peroxide is a challenging task as
this molecule is a coproduct of enzymatic reactions. Hence, effective hydrogen peroxide
catalysts are necessary for the development of enzymatic biosensors [51]. Porphyrinoids
bearing transition metal ion centers are recognized to be promising candidates for the
electrochemical catalysis of H2O2. The electrocatalytic performance of cobalt(II)- and
iron(II)-based porphyrazines (Pz3 and Pz4, respectively) was studied in the presence of
hydrogen peroxide (Figure 6). The performance of the constructed hybrid electrodes was
compared with those of bare GC and GC/MWCNT electrodes. As shown in Figure 6A,
H2O2 can be reduced on bare GC at a highly negative overpotential, and the observed
reductive current is relatively small. A slight improvement in H2O2 redox behavior can
be observed when a GC/MWCNT electrode was used (Figure 6B). In such a case, both
cathodic and anodic current waves appeared; however, the voltammetric curve revealed
electrochemical irreversibility.
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Unlike GC and GC/MWCNT, the hybrid electrodes GC/MWCNT/Pz3 and GC/
MWCNT/Pz4 revealed significant electrocatalytic activity. It is displayed in Figure 6C
(curve b) that after the addition of 2 mM H2O2, a strong enhancement of the redox peaks
occurs. Both reduction and oxidation of H2O2 are seen at GC/MWCNT/Pz3 with a
minor overpotential and high current. These results suggest that GC/MWCNT/Pz3 is an
appropriate electrode for the electrocatalysis of hydrogen peroxide. A well-defined anodic
peak current from hydrogen peroxide is also observed for GC/MWCNT/Pz4 (Figure 6D),
suggesting that GC/MWCNT/Pz4 has good electrocatalytic performance. However, in
this case, the reduction of hydrogen peroxide is limited, and the lack of a redox signal is
observed in the cathodic range. Because of that, GC/MWCNT/Pz4 can only be applied as
a catalyst for the oxidation of H2O2.

Cyclic voltammograms recorded for GC/MWCNT/Pz3 and GC/MWCNT/Pz4 in the
presence of increasing concentrations of hydrogen peroxide are presented in Figure 7. The
appearance and increase of well-defined peaks can be observed after consecutive additions
of H2O2. The anodic currents increased linearly from 0.2 to 1.5 mM and from 0.2 to 5 mM
in the case of GC/MWCNT/Pz3 and GC/MWCNT/Pz4, respectively. The collected data
indicate the possibility of H2O2 measurements in a broad concentration range.
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2.5. Chronoamperometric Measurements of GC/MWCNT/Pz3- and GC/MWCNT/Pz4-Modified
Electrode in the Presence of H2O2

Additionally, chronoamperometric measurements at GC/MWCNT/Pz3 and GC/
MWCNT/Pz4 were performed under stirring conditions (Figures 8 and 9, respectively).
The applied anodic potential of 0.4 V was sufficient to drive the oxidation of H2O2 at the
studied electrodes. Figures 8 and 9 display the amperometric signal increase after adding
small amounts of hydrogen peroxide. In the case of GC/MWCNT/Pz3, linearity was
observed within 1 to 90 µM of H2O2. Similarly, GC/MWCNT/Pz4 presented linearity in
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the range of 1 to 90 µM. The estimated limits of detection (LODs) were 0.2 and 0.18 µM for
GC/MWCNT/Pz3 and GC/MWCNT/Pz4, respectively, taking into account a signal-to-
noise ratio of 3.
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A comparison of the performance of the studied electrodes for H2O2 electroanalysis
with that of electrodes previously reported in the literature is shown in Table 2. The
linear ranges obtained here are rather narrow; however, they are in good accordance with
literature data. The main advantage of our electrodes are the relatively low LOD values.
Moreover, the sensitivities of GC/MWCNT/Pz3 and GC/MWCNT/Pz4 are relatively high
and comparable to the highest reported values.

The electrode response was carried out in the presence of common interferents that
can be found in various biological systems (glucose, fructose, sodium chloride, uric acid,
caffeine). To evaluate the selectivity of the GC/MWCNT/Pz3 and GC/MWCNT/Pz4
electrodes, the amperometric response of the electrodes was measured under stirring
conditions at 0.4 V, as shown in Figure S6 (in the Supplementary Information). The addition
of hydrogen peroxide resulted in a rapid current response, while the addition of most of
the interfering compounds produced no current responses. However, strong interferences
were recorded for uric acid.
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Table 2. Comparison of the analytical performance of the proposed electrodes with those of other
reported hydrogen peroxide sensors.

Electrode Sensitivity/µA
mM−1 cm−2 LOD/µM Linear

Range/mM Ref.

