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Epigenetic aging and perceived psychological stress in old age
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Adverse effects of psychological stress on physical and mental health, especially in older age, are well documented. How perceived
stress relates to the epigenetic clock measure, DNA methylation age acceleration (DNAmAA), is less well understood and existing
studies reported inconsistent results. DNAmAA was estimated from five epigenetic clocks (7-CpG, Horvath’s, Hannum’s, PhenoAge
and GrimAge DNAmAA). Cohen’s Perceived Stress Scale (PSS) was used as marker of psychological stress. We analyzed data from
1,100 Berlin Aging Study II (BASE-II) participants assessed as part of the GendAge study (mean age= 75.6 years, SD= 3.8 years,
52.1% women). In a first step, we replicated well-established associations of perceived stress with morbidity, frailty, and symptoms
of depression in the BASE-II cohort studied here. In a second step, we did not find any statistically significant association of
perceived stress with any of the five epigenetic clocks in multiple linear regression analyses that adjusted for covariates. Although
the body of literature suggests an association between higher DNAmAA and stress or trauma during early childhood, the current
study found no evidence for an association of perception of stress with DNAmAA in older people. We discuss possible reasons for
the lack of associations and highlight directions for future research.
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INTRODUCTION
Greater overall psychological stress can have adverse effects
on health and is associated with higher mortality [1]. Its
association with cardiovascular disease [2], upper respiratory
disease [3], symptom severity of rheumatoid arthritis [4],
depressive symptoms [5] and other phenotypes [6, 7] is well
documented. Several pathways have been proposed to link
psychological stress with morbidity. First, psychological stress
has been shown to result in poor health decisions and promote
impulsive decision-making [8] such as increased consumption
of nicotine or alcohol [9], other substance abuse [10] and sleep
deprivation leading to an increased risk for numerous diseases
[11]. Second, two major endocrine response pathways mediate
the physiological response to psychological stress. First,
catecholamines released by the sympathetic-adrenal-
medullary (SAM) system affect the cardiovascular, the pulmon-
ary, and the immune system and prepare the body to fight or
flee if threatened [12]. Second, the hypothalamic-pituitary-
adrenocortical axis (HPA) regulates the level of glucocorticoids
which have immunosuppressive and anti-inflammatory effects
and promote gluconeogenesis [13, 14]. Both systems, if
activated repeatedly and for long durations, are known to
increase the risk for disease [15–17]. This is partially mediated
via downregulation of glucocorticoid receptors and a chronic
state of inflammation [18].

Furthermore, the reactivity of the HPA axis to psychological
stress increases with age [19]. Despite poorer physiological
regulation in the face of stressors in older age, older adults might
have advantages in both the overall exposure as well as emotional
response to stressors [20, 21]. For instance, older adults are able to
evade stressful situations more successfully than younger adults
by using secondary coping or avoidance strategies [21, 22].
Importantly, however, in situations where older adults are
confronted with an unavoidable stressor, these emotional
advantages may become unfavorable in the face of physiological
vulnerability, e.g., a disabling disease [21, 23].
How psychological stress impacts physical and mental health

depends on numerous modifiable and non-modifiable factors [6].
Especially poorer health seems to increase vulnerability to stress-
induced disease in older age [6]. One way of objectifying age-
dependent biological vulnerability is through the measurement of
biomarkers of aging. One promising biomarker in this domain is
the determination of DNA methylation age (DNAm age) and, in
particular, its deviation from chronological age, DNAm age
acceleration (DNAmAA) [24]. Both markers are estimated from
epigenetic clocks that utilize data on the methylated fraction of
specific cytosin-phosphat-guanine (CpG) sites. Several such
epigenetic clocks are available which differ in the way they were
designed [25]. Epigenetic clocks of the first generation, e.g., 7-CpG
clock, Horvath clock, and Hannum clock, were trained to predict
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chronological age. In contrast, second-generation clocks made use
of phenotypic data that were used to identify and weigh the
incorporated CpG sites. Studies aiming to reveal which phenotypic
domains are represented best by each of the different epigenetic
clock measures yielded partly different results in the past, and are
still ongoing. To further explore similarities and differences
between the epigenetic clocks and their characteristics, we chose
to include and directly compare five different epigenetic age
measures in this work allowing a comparison. Previous work has
suggested that an association between psychological stress and
DNAm age appears plausible due to the fact that 85 of the 353
CpG sites of the Horvath clock (and possibly CpG subfractions of
other DNAm clocks as well) are located within glucocorticoid
response elements (GRE) [26, 27]. These DNA sequences represent
binding sites to glucocorticoid receptors and were shown to be at
or near to CpG sites that were especially affected by glucocorti-
coid dependent demethylation mediated by demethylating
enzymes and decreased expression of DNA methyltransferase
[28, 29]. Furthermore, the number of CpG sites within GRE’s
exceeds the amount that would be expected by chance [29].
Additionally, epigenetic changes were suggested to be a

