
Current Research in Food Science 5 (2022) 1017–1027

Available online 3 June 2022
2665-9271/© 2022 Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Hyperspectral Imaging (HSI) for meat quality evaluation across the supply 
chain: Current and future trends 

Wenyang Jia a, Saskia van Ruth b, Nigel Scollan a, Anastasios Koidis a,* 

a Institute for Global Food Security, School of Biological Sciences, Queen’s University, 19 Chlorine Gardens, Belfast, BT9 5DL, Northern Ireland, UK 
b Food Quality and Design Group, Wageningen University and Research, P.O. Box 17, 6700 AA, Wageningen, the Netherlands   

A R T I C L E  I N F O   

Handling editor: Maria Corradini  

Keywords: 
Hyperspectral imaging 
Meat products 
Meat supply chain 
Safety and quality evaluation 

A B S T R A C T   

Meat products are particularly plagued by safety problems because of their complicated structure, various 
production processes and complex supply chains. Rapid and non-invasive analytical methods to evaluate meat 
quality have become a priority for the industry over the conventional chemical methods. To achieve rapid 
analysis of safety and quality parameters of meat products, hyperspectral imaging (HSI) is now widely applied in 
research studies for detecting the various components of different meat products, but its application in meat 
production and supply chain integrity as a quality control (QC) solution is still ambiguous. This review presents 
the fresh look at the current states of HSI research as both the scope and the applicability of the HSI in the meat 
quality evaluation expanded. The future application scenarios of HSI in the supply chain and the future devel
opment of HSI hardware and software are also discussed, by which HSI technology has the potential to enable 
large scale meat product testing. With a fully adapted for factory setting HSI, the inspection coverage can reliably 
identify the chemical properties of meat products. With the introduction of Food Industry 4.0, HSI advances can 
change the meat industry to become from reactive to predictive when facing meat safety issues.   

1. Introduction 

With the increasing number of population and the demand for a 
healthy diet, ensuring the safety of food has become an essential topic of 
discussion. Among these, meat products are particularly troubled by 
safety and health problems because of their complicated structure and 
various production processes (Damez and Clerjon, 2013). Meat products 
are easily perishable and need strict production and storage conditions 
(Kutsanedzie et al., 2019). Scandals related to meat have occurred in the 
past and were caused by improper supply chain management, absence of 
testing, and various operations of meat products. This makes real-time 
monitoring of production stages extremely important, which not only 
provides product traceability, but also enhances consumer confidence. It 
is necessary to adopt novel ways to evaluate meat products leading to 
the rapid modernisation of the meat industry in the Industry 4.0 era 
(Sofos, 2008). 

Conventional meat quality analysis methods include sensory evalu
ation, wet chemical methods (moisture, protein, fat etc.), physical 
methods (pH, colour etc.) and microbiological analysis (culture-based 
techniques such total viable counts). These require not only a well- 
prepared sample but also a group of well-trained analysts and testing 

infrastructure. This type of testing is a high cost and intensive operation 
in the meat industry especially with the COVID-19 pandemic, causing an 
immeasurable risk (Rizou et al., 2020). The recent global pandemic 
seriously impacts the meat supply chain through the random loss of 
labour which disrupts certain operations (Rude, 2020). Several meat 
factories in England and Wales closed over the rise in COVID-19 cases 
while hundreds of workers at a meatpacking plant tested positive in 
Rheda-Wiedenbrück, Germany (The Guardian, 2020). The meat product 
supply chain must implement stricter food safety and hygiene control 
measures for a long time to deal with the food safety risks that may arise 
from other measures related to the recent pandemic (Nakat and 
Bou-Mitri, 2020). With these concerns in mind, non-destructive 
analytical methods are given a new perspective to maintain normal 
operation in the factory and various places in the supply chain, with less 
potential labour required. Compared with the conventional, 
non-destructive technologies such as point-focused mid and 
near-infrared spectroscopy (MIR, NIR), HSI collects both spatial and 
spectral information to provide physical and chemical parameters of the 
meat product (Fu and Chen, 2019). This multidimensional data can be 
used to determine the intrinsic quality and safety attributes of meat 
products with two different ways: multi-constituent information of the 
raw material analysed (meat) and chemical component distribution of 
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this raw material (Kutsanedzie et al., 2019). As an effective analytical 
method that can be applied to different types of foods, HSI has been 
widely used in the analysis of different meat products in recent years in 
both lab and industrial settings. However, the design and operation of 
the HSI technique can create certain limitations within the current meat 
production workflow, as discussed later. 

As described by Brooks et al. (2017), Bonou et al. (2020), and Soro 
et al. (2020), Figure A1 shows the flowchart of a conventional meat 
supply chain. The meat supply chain represents the steps involved in 
meat production from the farm to fork. This indicates the challenges that 
technology like HSI can face in the prospect of wide integration into 
most meat supply chains, which operate at high speeds and face complex 
logistics. A few review articles have summarised the available literature 
around the use of HSI technique in detecting quality and safety attri
butes of meat products in research environment (Pu et al., 2015; Feng 
et al., 2018; Antequera et al., 2021; Özdoğan et al., 2021). The published 
papers only describe the limitations of HSI by focusing on the charac
teristics of the hyperspectral sensors and summarising the practice that 
has been carried out, but the link the real meat production is not suffi
cient. Based on the drawbacks of current HSI implementations and the 
industry’s urgent demand for meat process supervision, this paper dis
cusses the latest applications, and also the direction of specific de
velopments around the sensors and software. More specifically, we are 
reviewing the prospect of high-speed HSI embedding into the industri
alised meat production process from a unique supply chain perspective. 

2. Recent applications of hyperspectral imaging for meat 
product evaluation 

2.1. Overview of the HSI technique 

As can be seen in Figure A2, the main components of the HSI system 
are the NIR spectrometer with a spectral range of 400–2000 nm coupled 
with the camera lens and a detector which can be either CCD (Charge 
Coupled Device) or CMOS (complementary metal-oxide- 
semiconductor). The setup is illuminated with halogen lamps or Light 
Emitting Diodes (LED) which provide the appropriate radiation and 
several moving elements (usually a sample tray) to move the sample 
across depending on the type of measurement required (Kamruzzaman 
and Sun, 2016). This allows obtaining the spectral features across a fixed 
surface where the sample is placed. Both spectral and spatial informa
tion are fed into the specialised software. The different configuration in 
various HSI systems is based on the imaging approaches and common 
measurements modes. There are four main configurations to obtain 
hyperspectral images based on the scanning mode: point scan, line scan, 
wavelength scan, and snapshot (Hsu et al., 2017). These systems provide 
spectral information with a different resolution by scanning the 

spectrum of pixels on the sample in a different way (point or line). 
Hyperspectral images can vary in size according to the optics used, the 
capacity of the spectral sensor, i.e., the resolution of the digital image 
and the acquired wavelength channels in every pixel, and the HSI 
acquisition software (Ngadi and Liu, 2010). This data structure is often 
referred to as HSI hypercube. 

There are two types of HSI hypercube due to the two ways to use the 
HSI data. Some studies only used the spectral information from HSI 
system, like the same data structure from conventional spectroscopy 
based system. Others used both spectral and spatial information from 
HSI system, which allows the prediction from pixel level. For the next 
step of HSI hypercube, classification models and multivariate regression 
models are used for discrimination and numerical predictions. In the 
case of, the less used, classification models (i.e., country of origin clas
sification), the class prediction metrics used to characterise the models 
are the correct classification rate and the false positive and negative 
rates (Zhou et al., 2019). For regression models that quantify (i.e. pre
diction) specific sample properties, such as certain physicochemical 
parameters in meat, the prediction performance of the regression model 
is usually reported as the coefficient of determination, separately of the 
calibration and prediction set (R2c and R2p), root mean squared errors 
for calibration and prediction (RMSEC and RMSEP) as well as the ratio 
of performance to deviation (RPD) are used to calculate, RPD is defined 
as standard deviation/standard error of prediction (SEP). For the above 
evaluation indexes, a good calibration model will have lower RMSEs but 
higher R2 and RPD (Parrini et al., 2019). Both the classification and the 
regression models are relying on a calibration set populated with many 
“known examples” to predict “unknown” samples (Ropodi et al., 2016). 

