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Abstract: In order to solve the problems of long-term image acquisition time and massive data
processing in a terahertz time domain spectroscopy imaging system, a novel fast terahertz imaging
model, combined with group sparsity and nonlocal self-similarity (GSNS), is proposed in this paper.
In GSNS, the structure similarity and sparsity of image patches in both two-dimensional and three-
dimensional space are utilized to obtain high-quality terahertz images. It has the advantages of
detail clarity and edge preservation. Furthermore, to overcome the high computational costs of
matrix inversion in traditional split Bregman iteration, an acceleration scheme based on conjugate
gradient method is proposed to solve the terahertz imaging model more efficiently. Experiments
results demonstrate that the proposed approach can lead to better terahertz image reconstruction
performance at low sampling rates.

Keywords: terahertz imaging; group sparsity; nonlocal self-similarity; conjugate gradient;
acceleration scheme

1. Introduction

The information obtained from imaging at the Terahertz (THz) frequencies (0.1–10 THz)
has received much attention in recent decades due to its unique properties [1–6]. Terahertz
time domain spectroscopy (THZ-TDS) imaging is one of the most powerful techniques in
the terahertz imaging field. It can reconstruct the terahertz image with high signal-to-noise
(SNR) ratio and high resolution by scanning the target pixel by pixel. Therefore, it has
great application prospects in fields requiring high terahertz imaging quality [7–9]. How-
ever, THz-TDS imaging technology requires a long time for terahertz image acquisition.
Therefore, a fast imaging scheme that can solve the disadvantage of long-time acquisi-
tion while maintaining the advantages of THz-TDS detection will attract great interest for
practical application.

Numerous techniques have been proposed to solve the problem of long-time acqui-
sition of THz-TDS technology. Terahertz detector arrays have shown great application
potential in shortening long-time acquisition [10–12], but they suffer from high equipment
and complexity costs. A Fourier based terahertz imaging method was proposed to achieve
fast terahertz image reconstruction by using sparsity prior to the image [13]. However,
it still needs raster scanning on the Fourier plane. Then, a promising terahertz imaging
paradigm, namely single pixel imaging system, was proposed [14,15]. This system uses
only one detector and avoids raster scanning of the object. Despite the fact that this system
could decrease the number of measurements, the speed of switching from one spatial
pattern to another is time consuming. Then, various techniques for effective spatial modu-
lation of terahertz beams were studied, but still required additional hardware. Moreover, a
block compressive sensing (CS) based method was proposed for terahertz imaging in the
spatial domain [16,17], which requires no additional hardware devices and can shorten
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imaging time. However, a single sparsity prior is utilized in this method for terahertz
imaging, and the reconstructed terahertz image quality is not satisfactory. A dual sparsity
constraint based spatial domain terahertz imaging strategy was proposed in [18], but may
suffer from over-smoothing when the sampling rate is reduced.

In the past few years, a series of nonlocal self-similarity methods have been proposed
to extend image denoising from two-dimensional space to three-dimensional space [19–21].
These methods use the nonlocal self-similarity of image patches to improve the image
quality. A hybrid sparsity model was proposed for terahertz imaging in [22], which utilized
the local sparsity and nonlocal self-similarity of the terahertz image to improve image
quality, but it does not use the image structure information. Recently, in order to remove
noise and reconstruct the image more effectively, methods based on group sparsity have
been widely used in image processing, which can extract sparse information from the image
structure [23–25]. Inspired by the success of group sparsity and nonlocal self-similarity in
image processing, a novel fast terahertz imaging model, combined with group sparsity
and nonlocal self-similarity (GSNS) is proposed in this paper. It exploits the structure
sparsity and similarity of terahertz image patches in both two-dimensional and three-
dimensional space to ensure high-quality terahertz image reconstruction, and has the
advantages of detail clarity and edge preservation. Furthermore, to overcome the high
computational costs of the proposed terahertz imaging model, an acceleration scheme
based on a conjugate gradient method is proposed to solve the model more efficiently.
Compared with the other methods, the proposed GSNS algorithm can achieve superior
performance in fast terahertz imaging.