possible link [30, 31] between adverse childhood experiences
and mortality as well as higher morbidity burden in late life [32]. It
was proposed that this link could be mediated by health-adverse
coping mechanisms (activated as a result of high levels of anxiety
and depression) that are associated with adverse childhood
experiences [33]. Some of these coping strategies, such as
smoking, alcohol abuse and and a high BMI resulting from
unhealthy eating habits, were shown to be associated with
DNAmAA in some studies [34–36]. However, these results were
not unequivocally replicated [37–39] (reviewed in ref. [40]).
Previous studies that examined the relationship between

DNAmAA and stress operationalized stress as low socioeconomic
status (SES) [41, 42], (childhood) trauma [26, 43–45], racial
discrimination [46], or exposure to violence [47]. Many previous
studies on the topic focused on changes in DNAm age during
childhood as this period is known to be particularly prone to
stress-related epigenetic changes [29].
In contrast, in this work we focus on older age which was

shown to be the second most vulnerable phase in a person’s life
in terms of epigenetics [29]. As epigenetic modifications remain
even after the psychological stimulus has ceased there is the
possibility of cumulating effects on the epigenome exerted by
repeated psychological stressors [29]. Specifically, we analyzed
the association between the amount of experienced stress
(measured by Cohen’s Perceived Stress Scale [PSS] [48]) and
several DNAm age estimators (i.e. the 7-CpG clock [49],
Horvath’s clock [50], Hannum’s clock [51], PhenoAge [34],
GrimAge [52]) in 1100 older adults. While the PSS represents a
well-established marker of perceived stress [48], to our knowl-
edge it has not been investigated in the context of epigenetic
aging before. While we were able to replicate well-established
associations with perceived stress, none of the five epigenetic
clocks analyzed in the current study were associated with the
perception of stress.

METHODS
BASE-II/GendAge study
BASE-II is a longitudinal study that aims to identify factors that promote
healthy aging. Participants were recruited through advertisements in local
newspapers and on public transport in the greater Berlin area, Germany. At
baseline examination (2009–2014), 2171 participants were medically
examined (∼75% aged 60–84 years and ∼25% aged 20–37 years; this
latter, younger group was not considered in the present work). In this
study, we focus on the cross-sectional analysis of 1083 BASE-II participants
of the older age group who were reexamined on average 7.4 years after
baseline as part of the GendAge study. Seventeen additional BASE-II
participants were available for follow-up that were not included in the

medical baseline examination. For a more detailed cohort information at
baseline and follow-up, please refer to Bertram et al. [53], Gerstorf et al.
[54], and Demuth et al. [55].
All participants gave written informed consent. The medical assessments

at baseline and follow-up were conducted in accordance with the
Declaration of Helsinki and approved by the Ethics Committee of the
Charité—Universitätsmedizin Berlin (approval numbers EA2/029/09 and
EA2/144/16). They were registered in the German Clinical Trials Registry as
DRKS00009277 and DRKS00016157.

Measures
Perceived stress. Stress was assessed by eight items of the Perceived
Stress Scale (PSS) that was developed by Cohen, Kamarck and Mermelstein
in 1983 (items 1, 2, 3, 7, 8, 10, 11, and 14 of the original publication [48]).
Participants answered the questions on a scale from 1 (“never”) to 5 (“very
often”). The answers were averaged and z-transformed with R’s “scale”
function for the linear regression analyses. Data on PSS was available for
1006 participants of the GendAge study.