Besides, there are many other analytical methods that can be used for 
rapid non-destructive meat quality and safety control such as Near- 
Infrared Spectroscopy (NIR), Raman spectroscopy, the standard vision 
technology (digital RGB photo camera), and the electronic nose 
(Rodionova and Pomerantsev, 2020). Unlike HSI technique, NIR pro
duce a value of the sample based on the spectrum from multi-scanning, 
which usually includes a small area of the sample (Kamruzzaman and 
Sun, 2016). The equipment is probe-based and focuses on single-point 
detection, which suffices for homogeneous product such as liquid or 
powdered. Table A1 compares these methods with HSI using several 
broad criteria such as the difficulty of analysis, data handling, and the 
cost in the context of meat analysis. For most non-homogeneous prod
ucts, however, such as fresh-cut steak, bacon, marinated meat, cooked 
meat, the information provided by previous methods is limited and thus, 
not representative of the sample’s properties because information of 
overall non-homogeneous sample is lost. Although HSI requires higher 
capital investment, it offers high resolution, high-level information, and 
advanced data analytics capable of extracting the characteristic chemi
cal and physical parameters. 

Abbreviations 

AOTF (acousto-optic tunable filter) 
CCD (Charge Coupled Device) 
CMOS (complementary metal-oxide-semiconductor) 
FLD (Fisher’s linear discriminant) 
FOV (field of view) 
GLCM (Gray Level Co-occurrence Matrix) 
HSI (Hyperspectral Imaging) 
Light Emitting Diodes (LED) 
LL (Lifelong learning) 
LS-SVM (Least-squares support-vector machines) 
MCR (multivariate curve resolution) 
MCR-ALS (multivariate curve resolution-alternating least squares) 
MLR (Multiple linear regression) 

NIR (Near-Infrared Spectroscopy) 
PLS-DA (Partial least squares discriminant analysis) 
PLS-R (Partial Least. Squares Regression) 
QC (quality control) 
R2 (correlation coefficient) 
R2c (calibration correlation coefficient) 
R2p (prediction correlation coefficient) 
RMSE (root mean square error) 
RMSEC (root mean square error of calibration) 
RMSEP (root mean square error of prediction) 
RPD (ratio of performance to deviation) 
SEP (standard error of prediction) 
SPA-PLSR (Successive projections algorithm- Partial Least. Squares 

Regression) 
SVM (support vector machine)  
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Because of the measuring setup, speed, and sensitivity relating to 
image resolution (Su et al., 2017), the application of HSI technique on 
meat products in actual meat inspections still has some limitations and 
lacks widespread application across the meat industry. This mainly re
lates to the current acquisition mode especially to the special lighting 
which must be used and specific angles that the instrument should be 
placed, the amount of raw data produced and relatively slows measuring 
acquisition time in comparison to the production workflow in the fac
tory. A more specific breakdown for each application is given in detail in 
the following sections. 

2.2. Recent applications of HSI for meat safety and quality evaluation 

Table A2 summarises the recent research conducted on the use of HSI 
for meat safety and quality detection in a variety of meat types, condi
tions, and specific scenarios. HSI technology was used in studying 
different types of meat (from fresh meat to processed meat and animal 
species), in some cases differentiating between different meat types in 
mixed products or processing systems (fresh vs frozen meat) and 
determining a variety of meat quality parameters (from marbling score 
to lipid content). The studies vary from a simple screening of meat 
products (e.g., as legislation requirement) to determination of a specific 
parameter according to the objective of the study, e.g., a quality 
parameter such as marbling score which is useful in detecting if a 
product requires further processing. 

2.2.1. Determination of the colour of fresh meat 
Meat colour is the fundamental physical property of food because it 

has a great correlation with the physical, chemical, and sensory in
dicators of the product (Francis, 1995). HSI technology has been suc
cessfully applied to various kinds of meat products for colour 
measurement. Kamruzzaman et al. (2016a) used line-scan Visible HSI 
system (400–1000 nm) to monitor the colour parameters of fresh beef, 
lamb, pork with the reference value of CIELab colour system. Six char
acteristic wavelengths were selected to assess the colour parameters, 
common with all the three kinds of red meat (R2p = 0.88; RMSEP = 1.6). 
This approach significantly improved the efficiency and comprehen
siveness of the detection because the selected characteristic wavelength 
can shorten the detection time. Moreover, HSI also monitors colour 
parameters on processed meat products. Feng & Makino (2020) used 
laboratory based HSI system (380–1000 nm) to analyse the colour 
change in sausages stuffed in casings, HSI detected the dynamic 
changing of colour on the sausage by predicting the reference value of 
CIELAB colour space system. Redness (a*) was predicted by the PLSR 
model and achieved the acceptable results (R2p = 0.78 and RMSEP =
0.78). HSI detection overcomes problems of insufficient repeatability 
and accuracy of single-point detection. Meanwhile, using HSI can solve 
the problem of real-time monitoring of colour distribution on the entire 
sample. 

2.2.2. Determination of the water content of fresh meat 
Moisture content directly relates to fresh meat status in the stage of 

processing, storage, trade and consumption (Cheng and Sun, 2008). 
Conventional detection method is destructive and time-consuming, HSI 
technique can provide a rapid method for assessing the moisture content 
in fresh meat products such as pork (Ma et al., 2016), beef (Zhao et al., 
2017), lamb (Kamruzzaman et al., 2012). Advancing in processed meats, 
Ma et al. (2017) used pushbroom VIS-NIR HSI (328–1115 nm) to predict 
the moisture content of pork samples under various processing treat
ments (heated-dehydrated and cool-air-dehydrated) with the help of 
calibrated PLS-R models (R2p = 0.95; RMSEP = 1.46). To improve 
detection efficiency in different kinds of meat products and decrease 
variability related to the selection of characteristic wavelengths ac
cording to the type of meat analysed, Kamruzzaman et al. (2016b) 
developed a parsimonious MLR-based model detecting the moisture 
content of beef, lamb, and pork within ten characteristic wavelengths 

(R2p = 0.96; RMSEP = 2.19%) by using line-scan HSI equipment 
(380–1000 nm). HSI can offer an alternative rapid non-destructive 
method to determine moisture content certainty for fresh meat prod
uct and pork-based processed products with comparable accuracy to the 
conventional method. 

2.2.3. Determination of the biogenic amine index (Bai) of fresh and 
processed meat 

BAI is often used as a chemical indicator of meat freshness because 
biogenic amine formed during storage is closely related to spoilage 
(Triki et al., 2018). The detection of BAI with HSI is relatively new and 
has been tested only in fresh pork and processed beef products. Cheng 
et al. (2016) used pushbroom HSI system (400–1000 nm) to analyse the 
BAI in fresh pork and used a variety of regression methods in their 
modelling. Compared with full wavelength PLS-R model, the optimised 
MLR model had an excellent result (R2p = 0.96; RMSEP = 4.87). Yang 
et al. (2017b) used two line-scan HSI systems to quantify the BAI in 
cooked beef during storage, using two-wavelength ranges (320–1100 
nm and 930–2548 nm, separately). The results showed that better per
formance was in the range of 320–1100 nm with the SVM model (R2p =
0.97; RMSEP = 1.04). Current research progress is still narrow although 
promising, and some more scientific evidence is needed to prove that the 
HSI technique can detect the BAI value in an industrial setting using 
suitable line scan instruments. 