The rest of the paper is structured as follows. In Section 2, we present the proposed
fast terahertz imaging model based on group sparsity and nonlocal self-similarity, and give
a solution algorithm using an acceleration scheme in detail. The experiments are utilized to
demonstrate the performance of the proposed method in Section 3. Finally, the conclusion
is drawn in Section 4.

2. Materials and Methods

The THZ-TDS system realizes image reconstruction by scanning each pixel of the
target sample. The image acquisition time of THZ-TDS is determined by the number of
scanned pixels. Therefore, in order to achieve fast terahertz image reconstruction, we
need to reduce the number of scanned pixels. Given a target image x ∈ RN , we randomly
select M positions from a total of N pixels of the target image for terahertz scanning
detection. Then the fast terahertz image reconstruction model of the THz-TDS system can
be represented as

y = Rx (1)

where y ∈ RM denotes the measured vector of terahertz data, x ∈ RN is the target image to
be reconstructed, and R denotes the observation matrix composed of 0 and 1 values. The
positions of elements with value 1 in the matrix R are determined by the scanning positions
of the terahertz system, and the values of other elements are 0.

The purpose of terahertz image reconstruction is to obtain the target image x from the
sparse measured vector y. Since the amount of measured terahertz data is less than the
number of pixels in the target image, problem (1) appears ill conditioned. Since the spectral
density of an common terahertz image is usually concentrated in the low frequency band
and has strong sparsity, imaging methods based on CS can be utilized to reconstruct the
terahertz image to reduce the image acquisition time. Based on the sparsity of the terahertz
image in frequency domain, the fast terahertz image reconstruction model can be written as

min
x
{‖Fx‖1}

s.t. y = Rx
(2)

where F is the sparse transformation.
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2.1. Proposed Fast Terahertz Imaging Model

To further improve the performance of terahertz image reconstruction, a novel fast
terahertz imaging model which integrates group sparsity and nonlocal self-similarity
constraints is proposed in this section.

Given an image x, we divide it into P patches of size L × L, and the pth patch can be
denoted by

xp = Cpx (3)

where Cp represents the operation of dividing the image into small patches. For each patch
xp, we search for its c-1 best matching patches in a T × T search window, and then stack all
the best matching patches to form a two-dimensional matrix gp of size L2 × c, where each
similar patch is used as a column of gp. Then the matrix gp can be expressed as

gp = Gpxp = GpCpx (4)

where Gp is an operator that extracts all patches with similar structures of xp to construct a
patch group. For a given dictionary Dp learned from the group, the patch group gp can be
sparsely expressed as

αp = argmin
αp

∥∥αp
∥∥

1

s.t.gp = Dpαp
(5)

where αp denotes the sparse coefficient vector. Using the structure similarity and sparsity
of the terahertz image, group sparsity could obtain better reconstruction results. After
obtaining all the sparse coefficient vectors αp, p = 1, 2, . . . P, the entire image x can be
obtained by [25]

x =
P

∑
p=1

GT
p
(
Dpαp

)
·/

P

∑
p=1

GT
p 1L2×c (6)

where 1L2×c is a L2 × c matrix and all its elements are 1. GT
p is the transpose of Gp, which

can put a group back to the p-th position of the reconstructed image and fill in zeros at
other positions. Equation (6) shows that we can recover the image x by averaging all the
overlapped groups.

In addition, motivated by the successful application of nonlocal self-similarity in
the three-dimensional transform domain for image denoising, we utilize the nonlocal
self-similarity of the terahertz image to explore the structure similarity and sparsity in
three-dimensional space in order to ensure high-quality terahertz image reconstruction.
Similar to the group sparsity, for a patch xp, we search for its c-1 best matching patches in
a T × T search window. However, the difference from group sparsity is that all the best
matching patches are stacked to form a three-dimensional matrix zp with the size L × L×c.
Then the matrix zp can be expressed as

zp = Spxp = SpCpx (7)

where Sp is an operator that extracts all patches with similar structures of xp to construct a
three-dimensional matrix zp. Let T3D be an orthogonal three-dimensional transformation
operator, then the transformation coefficients of the image can be expressed as

Θp = T3Dzp = T3DSpCpx = Ψ3D
p x (8)

where Ψ3D
p = T3DSpCp is the operator of nonlocal self-similarity.