MWCNT/LS/NAg 252 1.17 6–486 [12]
AgNPs/GC 169 2.0 5–50 [52]

Ag-exGRc-CI/SS 115 5.0 100–8000 [53]
PANI-Ag/GCE - 0.23 10–90 [54]

AuP/GCE - 4 100–50,000 [55]
Pd/MCV/Nafion/GC - 0.079 0.1–6100 [56]

GC/MWCNT/Pz3 636 0.20 1–90 This work
GC/MWCNT/Pz4 640 0.18 1–90 This work

3. Materials and Methods
3.1. General Procedures

All reactions were conducted in oven-dried glassware under argon atmosphere. All
solvents were rotary-evaporated at or below 60 ◦C under reduced pressure. The reported
reaction temperatures refer to Radleys® Heat-On display temperatures. Dry flash column
chromatography was carried out on Merck silica gel 60, particle size of 40–63 µm. Thin-
layer chromatography (TLC) was performed on silica gel Merck Kieselgel 60 F254 plates
and visualized with UV light (λmax = 254 or 365 nm). UV–VIS spectra were recorded on
a Hitachi UV–VIS U-1900 spectrophotometer. The NMR spectra were acquired at 298 K
on an Agilent DD2 800 spectrometer operating at resonance frequencies of 799.903 and
201.146 MHz for 1H and 13C, respectively. Chemical shifts (δ) are quoted in parts per million
(ppm) and are referenced to a residual solvent peak. Coupling constants (J) are quoted
in hertz (Hz). The abbreviations t and m refer to triplet and multiplet, respectively. 1H
and 13C resonances were unambiguously assigned based on 1H, 13C, 1H–1H COSY, 1H–13C
HSQC, and 1H–13C HMBC spectra. Mass spectra (MALDI-TOF, HRMS) were carried out by
the Wielkopolska Center for Advanced Technologies at the Adam Mickiewicz University
in Poznan and at the European Center for Bioinformatics and Genomics in Poznan. All
solvents and reagents were of reagent-grade quality, purchased from commercial suppliers,
and used without further purification unless otherwise stated.

3.2. Synthetic Procedures and Characterization

2,3,7,8,12,13,17,18-Octakis[(N-ethylphthalimide)thio]porphyrazinato magnesium(II)
(Pz1) and 2,3,7,8,12,13,17,18-octakis[(N-ethylphthalimide)thio]porphyrazine (Pz2) were
synthesized using a previously published procedure [39].

2,3,7,8,12,13,17,18-Octakis[(N-ethylphthalimide)thio]porphyrazinato iron(II) (Pz3)
Compound Pz2 (120 mg, 0.061 mmol) and iron(II) bromide (132 mg, 0.610 mmol) were

dissolved in anhydrous DMF (15 mL) and stirred at 75 ◦C for 24 h. Next, the reaction
mixture was cooled to room temperature and filtered through Celite, which was subse-
quently washed with dichloromethane (150 mL). The combined filtrates were evaporated
to dryness, and a brown residue was chromatographed in the normal phase (eluents:
dichloromethane/ethanol, 100:1 to 20:1, v/v) to give compound Pz3 as a violet film (47 mg,
38% yield). Rf (dichloromethane/methanol, 20:1, v/v) 0.38. UV–VIS (dichloromethane)
λmax nm (log ε) 296 (4.18), 368 (4.05), 655 (3.89), 695 (3.93). 1H NMR (800 MHz, pyridine-d5)
δ, ppm: 7.73 (m, 16H, C2, C5, ArH), 7.55 (m, 16H, C3, C4, ArH), 4.61 (t, J = 6 Hz, 16H,
SCH2), 4.39 (t, J = 6 Hz, 16H, NCH2). 13C NMR (201 MHz, pyridine-d5) δ, ppm: 168.6
(C=O), 152.3 (C2, C4, pyrrole C), 143.2 (C2, C3, pyrrole C), 134.6 (C3, C4, ArC), 133.0 (C1, C6,
ArC), 123.8 (C2, C5, ArC), 38.9 (NCH2), 33.5 (SCH2). MS (MALDI) m/z: 2009 [M+H]+, 2031
[M+Na]+, 2047 [M+K]+. HRMS (ESI) m/z: found 2009.1819, [M+H]+ C96H65FeN16O16S8
requires 2009.1880. HPLC purity ~100.0% (see Supplementary Information).

2,3,7,8,12,13,17,18-Octakis[(N-ethylphthalimide)thio]porphyrazinato cobalt(II) (Pz4)
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Compound Pz2 (126 mg, 0.064 mmol) and cobalt(II) chloride hexahydrate (76 mg,
0.32 mmol) were dissolved in anhydrous DMF (15 mL) and stirred at 75 ◦C for 24 h.
Next, the reaction mixture was cooled to room temperature and filtered through Celite,
which was subsequently washed with dichloromethane (150 mL). The combined filtrates
were evaporated to dryness, and a blue residue was chromatographed in the normal
phase (dichloromethane/methanol, gradient 100:1 to 20:1, v/v) to give compound Pz4 as a
navy blue film (105 mg, 81%). Rf (dichloromethane/methanol, 100:1, v/v) 0.30. UV–VIS
(dichloromethane) λmax nm (log ε) 297 (4.43), 356 (4.50), 645 (4.59). MS (MALDI) m/z: 2012
[M+H]+, 2034 [M+Na]+. HRMS (ESI) m/z: found 2012.1805, [M+H]+ C96H65CoN16O16S8
requires 2012.1862. HPLC purity ~100.0% (see Supplementary Information).