2.2.4. Determination of the total viable count (TVC) of fresh and processed 
meat 

TVC is mainly used as a marker to determine the degree of 
contamination of meat by bacteria to provide a scientific basis for the 
hygienic evaluation of the tested samples (Skura, 1986). Most of the 
conventional chemical, physical, and microbiological methods are very 
time-consuming. HSI-based TVC analysis could provide a modern way to 
assess microbial load in real-time. TVC has always been a key inspection 
parameter for HSI testing and has been applied in various fresh meat 
products such as pork (Huang et al., 2013), chicken (Feng and Sun, 
2013) and beef (Peng et al., 2011). HSI has also been considered as a 
method for rapid detection of TVC in different storage environments, 
Zheng et al. (2017) predicted the TVC in chilled pork under high oxygen 
condition by using line-scan Vis-NIR HSI system (400–1000 nm) with 
the promising outcome (SVR model: R2p = 0.94; SEP = 0.46 with sec
ond derivative transforming). Yang et al. (2017a) detected the TVC 
content in spiced beef product using line-scan HSI technique from range 
325–1000 nm (R2p = 0.934; RMSEP = 0.755). The same system was 
used to predict the TVC value of cooked beef and samples were distin
guished with three classes (freshness, medium freshness, and spoilage) 
based on the value of TVC (correct classification rate = 97.14%) (Yang 
et al., 2017). Achata et al. (2020) predicted the TVC of the beef Long
issimus dorsi muscle with two storage condition by using line-scan 
Vis-NIR HSI (400–1000 nm, 880–1720 nm), data fusion of both spec
tral regions was developed for beef samples with storage at 4 ◦C and 10 
◦C (R2p = 0.96; RMSEP = 0.58 and R2p = 0.94; RMSEP = 0.97, 
respectively). Various storage situations brought the complicated 
circumstance of detecting TVC value and these applications provide 
broad prospects for real-time monitoring of TVC content. There is 
enough scientific evidence to support real-time monitoring of TVC in 
meat at least in the factory especially if the equipment speed of analysis 
can match the production line speed in the industry. 

2.2.5. Determination of the nutritional composition of fresh meat 
Consumers expect accurate nutritional information in a label to 

determine the value of meat, the lipid/fat profile is one of the most 
requested features (Henchion et al., 2017). A fast and non-destructive 
model can monitor the fatty acid profile of meat samples at crucial 
stages of the industry chain to optimise the ability of comprehensive 
monitoring. Work on fatty acids profiling using HSI in meat products has 
not been extensive but produced some auspicious results. Wang et al. 

W. Jia et al.                                                                                                                                                                                                                                      



Current Research in Food Science 5 (2022) 1017–1027

1020

(2020) used line-scan NIR-HSI system (900–1700 nm) to detect C16:0 
(palmitic acid) and C18:1 n9 (oleic acid), two sets of wavelengths (29 
and 22) were selected to build up the prediction model (R2p = 0.91, 
0.88 and RMSEP = 0.18, 0.37 respectively). HSI also enabled mapping 
the distribution of palmitic acid and oleic acid contents in the lamb 
muscle. Ma and Sun (2020) used line-scan NIR-HSI system (1000–2000 
nm) to determine the total content of monounsaturated fatty acids 
(MUFAs) and polyunsaturated fatty acids (PUFAs) in processed pork 
meat (R2cv = 0.84, 0.92; RMSECV = 0.79, 0.76 respectively). Consid
ering the practicability, the accuracy of HSI for fatty acids prediction 
needs to increase, sophisticated equipment and advanced mathematical 
way will be fulfilled for enhancing the performance of fatty acid 
prediction. 

2.2.6. Detection of meat adulteration of fresh meat 
Adulteration has always been a severe problem for the meat pro

cessor, whether it is intentional or unintentional, low-value meat is used 
to replace high-value meat to achieve illegal profit. According to the 
price of different meat in different regions and food culture, the adul
teration of meat is also diverse (Vlachos et al., 2013). HSI technology in 
meat adulteration mainly focused on different types of meat, and then 
gradually expanded to the detection of the same species adulteration. 
Kamruzzaman et al. (2016c) used laboratory-based Vis-NIR HSI system 
(400–1000 nm) to detect the chicken addition in minced beef, and the 
results for range 0–50% (w/w) adulteration were excellent (R2p = 0.97; 
RMSEP = 2.45%). HSI also performed well in measuring the adultera
tion of minced lamb with duck meat using pushbroom Vis-NIR HSI 
(400–1000 nm) system (PLSR model: R2p = 0.98, RMSEP = 2.51%) 
(Zheng et al., 2019). Adulteration of beef mince with duck meat was 
investigated using line-scan HSI system (380–1012 nm) with 
outstanding results (R2p = 0.96, RMSEP = 6.58%, limit of detection =
7.59%) based on optimised wavelength selection (Jiang et al., 2019), the 
researchers also provided a very illustrative visual distribution map of 
the adulteration. Focusing on same species adulteration, Zhao et al. 
(2019) successfully used laboratory-based Vis-NIR HSI (400–1000 nm) 
to detect the meat adulteration on spoiled beef in a fresh beef product 
(R2p = 0.95; RMSEP = 5.67%). These studies demonstrate that HSI can 
differentiate between different meats from various sources, future ap
plications could improve on the ability to detect the adulteration of meat 
products with a specific label such as PDO (Protected designation of 
origin) meat product, or with a lower proportion of adulteration (<5% 
LOD). These attempts will achieve the authenticity of localised meat 
product and delicacy product management. 

2.2.7. Determination of gel and water injection of fresh meat 
Non-declared injection of water and polysaccharide gels has enor

mous effects on fresh meat products, reducing the quality and increasing 
the risk of microbial contamination. The real-time non-destructive 
method that can verify the externally added water or gel will be a 
precious asset in the QC workflow in various stages of the meat supply 
chain. Currently, Vis-NIR HSI technology has been used to detect and 
quantify adulteration of carrageenan gel in chicken (Zhang et al., 2019). 
The prediction was based on just ten selected wavelengths from region 
400–1000 nm and it showed good prediction results (R2p = 0.85, 
RMSEP = 0.93). Water injection in meat was detected in beef using a 
simpler version of the spectral-spatial data set (multispectral imaging 
technology) demonstrated efficient classification (R2p = 0.923) (Liu 
et al., 2016). Although there is a small number of studies supporting it 
and conducted in carefully controlled laboratory conditions using 
in-house admixtures, there is no doubt that HSI has shown strong po
tential in this analytical scenario. The next step is for technology to be 
tested in line scan industrial setups using real samples in a pilot meat 
processing facility. 

2.2.8. Determination of the marbling score of fresh meat 
The marbling score is one of the essential indicators to evaluate the 

meat quality and this score contributes to quality grading in the meat 
factory or at wholesale (Barbon et al., 2017). HSI has been used to 
determine the marbling score of different fresh meats. Aredo et al. 
(2017) predicted the marbling score of fresh beef by using pushbroom 
HSI system (400–1000 nm) with high correlation coefficient in the 
PLS-R prediction model (R2p = 0.95, SEP = 0.3), the classification error 
based on the grade of marbling score reached 0.08% (Velásquez et al., 
2017). The marbling score of pork meat can also be demonstrated by HSI 
technique, Huang et al. (2017a) used line-scan HSI system (900–1700 
nm) to evaluate the pork marbling score by using the rib end of the 
Longissimus thoracis (R2p = 0.89, RMSEP = 0.17). Although different 
marbling score standards may affect the overall adoption of the HSI 
technology as an alternative rapid method for marbling score, the 
weight of the evidence so far is that HSI can offer clear advantages in 
meat quality grading. 