Therefore, nonlocal self-similarity can be used to measure the structure similarity and
sparsity of terahertz images in three-dimensional space, which can be expressed as

P

∑
p=1

∥∥Θp
∥∥

1 =
P

∑
p=1

∥∥∥Ψ3D
p x
∥∥∥

1
(9)
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In summary, combining group sparsity and nonlocal self-similarity, we propose a new
fast terahertz imaging model, which can be expressed as

min
x

P

∑
p=1

(∥∥αp
∥∥

1 +
∥∥∥Ψ3D

p x
∥∥∥

1

)
+

µ

2
‖Rx− y‖2

2 (10)

where µ is the positive regularization parameter. Obviously, it is extremely difficult to solve
the optimization problem (10) directly. Therefore, solving this problem (10) effectively is
one of the main contributions of this paper.

2.2. Solvution Algorithm Using Acceleration Scheme

Split Bregman iteration can transform a difficult optimization problem into several
simple subproblems. Then the subproblems are solved and updated alternately [26–28].
Based on the methodology of split Bregman iteration, we introduce Θp = Ψ3D

p x, αp =

D−1
p gp = D−1

p GpCpx = Ψ2D
p x, Bregman variables bαp and bΘp, convert the problem (10)

into the equivalent split Bregman formula, then the problem (10) can be rewritten as

min
x,re ,Θp

P

∑
p=1

∥∥αp
∥∥

1 +
P

∑
p=1

∥∥Θp
∥∥

1 +
µ

2
‖Rx− y‖2

2 +
λ

2

P

∑
p=1

∥∥∥αp −Ψ2D
p x− bαp

∥∥∥2

2
+

γ

2

P

∑
p=1

∥∥∥Θp −Ψ3D
p x− bΘp

∥∥∥2

2
(11)

where λ and γ are the positive regularization parameters. Then the split Bregman iteration
formula of the problem (10) is

(xi+1, αi+1
p , Θi+1

p ) = arg min
x,αp ,Θp

P
∑

p=1

∥∥αp
∥∥

1 +
P
∑

p=1

∥∥Θp
∥∥

1 +
µ
2 ‖Rx− y‖2

2

+ λ
2

P
∑

p=1

∥∥∥αp −Ψ2D
p x− bi

αp

∥∥∥2

2
+ γ

2

P
∑

p=1

∥∥∥Θp −Ψ3D
p x− bi

Θp

∥∥∥2

2

(12)

and the Bregman updates are{
bi+1

αp = bi
αp + (Ψ2D

p xi+1 − αi+1
p )

bi+1
Θp = bi

Θp + (Ψ3D
p xi+1 −Θi+1

p )
(13)

The l1 norm in the optimization problem (12) is not differentiable, so it is still difficult
to solve directly. Based on the strategy of separating variables, we convert the optimiza-
tion problem (12) into three subproblems, and iteratively update each variable by fixing
other variables.

x subproblem: fixing αp,Θp,bαp and bΘp, the subproblem of updating x can be given
from (12)

xi+1 = min
x

Q1(x)

= min
x

µ
2 ‖Rx− y‖2

2 +
λ
2

P
∑

p=1

∥∥∥αi
p −Ψ2D

p x− bi
αp

∥∥∥2

2
+ γ

2

P
∑

p=1

∥∥∥Θi
p −Ψ3D

p x− bi
Θp

∥∥∥2

2

(14)

The subproblem (14) is a minimization problem of typical convex function. Using the
differential for Q1(x) and setting the result equal to zero, we can obtainµRTR + λ

P

∑
p=1

(Ψ2D
p )

T
Ψ2D

p + γ
P

∑
p=1

(Ψ3D
p )

T
Ψ3D

p

xi+1 = µRTy + λ
P

∑
p=1

(Ψ2D
p )

T(
αi

p − bi
αp

)
+ γ

P

∑
p=1

(Ψ3D
p )

T(
Θi

p − bi
Θp

)
(15)