DNA methylation age (DNAm age)
DNAm age was estimated by five epigenetic clocks. The 7-CpG clock was
developed from methylation data obtained through methylation-sensitive
single nucleotide primer extension (MS-SNuPE) from samples collected at
baseline examination of the participants analyzed in this study [49] and
replicated in separate cohorts [56, 57]. For a more detailed description of
the methods used see ref. [58].
Additionally, DNAm age was estimated using Horvath’s clock [50],

Hannum’s clock [51], PhenoAge [34] and GrimAge [52] from methylation
data determined with the “Infinium MethylationEPIC” array (Illumina, Inc.,
USA). All functions to load and process DNAm data are from the R-package
“Bigmelon” [59]. Briefly, outliers were identified with the outlyx function
with a threshold of 0.15 for the myP parameter [60]. Additionally, samples
with a bisulfite conversion efficiency below 80% (as estimated by the bscon
function) were removed. Subsequently, the samples were reloaded with
outliers excluded and normalized with the function dasen. The function
qual was used to determine the extent of change in beta values in each
sample due to normalization. Samples with a root-mean-square deviation
of 0.1 or larger were removed and loading and normalization were
repeated with the new sample set with removed outliers. The raw (not
normalized) DNAm beta-values were uploaded to the DNAm age
estimation website (https://horvath.genetics.ucla.edu/html/dnamage/)
according to the instructions in the manual. On the EPIC array only 512
of the original 513 CpG sites and 64 of the original 71 CpG sites were
available for the estimation of PhenoAge and Hannum’s clock, respectively.
For more information on the protocol used to obtain DNAm data at follow-
up, see ref. [58].

DNAm age acceleration (DNAmAA)
To correct for the well documented association between blood cell
type composition and chronological age, we employed a blood cell
count adjusted model to calculate DNAmAA [37, 61]. It was calculated
as unstandardized residuals of a linear regression analysis of DNAm age
on chronological age and leukocyte cell distribution (neutrophils,
monocytes, lymphocytes, and eosinophils in G/l). Blood cell composi-
tion was measured by an accredited clinical biochemistry laboratory
(MVZ Labor 28 GmbH, Berlin, Germany) using automated standard
methods (flow cytometry).

Morbidity, depressive symptoms, and frailty measure
Morbidity burden was assessed using a modified version [62] of Charlson’s
morbidity index [63]. Symptoms of depression were recorded with the Center
for Epidemiological Studies Depression Scale (CES-D) [64]. A score of 16 or
more points on the 0 to 60 point scale is used to identify individuals at risk for
clinical depression [65] but the full scale was used in this study to make use of
more subtle differences in depressive symptoms as well. Frailty was measured
using Fried’s frailty phenotype [66] that incorporates unintentional weight
loss, self-reported exhaustion, weakness (grip strength), slow walking speed
(timed-up-and-go test), and low physical activity [67].

Covariates
We included the following covariates in all statistical models to account
for potential confounding: Differences between sexes with respect to
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aging [68] and DNAmAA [38, 69], and the effect of psychological stress
on disease [13] are well documented. Therefore, sex was included as
covariate in all regression analyses. In addition, we performed sex-
stratified analyses for all tests. Other covariates included were
information on alcohol consumption (“yes”/“no”) and smoking behavior
(packyears) which were assessed in one-to-one interviews by trained
study personnel. The body mass index (BMI) was calculated using
electronic height and weight measurements (via a “seca 763” measuring
station, SECA, GERMANY). Educational attainment was assessed as
education years until highest degree [70]; this information was available
for 994 participants. Lastly, we controlled for genetic ancestry by using
the first four principal components from a principal component analysis
on genome-wide SNP genotyping data generated in the same
individuals. In brief, these SNP genotype data were generated using
the “Global Screening Array” (GSA) with shared custom content (Illumina,
Inc.). These data were processed and QC’ed using the same workflows
and criteria outlined in ref. [71]. This entailed processing of the raw data,
i.e. clustering and genotype calling from raw intensity data (idat format),
which was performed in GenomeStudio software (v2.0.4; Illumina, Inc.)
using the genotyping module (version 2.0.2). Samples with call rate
<0.95 and p50GC < 0.7 were excluded at this stage. We then used PLINK
software (v1.9) to perform additional QC filtering, i.e. sex checks (--check-
sex 0.25 0.75), strand check (--flip), missing genotype rate (--geno 0.02;
--mind 0.05), Hardy-Weinberg equilibrium (HWE) tests (--hwe 0.000005),
and minor allele frequency (MAF) filtering (--maf 0.01). For determining
pairwise allele sharing (to identify cryptic relatedness), we used an LD-
pruned set of markers (--indep-pairwise 1500 150 0.2). Pairwise allele-
sharing IBD/IBS was determined using (--Z-genome --min 0.1). The LD-
pruned dataset was also used for principal component analysis (PCA;
using PLINK command ‘--pca’) along with the reference dataset of the
1000 Genome Project Consortium Phase 3 to assign ethnic descent
groups using the five 1000 G super-populations by k-nearest neighbor
(k-NN; k= 9) classification (using R-package ‘class’ in R 2.3.2). Only
“European descent” samples were used in the subsequent statistical
analyses; these corrected for the first four ancestry depending principal
components as covariates.