3.3. Materials and Reagents for Electrochemical Testing

Multiwalled carbon nanotubes (MWCNTs, with an average diameter of 10 nm and
an average length of 1.5µm) were delivered by Metrohm DropSens (Oviedo, Spain).
Monosodium and disodium phosphates for the preparation of phosphate buffer (PB,
pH 7.4) were supplied by Avantor (Gliwice, Poland). Dichloromethane (DCM, puriss.
p.a., ≥99.9%), N,N-dimethylformamide (DMF, anhydrous 99.8%), tetrabutylammonium
perchlorate (TBAP, ≥99.9%), and hydrogen peroxide stock solution 30 wt. % were pur-
chased from Merck (Darmstadt, Germany).

3.4. Electrochemical Methods

A PalmSens electrochemical analyzer was used for the electrochemical testing (Eind-
hoven, Netherlands). A three-electrode setup was employed, with a reference electrode of
Ag/AgCl (3 M KCl) and a counter electrode of platinum wire. The working electrode was
a glassy carbon electrode (GC) with a diameter of 2 mm (Mineral, Poland). For organic ex-
periments, a silver wire was used as a reference electrode (instead of Ag/AgCl). Ferrocene
(Fc) was added at the end of each experiment. The electrode potentials were set versus the
ferrocenium/ferrocene couple (Fc+/Fc).

3.5. Fabrication of GC/MWCNT, GC/MWCNT/Pz1, GC/MWCNT/Pz2, GC/MWCNT/Pz3,
and GC/MWCNT/Pz4 Electrodes

The GC electrode was polished with an aqueous suspension of Al2O3 (Buehler, 50 nm
average diameter) on a polishing cloth before each electrochemical measurement and then
washed in an ultrasonic bath with 1:1 v/v water/acetone for 10 min to eliminate any con-
taminants. An amount of 2 µL of MWCNT (1 mg mL−1 suspension in DMF) was drop-cast
on the cleaned GC electrode surface, and the electrode was dried in an oven (60 ◦C) to evap-
orate the solvent. Then Pz1, Pz2, Pz3, and Pz4 each were dissolved in dichloromethane to
give a solution of 1 mg mL−1. The resultant GC/MWCNT electrodes were immersed in the
previously prepared solutions of either Pz1, Pz2, Pz3, or Pz4. Noncovalent immobilization
of the porphyrazines was carried out by incubating the GC/MWCNT electrodes in the
solutions. To perform electrochemical testing, all electrodes were placed in the desired
electrolyte. Before the experiments, a glass cell containing supporting electrolytes was
deoxygenated by purging with pure nitrogen gas. All electrochemical experiments were
carried out at an ambient laboratory temperature (ca. 25 ◦C).

4. Conclusions

The chemical synthesis of new metallated iron(II) and cobalt(II) porphyrazines with
phthalimide moieties was elaborated. All the obtained compounds were characterized
using spectral techniques, and their purity was verified using HPLC. Hybrid nanomaterials
based on novel porphyrazine and multiwalled carbon nanotubes were produced utilizing
noncovalent π–π interactions. Interestingly, all the studied porphyrazines adsorbed on the
MWCNT surface revealed well–defined redox couples, which were ascribed to phthalimide
electron transfer. The application of hybrid electrodes for the electrocatalytic determination
of hydrogen peroxide was evaluated. Cobalt(II) and iron(II) containing porphyrazines
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provided reversible and accessible metal-based redox sites, which acted as an electrocatalyst
toward H2O2. The prepared sensor enabled a linear response to H2O2 concentrations of
1–90 µM. A limit of detection of 0.18 µM was obtained, revealing the high sensitivity of the
GC/MWCNT/Pz4 electrode (640 µA mM−1 cm−2). Currently, work is in progress to apply
the presented electrodes as hydrogen peroxide catalysts to develop an enzymatic biosensor
for glucose determination.

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/molecules27144409/s1, Figure S1: 1H and (13C) chemical shift
values [ppm] of 3 and key correlations observed in NMR spectra. Figure S2: 1H NMR spectrum
of 3 (800 MHz, DMSO-d6, 298 K). Figure S3: 13C NMR spectrum of 3 (201 MHz, DMSO-d6, 298 K).
Figure S4: Cyclic voltammogram (A) and differential pulse voltammograms (B) for magnesium(II)
porphyrazine Pz1. Figure S5: Cyclic voltammogram (A) and differential pulse voltammograms (B) for
metal-free porphyrazine Pz2. Figure S6: Chronomperometric response of the GC/MWCNT/Pz3
(A) and GC/MWCNT/Pz4 (B). Table S1: 1H and 13C NMR data obtained for 3 including key
correlations determined from 1H-13C HSQC and 1H-13C HMBC spectra. Table S2: UV–Vis absorption
maxima (λAbs) and logarithms of molar absorption coefficients (logε) of Pzs 3 and 4 in selected
organic solvents.
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