Then, x can be updated as

xi+1 =

µRTR + λ
P

∑
p=1

(Ψ2D
p )

T
Ψ2D

p + γ
P

∑
p=1

(Ψ3D
p )

T
Ψ3D

p

−1

zi (16)
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where

zi = µRTy + λ
P

∑
p=1

(Ψ2D
p )

T(
αi

p − bi
αp

)
+ γ

P

∑
p=1

(Ψ3D
p )

T(
Θi

p − bi
Θp

)
(17)

Θp subproblem: fixing x,αp,bαp and bΘp, the subproblem of updating Θp can be given
from (12)

Θi+1
p = min

Θp

P

∑
p=1

(∥∥Θp
∥∥

1 +
γ

2

∥∥∥Θp −Ψ3D
p xi+1 − bi

Θp

∥∥∥2

2

)
(18)

By introducing the soft thresholding algorithm, each Θp can be updated as [29]

Θi+1
p = shrink

(
Ψ3D

p xi+1 + bi
Θp, 1/γ

)
(19)

where
shrink(x, λ) = sgn(x)×max(|x| − λ, 0)

=


x− λ,

0,
x + λ,

x ∈ (λ,+∞)
x ∈ (−λ, λ)

x ∈ (−∞,−λ)

(20)

αp subproblem: Fixing x,Θp,bαp and bΘp, the subproblem of updating αp can be given
from (12)

αi+1
p = min

αp

P

∑
p=1

∥∥αp
∥∥

1 +
λ

2

∥∥∥αp −Ψ2D
p x− bi

αp

∥∥∥2

2

 (21)

Similar to the optimization problem (18), each αp can be updated by the soft thresh-
olding algorithm.

αi+1
p = shrink

(
Ψ2D

p xi+1 + bi
αp, 1/λ

)
(22)

Then, these simple subproblems are solved iteratively to obtain the reconstructed
terahertz image.

Although the optimization problem (12) can be solved by iterating three subproblems
(16), (18) and (21), the computational complexity is still very high. The main computational
complexity comes from solving the x subproblem because the cost of computing the matrix
inversion is too high, which is O(N3). So, an effective method is highly desirable. Conjugate
gradient method is an effective strategy for solving large-scale optimization problems,
which has a simple iterative form [30,31]. The basic concept of the conjugate gradient
method is to combine the conjugate property with the steepest descent method, construct a
set of conjugate directions by using the gradient at known points, search along this set of
directions, and find the minimum point of the objective function. Therefore, an acceleration
scheme based on the conjugate gradient method is proposed to tackle the x subproblem.

For convenience, we let

A = µRTR + λ
P

∑
p=1

(Ψ2D
p )

T
Ψ2D

p + γ
P

∑
p=1

(Ψ3D
p )

T
Ψ3D

p (23)

z = µRTy + λ
P

∑
p=1

(Ψ2D
p )

T(
αi

p − bi
αp

)
+ γ

P

∑
p=1

(Ψ3D
p )

T(
Θi

p − bi
Θp

)
(24)

u = xi+1 (25)

Then, (15) can be rewritten as
Au = z (26)

Therefore, the solution of the Equation (26) can be equivalent to

min
u

f (u) = min
u

1
2

uTAu− zTu (27)
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It can be seen that the optimization problem (27) is a quadratic programming problem,
which can be solved by the conjugate gradient method.

Firstly, given an initial point u0, calculate the gradient of the objective function f (u) at
this point u0 and set the first search direction d0 as the initial negative gradient direction

d0 = −∇ f (u0) = −g0 (28)

Search along direction d0 to obtain the next iteration point u1. Calculate the gradient
g1 of f (u) at u1. If ||g1|| 6= 0, use g1 and d0 to construct the second search direction d1,
and search along d1 to obtain point u2. Generally, if the point uk and the search direction dk

are known, we search along dk starting from uk and get the next iteration point

uk+1 = uk + αkdk (29)

where αk is step size, satisfying

αk = argmin
αk

f (uk + αkdk) (30)

Solve (30) to obtain

αk =
(gk)