3. Potential applications OF HSI IN the meat supply chain 

The meat supply chain has its relatively unique aspects, such as the 
close connection with land and farm, complex supply chain networks, 
and its susceptibility to environmental impacts. How to effectively 
ensure the quality of meat in all aspects and provide real-time moni
toring information is becoming a demanding problem. Simplified meat 
supply chain can be described in four parts: farming, transportation, 
slaughter and processing plant, and distribution centre. Stages of 
slaughter plant and distribution are the two main processes when the 
living animal is transported to slaughterhouse completely. Various meat 
products are produced rapidly and elaborately in the supply chain after 
the animals are transported to the environment of industrial operation. 
Each step is interconnected and the quality problems at key control 
points are more likely to cause a collapse of the entire production chain. 
In this case, in-line inspection technology can solve actual production 
problems such as component evaluation, meat contamination and meat 
adulteration. There are several studies conducted to promote HSI as the 
rapid in-line detection tool, HSI technique has been applied from the 
whole carcass to well-packaged meat product. This section will discuss 
the future application scenarios of HSI in the supply chain by using 
several research applications in the field of HSI technology, mainly from 
two stages: the slaughter and processing plant and the distribution 
relating to exporting and the food service industry. 

3.1. Potential applications of HSI at the stage of slaughter and processing 
plant 

This stage can be separated into two parts: the primary processing 
(slaughter, fifth quarter removed) and the secondary processing 
(boning, cutting, packing). Primary processing includes stunning and 
slaughter, bloodless, scalding, defeathering, evisceration, channel sec
tion, finishing and shower channel. Secondary processing includes 
pieces separation, cuts extraction, filleting chopped, frozen packing, 
refrigeration, and storage (Noya et al., 2016; Robson et al., 2020). In the 
slaughterhouse, operation steps such as bloodless, evisceration, shower, 
frozen and refrigeration have been considered as critical control points 
because they have a higher possibility for contamination. The pollution 
caused by improper operation in the meat processing facilities mainly 
includes abnormal meat caused by improper handling before slaughter, 
cross-infection caused by microorganisms, abnormal meat colour and 
obvious trauma, and metal fragments infiltration (Soro et al., 2020). 
These contaminations bring great difficulties to ensure that the meat is 
qualified for the next processing step. HSI technology can be used to 
establish an early warning system before the meat is transported in more 
critical operations such as separation, freezing, or storage. When 
abnormal parameters are detected, unqualified samples can be quickly 
screened out. Further analysis and evaluation will determine whether 
the unqualified products can return to the production line or need to 
discard. This potential prospect greatly improves the stability of the 
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manufacturing stage and reduces the probability of recall events. There 
are not sufficient HSI applications that can be directly used in the 
manufacturing process although these approaches have achieved 
promising results, most of which have not been integrated within pro
cessing operations due to a lack of knowledge or an unwillingness to 
implement these into existing processing systems. 

Currently, there are some practical applications related to slaughter 
and processing plants. Konda Naganathan et al. (2015) used a prototype 
online AOTF (acousto-optic tunable filter) HSI system (450–900 nm) to 
scan HSI images on the beef carcass instead of cutting a piece of meat 
from the carcass. The scan time for each carcass was 4 s, and this system 
achieved a classification success rate of 88% in a true validation set by 
using Fisher’s linear discriminant (FLD) models. This is a novel practice 
to scan beef carcass directly, which makes HSI technology applicable to 
the stage of carcass detection. Snapshot VIS-NIR HSI camera was used to 
detect the pH and IMF of beef in a meat processing pilot plant (Dixit 
et al., 2021), PLS-R model was used to predict these two parameters 
accompanied by R2p = 0.72 and 0.77 respectively. Due to the light in
fluence from structural arrangements of the muscle fibers, Kucha et al. 
(2021) used laboratory-based push-broom HSI to scan three positions of 
pork for predicting IMF value. This application can fulfill the demand for 
canning meat under different cutting methods. Regarding various us 
drying methods, HSI (400–1000 nm) was used to predict the moisture 
content and colour parameters of dried beef samples (von Gersdorff 
et al., 2021). This application will enhance the future development of 
simple and cost-effective tools regarding monitoring systems for beef 
drying processes (von Gersdorff et al., 2021). Besides, Hitchman et al. 
(2021) expanded the HSI application on detecting IMF value of lamb 
storing for one to five years. The results show that the dynamic model 
based on samples from different periods reveals more spectral variation 
than the static model, which indicates that a continuously updated 
model can better suit industrial applications. The prospect of trans
forming these applications into commercial practice is very high, and 
these applications also provide the potential for the HSI analysis of other 
parameters. 

3.2. Potential applications of HSI for meat at the stage of distribution 
centre 

When the meat product is cut and transferred to a distribution centre 
(exporters, the wholesalers, the food service), authentication, classifi
cation, and adulteration are three issues that it can face. Weng et al., 
(2021) used HSI (400–1000 nm) to identify the geographical origin and 
breed of mutton with effective variables, accuracies of 95.67% for pre
diction set was obtained. Williams et al. (2020) used a line-scan NIR-HSI 
setup (950–2500 nm) to classify two species of game meat, Springbok 
(Antidorcas marsupialis) and Blesbok (Damaliscus pygargus phillipsi), The 
PLS-DA model reached 96% of classification accuracy. Three classes of 
Chinese sausages were used to classify based upon line-scan HSI 
equipment (874–1734 nm), the classification accuracy is over 90% by 
running the SVM model (Gong et al., 2017). In addition to meat classi
fication in different categories, prevention of meat adulteration is also 
necessary. At this stage, various meat adulteration cases frequently 
occur due to the higher profit margin for illegal replacement fraud. One 
of the benefits of having both spectral and spatial data in the HSI 
analysis is that the adulteration can be demonstrated visually in a dis
tribution map of the product itself as it is analysed. Jiang et al. (2020) 
used pushbroom HSI system (400–1000 nm) to detect the adulterant of 
jowl meat in pork meat from the homologous body, the R2p is 0.91 and 
the RMSEP is 14% based on the PLS-R model. The offal adulteration of 
pork was detected using HSI (400–1000 nm), a simplified PLS-R model 
was built within 11 characteristic wavelengths which obtained satis
factory results (R2p = 0.98, RMSEP = 4.47%) (Jiang et al., 2021). Be
sides the adulteration form of the other meat product, the adulteration 
with plant-based proteins in meat products is also an emerging issue. 
Pushbroom Vis-NIR HSI equipment (400–1000 nm) has been applied to 

detect the level of textured vegetable protein adulterated in minced beef 
and minced pork product and claimed that a 100% classification rate is 
achieved (Rady and Adedeji, 2020). If the HSI technology is intended to 
be used in classifying meat products in the actual production stage, the 
classification model must be extremely accurate. To meet industrial 
needs, HSI technique should achieve a more than 95% correct classifi
cation rate while at the same time the percentage of false-positive or 
false-negative should be below 5%. 

4. Discussion 

HSI brings wide prospects in meat quality analysis, such as saving 
labour costs, and avoiding human subjective errors of quality parame
ters. However, there are still some limitations that need to be solved in 
practical applications, The development of instruments limits the scope 
of detection, while the applied models and algorithms limit the accuracy 
of detection. This part will discuss the current situation and limitations 
considering two perspectives: instrumentation and data processing. 