Statistical analyses
All statistical analyses were executed in R 3.6.2 [72] and code is available
from the authors upon request. Linear regression analyses were performed
using the “lm” function, and all figures were produced with the “ggplot2”
package [73].
Participants were only excluded from an analysis if they were missing a

variable required for the respective analysis (available case analysis). We
indicate the number of observations for each analysis individually. A p-
value below 0.05 was considered statistically significant.

RESULTS
Sample characteristics
Cross-sectional data on 1100 participants were available. Included
participants were between 64.9 and 94.1 years old (mean age:
75.6 years, SD= 3.8 years, 52.1% female, Table 1). Perception of
stress, assessed as averaged answer on eight items of Cohen’s
Perceived Stress Scale (PSS), was normally distributed (Fig. 1) and
no sex-difference was found (t-test, p= 0.08, Supplementary Table
1). Men had statistically significant higher DNAmAA in all five
available epigenetic clocks (t-test, p ≤ 0.001, Supplementary Table
1). This sex-difference was reported before in this dataset [74] as
well as in others [38, 69].

Association between Cohen’s PSS and depressive symptoms,
morbidity, and frailty
In a first step, we tested for known associations between
psychological stress and clinical phenotypes. To improve the
interpretability of the PSS, it was z-transformed prior to the
inclusion in linear regression models. The known associations
between stress and depressive symptoms, morbidity and frailty
were also observed in this dataset (Table 2). Specifically, an
increase of one standard deviation on the PSS was associated with
0.3 points higher morbidity index, 0.2 points higher frailty score,
and 0.8 points higher scores on the CES-D, after adjustment for all
covariates. These associations persisted in sex-stratified analyses
and seemed to be particularly pronounced in women, as the
morbidity index and the CES-D showed a higher effect size in this
subgroup compared to men (Supplementary Table 2).

Relationship between DNAmAA and Cohen’s PSS
The potential relationship between Cohen’s PSS and the various
DNAmAA parameters was assessed by multiple linear regression
models. The fully adjusted model included sex, smoking, alcohol,
BMI, education, and genetic ancestry as covariates (Model 3).
While weak associations were observed in the unadjusted

(Model 1) and sex-adjusted model (Model 2) between PSS and
Horvath’s DNAmAA (ß= –0.27, SE= 0.13, p= 0.04, n= 976, Model
2) and PSS and PhenoAge DNAmAA (ß=−0.37, SE= 0.17,
p= 0.04, n= 976, Model 2), these were no longer significant in
the full model (Model 3, p > 0.2, Table 3). Although no statistically
significant association between PSS and 7-CpG, Hannum’s and
GrimAge DNAmAA were found in unadjusted linear regression

Table 1. Cohort characteristics of 1100 BASE-II participants of the GendAge study.

n % mean sd min max

Chronological age (years) 1100 75.60 3.77 64.91 94.07

Sex (female) 573 52.09

Smoking (packyears) 1019 9.79 17.61 0.00 150.00

BMI 1098 26.97 4.25 17.17 49.68

Education (years) 994 14.42 2.92 7 18

Alcohol intake (yes) 912 83.14

Frailty score 1087 0.76 0.87 0.00 4.00

CES-D 1089 13.55 3.71 0.00 35.00

Morbidity index 954 1.39 1.54 0.00 9.00

7-CpG clock DNAmAA 1071 0.03 6.42 −24.93 34.48

Horvath’s clock DNAmAA 1067 0.03 4.04 −12.31 23.45

Hannum’s clock DNAmAA 1067 0.01 3.89 −10.80 28.57

PhenoAge DNAmAA 1067 0.04 5.42 −16.54 25.80

GrimAge DNAmAA 1067 0.03 3.39 −10.82 12.84

PSS 1006 2.08 0.64 1.00 4.50

BMI body mass index, CES-D Center for Epidemiologic Studies Depression Scale, DNAmAA DNA methylation age acceleration, PSS perceived stress scale.
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models, the coefficients pointed in the same negative direction.
This was true for the sex-adjusted model (Model 2) as well, except
for the relationship between PSS and GrimAge DNAmAA, were the
beta-coefficient was slightly positive (ß= 0.013, p= 0.899, Model
2). Like the results reported for the full dataset, sex-stratified
subgroup analyses revealed no statistically significant associations
after adjustment for covariates (Supplementary Table 3).