T
dk

(dk)
T

Adk
(31)

and the gradient gk + 1 of the objective function f (u) at the current iteration point uk + 1 is

gk+1 = ∇ f (uk+1) = gk − αkAdk (32)

Then, a new direction dk + 1 orthogonal to the previous search direction is constructed
by using the linear combination of the previous search direction dk and the gradient gk + 1

of the objective function f (u) at the current iteration point uk + 1

dk+1 = gk+1 + βkdk (33)

According to the conjugation of dk + 1 and dk with respect to A, we get

βk =
(gk+1)

T
gk+1

(gk)
Tgk

(34)

When the iteration ends, we get the solution xi+1 of the x subproblem. The main
computational complexity of the conjugate gradient method comes from the multiplication
of matrix and vector, which is O(N2). Therefore, the computational complexity can be
reduced by using the conjugate gradient method instead of matrix inversion.

To sum up, we introduce the acceleration scheme into the split Bregman iterative frame-
work, and obtain the main steps of the proposed algorithm summarized in Algorithm 1.
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Algorithm 1 The proposed algorithm by combining group sparsity and nonlocal self-similarity.

Input:
measured terahertz data y, observation matrix R, sparsity basis Ψ2D

p , nonlocal self-similarity
operator Ψ3D

p .
Initialization:

α0
p = Θ0

p = b0
αp = b0

Θp = 0, µ, λ, γ, estimate an initial image x0.
Loop:

set i = 0 and repeat until
∣∣∣∣∣∣xi+1 − xi

∣∣∣∣∣∣2 < δ

g0 = zi −Axi

d0 = −g0

k = 0
while
αk = (gk)

Tdk

(dk)
T

Adk

uk+1 = uk + αkdk

gk+1 = gk − αkAdk

if
∣∣∣∣∣∣gk+1

∣∣∣∣∣∣< ε , break

βk = (gk+1)
Tgk+1

(gk)
Tgk

dk+1 = gk+1 + βkdk

k = k + 1
return uk+1

xi+1 = uk+1

Θi+1
p = shrink

(
Ψ3D

p xi+1 + bi
Θp, 1/γ

)
αi+1

p = shrink
(

Ψ2D
p xi+1 + bi

αp, 1/λ
)

bi+1
αp = bi

αp + (Ψ2D
p xi+1 − αi+1

p )

bi+1
Θp = bi

Θp + (Ψ3D
p xi+1 −Θi+1

p )

i = i + 1
End Loop
Output: x

3. Experiments and Discussion

The THz-TDS reflection imaging system with a measurement range of 5 × 5 cm was
used in the experiment. The terahertz pulse is generated by the laser with a pulse width
of 100 fs and a repetition rate of 80 MHz. The terahertz beam generated by pump beam is
focused onto the sample; then the beam reflected from the sample is sent to a ZnTe crystal,
where it overlaps with the probe beam. The probe beam is modulated by the terahertz field
and then is guided to the detector [18]. During the imaging process, the sample is moved in
a mechanical grating scan, and the spatial resolution is set to 0.25 mm. By programming the
scan positions determined by the observation matrix, we could easily obtain the proposed
fast terahertz imaging system from a traditional THz-TDS system.

In the experiment, a glass fragment, a metal screw, a wood chip and a stone embedded
in flour with a depth of 10 mm were measured by THz-TDS system at room temperature.
Figure 1a shows the sample placed in a 3.5 cm diameter dish, and Figure 1b presents the
terahertz image of the sample obtained from the reflection of four objects and flour through
full scan imaging process. The terahertz image of the sample is obtained at 0.8 THz and
the number of the full scan pixels is 150 × 150. In the experiment, all parameters are set
empirically. The size of the patches is 8 × 8. The horizontal or vertical distance between
two adjacent patches is 4. The number of best matching patches is set to 10 and the search
window is set to 40 × 40. To quantitatively evaluate the imaging performance of terahertz
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images, peak signal-to-noise ratio (PSNR) [32] and relative l2 norm error (RLNE) [33] are
used as image quality assessment indexes in this paper, which are

PSNR = 10 log10
peakval2

MSE(x, x̂)
(35)

RLNE =
‖x− x̂‖2
‖x‖2

(36)

where peakval denotes the peak value of the terahertz image, and MSE(x, x̂) denotes the
mean square error.