4.1. HSI instrumentation 

HSI technology is affected by light intensity, speed, and smoothness 
on the surface of the tested sample, and its repeatability will be affected 
because of the light attenuation (Ján and Koloman, 2018). Therefore, 
improving the performance of the spectrometer and simplifying the 
corresponding hardware should be moving forward. With regards to 
instrumentation, different suppliers offer various solutions, which 
include benchtop systems and industrial analysis systems. Benchtop 
systems are used to acquire HSI image in a laboratory environment, the 
HSI equipment mainly used in the laboratory is line scanning equip
ment. The sample is placed directly on the conveyor belt and the HSI 
image is scanned under a high-intensity light source. Compared with the 
other two HSI equipments (wavelength scan and snapshot scan), line 
scanning equipment can obtain higher spectral resolution and relatively 
fast speed (Wang et al., 2017). By considering the various components of 
the benchtop system, which are exposed in the external detection 
environment, such as cameras, lights, conveyor belts, industrial-based 
HSI systems are integrated custom-made systems capable of operating 
in a condition of the production line in meat processing environments. 
However, the actual testing environment, as well as the size, shape, and 
production stage of the samples from each control point in the supply 
chain must be considered. Due to the penetration depth of the camera 
and the image processing speed, real-time HSI acquisition needs to be 
matched with the high precision of the industrial environment. To 
ensure that the HSI equipment can perform stable and continuous 
high-efficiency acquisition, the type and angle of the lighting solution, 
the distance between the camera and the sample, and the selection of 
FOV (field of view) require much more time. 

In the context of meat production, the image acquisition speed of HSI 
equipment is an issue worth considering. Although linear scanning 
equipment can achieve accurate predictions acquisition, the processing 
speed of a single sample cannot meet the requirements of industrial 
design. At present, the image acquisition speed still needs to be further 
improved to adapt to the actual production environment. Recently, new 
snapshot hyperspectral cameras have been introduced, enabling rapid 
acquisition of the entire hyperspectral image without the need to move 
the sample or camera during scanning. Laboratories have gradually 
begun to use snapshot hyperspectral cameras, Al-Sarayreh et al. (2020) 
used two snapshot HSI technique (467–639 nm, 673–957 nm) to classify 
eight types of muscles from three species of meat in lab circumstance, 
which achieved the overall accuracy of 96.9% and 97.1% by using 
convolution neural network (CNN) models. Another challenge in HSI 
implementation in a factory setting is that the meat products going 
through the production line are not all similar in terms of weight, size, 
and shape. For example, if the thickness of the sample on the conveyor 
belt is different, the detected surface of meat scanned by well-prepared 
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light and FOV can vary significantly. These will cause the actual distance 
between each sample and the camera to be different between mea
surements, which in turn, will greatly increase the detection error and 
uncertainty. 

The HSI hardware suppliers initially focused on improving the sta
bility of the benchtop system, such as developing a more stable lighting 
system, wider spectral scanning range, and higher resolution. While 
improving performance, HSI hardware has been adapted for use in the 
industry for in-line inspection. SPECIM, RESONON, and Headwall are 
the three vendors that provide HSI hardware, which will make effort to 
put HSI equipment into the instrument level under recent developments 
with faster computers and sophisticated sensors. 

4.2. HSI data analysis 

Using the HSI technique can generate a large amount of spectral and 
spatial data for analysis. A database containing pure and adulterated 
sample data and meta-information that can be used as reference data 
should be established to obtain a powerful and universal calibration 
model. The sample size of the model can not only be used to illustrate the 
feasibility but also to establish a reliable general calibration model. 
Unfortunately, building a worldwide accessible reference dataset for 
detection and analysis of meat is challenging, the establishment of meat 
datasets with sufficient generality and diversity is still greatly needed. 
Dixit et al. (2021) proposed using eight sets of HSI data from global to 
construct the IMF and pH prediction models of three types of red meat 
(beef, lamb, and venison), Different slaughter seasons and detection 
environments are all considered. The prediction model reached 
reasonable prediction performance (R2p = 0.86, 0.89 respectively), 
which illustrated that HSI application can be expanded to global 
perspective. A good classifier is evaluated by higher R2 and lower RMSE, 
especially R2 and RMSE of calibration set need special consideration 
when developing a global dataset, which should include meat under all 
the scenarios when going through the HSI system. Before putting the 
well-trained model into real-life meat inspection or along the meat 
production line, a large batch of products is necessary to verify the 
model first. The R2p must be as high as possible, and the ratio of R2c and 
R2p need to be considered as well because the high R2c and low R2p 
means that the model is overtrained and not suitable for industrial use. 

The choice of data analysis method is a challenging problem for 
constructing a robust and universal calibration model as well. Both 
linear (PLR-S) and non-linear classifiers (e.g. SVM, random forest) were 
used according to the analysed parameter. In general, models created 
with linear classifiers (PLS-DA, PLS-R, LDA) have a strong explanatory 
ability in prediction, but with lower accuracy in some cases. On the 
other hand, non-linear models have good accuracy and resolution for 
analyses such as detection of contamination or discolouration of meat 
products. Although the data processing methods are contractedly 
improving, the difficulty of acquiring quality HSI measurements from a 
sample set remains. Besides, the training process for deep learning takes 
time, the high complexity of the model and multiple hyperparameters 
complicate the optimization process. Lifelong learning (LL), which in
volves reinforcement learning and the use of accumulated knowledge in 
future problems, is also considered for application in the process of data 
processing. Over time, LL algorithms gain more knowledge and learn 
more efficiently, which helps to develop simpler models. 

Dimensionality reduction should be carried out to decrease the 
number of variables needed for modelling, which will speed up the data 
processing time. The current dimensionality reduction technology 
mainly uses the PCA method, which is an unsupervised algorithm and 
only reserved in the view of the main features. It is necessary to develop 
suitable machine learning methods for dimensionality reduction pro
cessing, such as semi-supervised method, and rapid extraction method 
for characteristic wavelengths. In order to achieve faster processing 
time, Wan et al. (2020) used line-scan NIR HSI (900–1700 nm) tech
nique predicting three myoglobin content (DeoMb, OxyMb, MetMb) in 

nitrite-cured mutton (R2p = 0.90 and RMSEP = 2.35, R2p = 0.96 and 
RMSEP = 2.37, R2p = 0.89 and RMSEP = 3.27, respectively). PLS-R and 
SVM methods were modelled for each myoglobin form with their 
characteristic wavelengths. This approach has greatly saved time 
compared to full-spectrum analysis, but there is still a need for a 
screening method to use the same set of characteristic wavelengths for 
three myoglobin forms. As seen previously in the different applications 
in meat quality assessment, dimensionality reduction is key to the suc
cess of the prediction. If a full-spectrum scan is used, HSI equipment will 
not be suitable for continuous in-line analysis. The current way to in
crease the speed is to select one of the few characteristic wavelengths 
from the whole spectrum, but because the characteristic peaks corre
sponding to different characteristic values are not the same, the lack of 
representative signals of the spectrum may happen at the same time. 
Each production stage where HSI is placed needs to be re-modelled and 
screened for testing, which could bring inconvenience and require more 
investment. 

The classifiers and wavelength selection methods of spectral data, 
however, are not the final solution to solve the excessive data generated 
by HSI, which can be an issue in terms of data processing and storage for 
the average user. This is because, the textural and RGB (colour) infor
mation from the HSI camera needed to be analysed as well. Some at
tempts to automate wavelength selection using data fusion techniques 
(Li et al., 2015; Yang et al., 2018) and reduce the HSI data (Ghaffari 
et al., 2020). Data fusion technique obtains comprehensive results by 
analysing the spectral information and texture information in the HSI 
data separately. Kucha et al., (2021) used three data fusion methods to 
predict the IMF content of pork samples, results showed that the data 
fusion resulted in a higher prediction of IMF. Besides, MCR (multivariate 
curve resolution) method is also applied to the processing of HSI data 
differently. MCR unfolds the 3D HSI data into a two-dimensional data 
matrix and then performs data reduction based on this simplified data 
set (Ghaffari et al., 2019). Ghaffari et al. (2020) came up with MCR-ALS 
(multivariate curve resolution alternating least squares) method to 
compress and reduce HSI data. In the MCR-ALS model, pixels and var
iables are considered as the rows and columns of a two-dimensional data 
matrix rather than two independent parts. The joint selection of essential 
pixels and essential variables greatly reduces the volume of data. 

5. Future practice 

It should be noted that laboratory based HSI system has no capacity 
to transfer to actual application directly, instrument and data processor 
need to adjust according to the working environment and the budget of 
analysis machine. Price is one of the most important parameters inter
fere the implementation of HSI, affordable detector developed by the 
improvements in the electronics and electronic architecture (micro
processor with dedicated cores for machine learning) will bring faster 
data analysis, and the miniaturisation of the HSI equipment is important 
as well about looking for the mobile platform. Currently, multispectral 
imaging technology is leading based on its advantages in capital cost and 
processing speed, but after the recent developments with faster ICT and 
sophisticated energy efficient sensors, HSI could be more affordable and 
accessible for larger or even medium sized meat processors to achieve 
automation, sample analysis, and traceability of products. 

Meanwhile, the barrier expected to be resolved soon is the learning 
curve using the HSI technology in industrial settings but with untrained 
staff. In this direction, the instrument vendors are moving at a fast pace. 
SPECIM developed SpecimONE spectral imaging platform to reduce the 
operation difficulty of HSI systems in industrial production (Specim, 
2020). People without coding or in-depth knowledge of spectral imaging 
can also use HSI equipment for classification (Viitakoski, 2020). Per
forming the quality evaluation by analysing several quality indicators 
will get a more reasonable model with interpretative ability. Zhuang 
et al. (2022) used fluorescence HSI to predict the TVB-N, pH, colour 
parameters of frozen meat without thawing, three freshness indicators 
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were determined using one model. A single-quality feature is not suffi
cient to evaluate the condition of the meat product, but the bid to use the 
HSI technology should first start from ensuring the accuracy of its 
evaluation for a single parameter. Sometimes, it is necessary to make a 
comprehensive measurement of the various single parameters based on 
the stable performance from HSI equipment. Not does the 
multi-parameters need to be considered, multi-sensors are also expected 
to be detected synchronously. The combination of HSI technology and 
other non-destructive testing equipment (electronic nose, IR or NIR, or 
Spatially offset Raman spectroscopy) can be considered as a novel way 
to enlarge the application range of HSI to achieve the analysis of gas and 
liquid. With this multi-sensory approach, HSI can be used not only for 
the raw and processed meat product but also for pre-packed meat in 
various types of packaging. 

The development of data processing chips and 5G network, the rise 
of digital barcode, which will have the capacity to achieve the transient 
communication across platforms. Network connectivity just as with 5G 
wireless can connect the HSI system to the cloud for off-loading some of 
the more intensive and algorithmic processing work to a remote data 
centre which can be miles away from the factory using secure commu
nication protocols. Continuous improvement of HSI equipment and 
advanced chemometric methods make HSI technology not only suitable 
for the process of detecting products, but also involved in the informa
tion management systems in the future, such as the decision support 
systems. Decision support system is a computer application system that 
can assist decision makers to make decisions through data, models and 
knowledge (Zhai et al., 2020). HSI in the instrument level enhances the 
control of industry management such as process automation and safety 
control systems, which will improve performance management and 
quality management at the application level. HSI information, like a 
product’s ID of each product, helps decision makers improve the level 
and quality of decision-making effectively. This system can potentially 
provide forecast insights about operations and real-time decision-mak
ing after continuous corrections. Currently, it is not possible to carry out 
fully automated analysis without manual intervention because this 
system needs to rely on a large amount of historical experts’ data to 
verify the feasibility (Pashaei Kamali et al., 2017). 

It is important to note that the aim of using HSI as a QC tool in the 
meat supply chain is not to fully replace the conventional detection 
methods because the HSI setup needs to update regularly with the 
reference value to verify the stability of the model. The vision is that the 
HSI technique can be used as a screening method followed by confir
matory testing using the conventional methods if required. A combi
nation of both methods will help in accelerating detection and reduce 
costs. Non-destructive, fast real-time technique has been incorporated 
into instruments, especially for the larger food processing companies 
with global footprints in the past. Future trends of HSI technique in the 
meat supply chain can start from the following aspects: building a 
dataset includes several key scenarios in specific stages; embedding a 
fast and cost-effective HSI instrument into industrial analysis system; 

expand the application range of HSI to more steps in meat products 
chain, such as feeding and customers; user friendly solutions for data 
management. 

6. Conclusion 

HSI has clearly shown promising early signs in the non-destructive 
analysis of meat quality and safety. However, there are some specific 
challenges in this technique such as the scanning and data analysis speed 
that involve scaling this technology for use in meat production plants 
and onwards as a QC tool in the meat supply chain. Here, we reviewed 
many recent scientific articles related to the use of HSI in meat product 
analysis and discussed the disadvantages and the implementation of the 
HSI technique in the proper meat supply chain. The weight of scientific 
evidence is that HSI technology has the potential to enable large scale 
meat product testing. Currently, the technology although well- 
developed for static measurements in terms of instrumentation and 
analytics, the instrumentation’s speed of analysis is still to be adapted 
for use in an industrial setting where high-speed production lines are 
moving, and fast-paced decisions must be made. This will allow for more 
applications in the analysis of meat products to be developed in the 
future. With a fully adapted for factory setting HSI, the inspection 
coverage can reach 100% of the target food, and it can reliably identify 
the chemical properties of food products. Once the HSI, together with 
other rapid sensor technologies, can successfully be integrated into 
several key point s of the meat supply chain, the meat industry can start 
moving from a reactive to predictive mode when facing meat scandals 
and adulteration issues. This will be translated into fewer recalls, less 
food fraud occurring in the market, and arguably less waste. 
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Appendices.  

Table A.1 
Summary of the novel non-destructive detection methods   

ELECTRONIC NOSE NEAR/MID IR 
SPECTROSCOPY 

RAMAN SPECTROSCOPY VISION TECHNOLOGY HYPERSPECTRAL IMAGING 

Type of Information Odour Spectra Spectra Image Spectra and image 
Sample size N/A Small Small Large Large 
Data size Small Small Small Small Large 
Technical difficulty Low High High High Higher 
Cost Low Low Low High High 
Speed Fast Fast Fast Very fast Fast 
Replicates needed >5 3–5 3–5 3–5 1 

(continued on next page) 
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Table A.1 (continued )  

ELECTRONIC NOSE NEAR/MID IR 
SPECTROSCOPY 

RAMAN SPECTROSCOPY VISION TECHNOLOGY HYPERSPECTRAL IMAGING 

Suitability for on-line 
meat inspection 
(Advantages & 
Weaknesses) 

Sufficient sensor 
stability buy lacks of 
absolute calibration 

Avoids sample pre- 
treatment; single-point 
detection is limiting factor 

Avoids sample pre-treatment 
but has low sensitivity in low 
concentrations 

Non-destructive rapid 
visual scan but lacks 
internal analysis 

Rich multidimensional 
information; specific 
measuring requirements;   