Figure 1. The sample and the terahertz image obtained through full scan imaging process. (a) sample;
(b) terahertz image.

To evaluate the proposed GSNS method, we compare the GSNS with the single sparse
constraint algorithm (SSC) [17], dual sparsity constraint algorithm (DSC) [18] and the
hybrid sparsity model (HSM) [22]. In the experiment, all the methods were compared
using the same observation matrix. The reconstructed terahertz images obtained by the
four methods at different sampling rates are shown in Figure 2. Figure 2a,b show the
reconstructed terahertz images of SSC when the sampling rate (SR) is 20% and 40%, respec-
tively. Figure 2c,d are the terahertz images recovered by DSC with different sampling rates,
Figure 2e,f are the terahertz images obtained by HSM, and the reconstructed terahertz im-
ages of the proposed GSNS are displayed in Figure 2g,h. When comparing Figure 2b,d,f,h,
we can see that HSM and the proposed method can reconstruct the terahertz images with
satisfaction at 40% SR. In particular, the terahertz image obtained by the GSNS has fewer
recovery errors. However, at the same SR, the reconstructed results of DSC and SSC present
some degradation and blurs. When the SR drops to 20%, it can be seen from the areas
marked by circles and squares that the high under-sampling rate leads to a serious partial
loss of the SSC method. For a close-up comparison, we enlarged the areas marked by
squares to evaluate the image quality in Figure 3. It can be seen that the reconstruction
results of DSC and HSM have some fuzzy details. Compared with the other three methods,
the proposed GSNS performs well in preserving image details and edges. The terahertz
image reconstructed by the proposed method is closer to the full scan terahertz image
than the other two methods. Overall, GSNS obtains better results compared with the
comparative methods.

To further demonstrate the effectiveness of the proposed method, in Figure 4 we
present the PSNR and RLNE curves of SSC, DSC, HSM and GSNS with SR from 5% to 50%.
As can be seen from Figure 4, for the terahertz image with different sampling rates, the
proposed GSNS has higher PSNR and lower RLNE values than the other three methods.
The imaging performance of the proposed method is always better than SSC, DSC and
HSM under the same SR.
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Figure 2. Reconstruction images of different methods for the sample at different sampling rates, and
the areas marked by circles and squares are selected for detail comparison. (a) SSC at SR = 20%;
(b) SSC at SR = 40%; (c) DSC at SR = 20%; (d) DSC at SR = 40%; (e) HSM at SR = 20%; (f) HSM at
SR = 40%; (g) GSNS at SR = 20%; (h) GSNS at SR = 40%.
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Figure 3. Reconstruction images of different methods for the sample at different sampling rates in the
selected areas. (a) SSC at SR = 20%; (b) DSC at SR = 20%; (c) HSM at SR = 20%; (d) GSNS at SR = 20%;
(e) SSC at SR = 40%; (f) DSC at SR = 40%; (g) HSM at SR = 40%; (h) GSNS at SR = 40%.

Figure 4. Comparison of the PSNR and RLNE curves to different sampling rates. (a) PSNR; (b) RLNE.

The above results demonstrated that the proposed algorithm can achieve better re-
construction results. Furthermore, in order to verify the computational efficiency of the
proposed algorithm, 40% SR data are used to reconstruct the terahertz image. The compu-
tation times before and after improvement are 228.1 s and 94.7 s respectively, which shows
the effectiveness of the proposed algorithm.

4. Conclusions

In this paper, we present a fast terahertz imaging model which integrates group
sparsity and nonlocal self-similarity constraints for better terahertz image reconstruction.
The advantage of the proposed method is that it utilizes the structure similarity and sparsity
of image patches in both two-dimensional and three-dimensional space to reconstruct the
terahertz image. Moreover, an acceleration scheme based on conjugate gradient method
is proposed to overcome the high computational costs of the proposed terahertz imaging
model. Compared with existing methods, the experimental results show that the proposed
method has better performance in detail clarity and edge preservation of the reconstructed
terahertz images.
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