Table A.2 
Latest applications of Hyperspectral Imaging in meat products (2016–2020)  

MEAT APPLICATIONS/ 
DETERMINATIONS 

EQUIPMENT SET- 
UP 

WAVELENGTH 
(NM) 

SAMPLE 
NUMBER 

ADVANTAGES/WEAKNESSES REFERENCES 

fresh porcine biogenic amine index (BAI) from 
longissimus dorsi (LD) muscle 

Push broom HSI 
system 

400–1000 210 Pioneering application/Limitation on 
sample types 

Cheng et al. 
(2016) 

marbling score from loin joints Line-scan push 
broom system 

900–1700 24 Save cutting time/Less calibration 
sample 

Huang et al. 
(2017b) 

intramuscular fat (IMF) and 
peroxide value (PV) from belly 
muscle cut 

Push broom HSI 
system 

400–1000 102 Application of data fusion/Manually 
wavelength selection 

Aheto et al. 
(2020) 

frozen–thawed 
pork 

Monounsaturated and 
polyunsaturated fatty acids from 
LD muscle 

Line-scan HSI 
system 

1000–2000 192 Detect various processed meat/ 
Insufficient precision 

Ma and Sun 
(2020) 

frozen pork myofibrils structural deformation 
from LD muscle 

Push broom HSI 
system 

1000–2200 158 Collect under frozen state/ 
Algorithmic enhancements 

Cheng et al. 
(2018) 

boiled pork sarcoplasmatic and myofibrillar 
proteins from LD muscle 

2 push broom HSI 
systems 

400–2000 104 Reduce data processing time/ 
Limitation on sample types 

Ma et al. (2019) 

cured pork TBARS from pork belly muscle Line-scan HSI 
system 

400–1000 108 Application on by-products/More 
data processing time 

Aheto et al. 
(2019) 

NaCl content, water activity (aw) 
from belly muscle cut 

Line-scan HSI 
system 

400–1000 135 Pioneering application/Less practical 
on actual production 

Aheto et al. 
(2019) 

salt concentration from LD muscle 2 line-scan HSI 
systems 

450–1664 144 Potentiality of engaging into brining 
process/Less concentration gradient 
setting 

Achata et al. 
(2019) 

pork sausages adenosine triphosphate content N/A 380–1000 75 Pioneering application/Less practical 
on actual production 

Feng et al. 
(2018) 

Colour change for sausage stuffed 
in casings 

Line-scan push 
broom HSI system 

380–1000 52 Colour dynamic change of processed 
meat/Limitation on sample types 

Feng and Makino 
(2020) 

fresh lamb myoglobin (DeoMb, OxyMb 
MetMb) value from LD muscle 

Reflectance mode 
HSI system 

400–1000 200 Novel exhibition of HSI on meat 
product/Incomplete sample range 

(Cheng et al., 
2019) 

Total viable count (TVC) value 
from LD muscle 

Push broom HSI 
system 

400–1000 150 Selected wavelengths used for 
packaged meat/Less practical on 
actual production 

Duan et al. 
(2017) 

cured lamb myoglobin (DeoMb, OxyMb 
MetMb) form LD muscle 

Line-scan HSI 
system 

900–1700 240 Novel wavelength selection method/ 
Limitation on sample types 

Wan et al. (2020) 

cooked lamb metmyoglobin value from LD 
muscle 

Push broom HSI 
system 

400–1000 182 Novel exhibition of HSI on meat 
product/Underperforming 
optimization model 

Yuan et al. 
(2020) 

fresh beef TVC from LD muscle N/A 400-1000; 880- 
1720 

104 Two spectral ranged used for 
modelling/Relatively high equipment 
costs 

Achata et al. 
(2020) 

marbling score form LD muscle Line-scan push 
broom HSI system 

400–1000 58 Expanded the HSI application/ 
Incomplete marbling standard 

Aredo et al. 
(2017) 

spiced beef TVC N/A 325–1100 105 Novel chemometrics method for 
evaluation/potential data overfitting 

Yang et al. 
(2018) 

cooked beef biogenic amines N/A 400-1000; 1000- 
1800 

105 Pioneering application/Limitation on 
sample types 

Yang et al. 
(2017) 

fresh chicken Carrageenan adulteration Line-scan push 
broom HSI system 

400–1000 144 Novel exhibition of HSI on meat 
product/Adulteration process needs 
improved 

Zhang et al. 
(2019)   
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Fig. A.1. Conventional meat supply chain (adapted from Brooks et al., 2017; Bonou et al., 2020; Soro et al., 2020) .  

Fig. A.2. Potential implantation of the HSI technique in the meat production line .  
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Triki, M., Herrero, A., Jiménez-Colmenero, F., Ruiz-Capillas, C., 2018. Quality 
assessment of fresh meat from several species based on free amino acid and biogenic 
amine contents during chilled storage. Foods 7 (9), 132. https://doi.org/10.3390/ 
foods7090132. 

Velásquez, L., Cruz-Tirado, J.P., Siche, R., Quevedo, R., 2017. An application based on 
the decision tree to classify the marbling of beef by hyperspectral imaging. Meat Sci. 
133, 43–50. https://doi.org/10.1016/j.meatsci.2017.06.002. 

Viitakoski, M., 2020. SpecimONE. In: Specim. https://www.specim.fi/specimone/. 
Vlachos, A., Arvanitoyannis, I.S., Tserkezou, P., 2016. An updated review of meat 

authenticity methods and applications. Crit. Rev. Food Sci. Nutr. 56 (7), 1061–1096. 
https://doi.org/10.1080/10408398.2012.691573. 

von Gersdorff, G., Kirchner, S., Hensel, O., Sturm, B., 2021. Impact of drying temperature 
and salt pre-treatments on drying behavior and instrumental color and investigations 
on spectral product monitoring during drying of beef slices. Meat Sci. 178, 108525. 
https://doi.org/10.1016/j.meatsci.2021.108525. 

Wan, G., Liu, G., He, J., Luo, R., Cheng, L., Ma, C., 2020. Feature wavelength selection 
and model development for rapid determination of myoglobin content in nitrite- 
cured mutton using hyperspectral imaging. J. Food Eng. 287 (April), 110090 https:// 
doi.org/10.1016/j.jfoodeng.2020.110090. 

Wang, C., Wang, S., He, X., Wu, L., Li, Y., Guo, J., 2020. Combination of spectra and 
texture data of hyperspectral imaging for prediction and visualization of palmitic 
acid and oleic acid contents in lamb meat. Meat Sci. 169 (September 2019), 108194 
https://doi.org/10.1016/j.meatsci.2020.108194. 

Wang, Y.W., Reder, N.P., Kang, S., Glaser, A.K., Liu, J.T.C., 2017. Multiplexed optical 
imaging of tumor-directed nanoparticles: a review of imaging systems and 
approaches. Nanotheranostics 1 (4), 369–388. https://doi.org/10.7150/ntno.21136. 

Williams, P.J., Makhubo, Q., Manley, M., Hoffman, L., 2020. Classification of game meat 
with NIR hyperspectral imaging (rising researcher) (conference presentation). In: 
Kim, M.S., Chin, B.A., Cho, B.-K. (Eds.), Sensing for Agriculture and Food Quality 
and Safety XII, vol. 11421. SPIE. https://doi.org/10.1117/12.2557252. 

Yang, D., He, D., Lu, A., Ren, D., Wang, J., 2017. Detection of the freshness state of 
cooked beef during storage using hyperspectral imaging. Appl. Spectrosc. 71 (10), 
2286–2301. https://doi.org/10.1177/0003702817718807. 

Yang, D., Lu, A., Ren, D., Wang, J., 2017a. Detection of total viable count in spiced beef 
using hyperspectral imaging combined with wavelet transform and multiway partial 
least squares algorithm. J. Food Saf. 38 (1) https://doi.org/10.1111/jfs.12390. 

Yang, D., Lu, A., Ren, D., Wang, J., 2017b. Rapid determination of biogenic amines in 
cooked beef using hyperspectral imaging with sparse representation algorithm. 
Infrared Phys. Technol. 86, 23–34. https://doi.org/10.1016/J. 
INFRARED.2017.08.013. 

Yang, Y., Wang, W., Zhuang, H., Yoon, S.-C., Jiang, H., 2018. Fusion of spectra and 
texture data of hyperspectral imaging for the prediction of the water-holding 
capacity of fresh chicken breast filets. Appl. Sci. 8 (4), 640. https://doi.org/10.3390/ 
app8040640. 

Yuan, R., Liu, G., He, J., Ma, C., Cheng, L., Fan, N., Ban, J., Li, Y., Sun, Y., 2020. 
Determination of metmyoglobin in cooked tan mutton using Vis/NIR hyperspectral 
imaging system. J. Food Sci. 1–8. https://doi.org/10.1111/1750-3841.15137, 00.  

Zhai, Z., Martínez, J., Beltran, V., Martínez, N.L., 2020. Decision support systems for 
agriculture 4.0: survey and challenges. Comput. Electron. Agric. 170, 105256 
https://doi.org/10.1016/j.compag.2020.105256. 

Zhang, Y., Jiang, H., Wang, W., 2019. Feasibility of the detection of carrageenan 
adulteration in chicken meat using visible/near-infrared (Vis/NIR) hyperspectral 
imaging. Appl. Sci. 9 (18), 3926. https://doi.org/10.3390/app9183926. 

Zhao, H.-T., Feng, Y.-Z., Chen, W., Jia, G.-F., 2019. Application of invasive weed 
optimization and least square support vector machine for prediction of beef 
adulteration with spoiled beef based on visible near-infrared (Vis-NIR) hyperspectral 
imaging. Meat Sci. 151, 75–81. https://doi.org/10.1016/j.meatsci.2019.01.010. 

Zhao, M., Esquerre, C., Downey, G., O’Donnell, C.P., 2017. Process analytical 
technologies for fat and moisture determination in ground beef - a comparison of 
guided microwave spectroscopy and near infrared hyperspectral imaging. Food 
Control 73, 1082–1094. https://doi.org/10.1016/j.foodcont.2016.10.023. 

Zheng, X., Li, Y., Wei, W., Peng, Y., 2019. Detection of adulteration with duck meat in 
minced lamb meat by using visible near-infrared hyperspectral imaging. Meat Sci. 
149, 55–62. https://doi.org/10.1016/j.meatsci.2018.11.005. 

Zheng, X., Peng, Y., Wang, W., 2017. A nondestructive real-time detection method of 
total viable count in pork by hyperspectral imaging technique. Appl Sci-Basel 7 (3). 
https://doi.org/10.3390/app7030213. 

Zhou, L., Zhang, C., Liu, F., Qiu, Z., He, Y., 2019. Application of deep learning in food: a 
review. Compr. Rev. Food Sci. Food Saf. 18 (6), 1793–1811. https://doi.org/ 
10.1111/1541-4337.12492. 

Zhuang, Q., Peng, Y., Yang, D., Wang, Y., Zhao, R., Chao, K., Guo, Q., 2022. Detection of 
frozen pork freshness by fluorescence hyperspectral image. J. Food Eng. 316, 
110840. https://doi.org/10.1016/j.jfoodeng.2021.110840. 

W. Jia et al.                                                                                                                                                                                                                                      

https://doi.org/10.1016/j.agsy.2017.07.013
https://doi.org/10.1016/j.jfoodeng.2010.08.014
https://doi.org/10.1016/j.jfoodeng.2010.08.014
https://doi.org/10.1016/j.tifs.2015.05.006
https://doi.org/10.1016/j.tifs.2015.05.006
https://doi.org/10.1007/s12161-020-01719-1
https://doi.org/10.1016/j.tifs.2020.06.008
https://doi.org/10.1016/j.foodcont.2020.107310
https://doi.org/10.1016/j.foodchem.2020.126448
https://doi.org/10.1016/j.tifs.2016.01.011
https://doi.org/10.1111/cjag.12228
https://doi.org/10.1016/s0315-5463(86)71619-2
https://doi.org/10.1016/s0315-5463(86)71619-2
https://doi.org/10.1016/j.meatsci.2007.07.027
https://doi.org/10.1111/1541-4337.12544
https://www.specim.fi/industry/
https://doi.org/10.3390/s17122726
https://www.theguardian.com/business/2020/jun/19/three-meat-factories-in-england-and-wales-closed-over-coronavirus
https://www.theguardian.com/business/2020/jun/19/three-meat-factories-in-england-and-wales-closed-over-coronavirus
https://doi.org/10.3390/foods7090132
https://doi.org/10.3390/foods7090132
https://doi.org/10.1016/j.meatsci.2017.06.002
https://www.specim.fi/specimone/
https://doi.org/10.1080/10408398.2012.691573
https://doi.org/10.1016/j.meatsci.2021.108525
https://doi.org/10.1016/j.jfoodeng.2020.110090
https://doi.org/10.1016/j.jfoodeng.2020.110090
https://doi.org/10.1016/j.meatsci.2020.108194
https://doi.org/10.7150/ntno.21136
https://doi.org/10.1117/12.2557252
https://doi.org/10.1177/0003702817718807
https://doi.org/10.1111/jfs.12390
https://doi.org/10.1016/J.INFRARED.2017.08.013
https://doi.org/10.1016/J.INFRARED.2017.08.013
https://doi.org/10.3390/app8040640
https://doi.org/10.3390/app8040640
https://doi.org/10.1111/1750-3841.15137
https://doi.org/10.1016/j.compag.2020.105256
https://doi.org/10.3390/app9183926
https://doi.org/10.1016/j.meatsci.2019.01.010
https://doi.org/10.1016/j.foodcont.2016.10.023
https://doi.org/10.1016/j.meatsci.2018.11.005
https://doi.org/10.3390/app7030213
https://doi.org/10.1111/1541-4337.12492
https://doi.org/10.1111/1541-4337.12492
https://doi.org/10.1016/j.jfoodeng.2021.110840

	Hyperspectral Imaging (HSI) for meat quality evaluation across the supply chain: Current and future trends
	1 Introduction
	2 Recent applications of hyperspectral imaging for meat product evaluation
	2.1 Overview of the HSI technique
	2.2 Recent applications of HSI for meat safety and quality evaluation
	2.2.1 Determination of the colour of fresh meat
	2.2.2 Determination of the water content of fresh meat
	2.2.3 Determination of the biogenic amine index (Bai) of fresh and processed meat
	2.2.4 Determination of the total viable count (TVC) of fresh and processed meat
	2.2.5 Determination of the nutritional composition of fresh meat
	2.2.6 Detection of meat adulteration of fresh meat
	2.2.7 Determination of gel and water injection of fresh meat
	2.2.8 Determination of the marbling score of fresh meat


	3 Potential applications OF HSI IN the meat supply chain
	3.1 Potential applications of HSI at the stage of slaughter and processing plant
	3.2 Potential applications of HSI for meat at the stage of distribution centre

	4 Discussion
	4.1 HSI instrumentation
	4.2 HSI data analysis

	5 Future practice
	6 Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgements
	Appendices Acknowledgements
	References