DISCUSSION
In this study, we report data on perceived stress as assessed by the
Cohen’s PSS and the biomarker DNAmAA as derived from five
different epigenetic clocks in a comparatively large sample of
older adults. Overall, we found no noteworthy associations
between our marker of psychological stress and DNAmAA
estimated by any of the five employed epigenetic clocks.
While our study is not the first on the topic, comparability with

previous work is limited due to substantial differences in cohort
characteristics and in quantification of stress as well as DNAmAA.
Most previous studies focused on associations between retro-
spectively assessed life adversities during childhood and DNAmAA

in comparatively young cohorts (with a mean age of 50 years or
younger, reviewed in ref. [32]). A particular impact of psycholo-
gical stress that was (retrospectively remembered as having been)
experienced during childhood and adolescence on epigenetic
changes was shown and explained by an high vulnerability to
epigenetic changes during early age [29].
In contrast, only very few studies examined psychological stress

during adulthood and its impact on epigenetic aging. In these
studies, stress was most often operationalized as low socio-
economic status (SES) (overview in Supplementary Table 4).
Similar to childhood and adolescence, older adults were reported
to be especially prone to stress-related epigenetic changes, mostly
due to a decline of the epigenetic maintenance system [29]. For
instance, low income was associated with higher DNAmAA (using
Hannum’s clock estimate) in a cohort of 100 black women (mean
age 48.5 years) [39]. In a different study, Fiorito and colleagues
found several measures for low socioeconomic status in a meta-
analysis of three cohorts from Italy, Australia and Ireland
(n= 5111, mean age: 57.28 years) to be associated with Horvath’s
and Hannum’s DNAmAA [75]. In contrast to these results, Hughes
and colleagues found no association between current SES and

Table 2. Multiple linear regression analyses of morbidity index, frailty score or CES-D on Cohen’s PSS in older BASE-II participants of the
GendAge study.

Dependent Variable Model Estimate SE p-value n

Morbidity index 1 0.222 0.052 <0.001 *** 874

2 0.222 0.052 <0.001 *** 874

3 0.259 0.055 <0.001 *** 752

Fried’s frailty phenotype 1 0.182 0.027 <0.001 *** 995

2 0.178 0.027 <0.001 *** 995

3 0.181 0.029 <0.001 *** 852

CES-D 1 0.888 0.112 <0.001 *** 997

2 0.873 0.112 <0.001 *** 997

3 0.842 0.119 <0.001 *** 854

Linear regression models were adjusted for covariates. Model 1: no adjustment; Model 2: chronological age, sex; Model 3: Model 2 + smoking (packyears),
alcohol (yes/no), BMI, and education.
SE standard error, CES-D Center for Epidemiologic Studies Depression Scale.
***p < 0.001.

Fig. 1 Distribution of Cohen’s PSS in GendAge participants (n= 1006). Please note that items four and six (respectively items seven and ten
of original publication by Cohen and colleagues) were reversed before inclusion in the final PSS. PSS Perceived Stress Scale.
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Horvath’s or Hannum’s DNAmAA in a cohort of 1099 participants
with a mean age of 58.4 years [76]. The same was true for women
assessed in two waves of the ALSPAC study (mean age: 28.7 and
47.4 years) and the NSHD study (mean age: 53.4 years) and
Horvath DNAmAA [77]. To our knowledge, the oldest cohort
analyzed in this context consisted of 490 women and men
between 50 and 87 years of age (mean age: 62.2 years) [42]. This
study by McCrory and colleagues is the only one that employs not
only first-generation clocks (trained to predict chronological age)
but also examines PhenoAge, a second-generation clock that aims
to predict biological (phenotypic) age measures [34]. Still, no
association was observed between SES (assessed as life course
social class trajectory, education, and income) and DNAmAA
derived from PhenoAge, Horvath’s clock or Hannum’s clock and
SES in this study, either [42].
The lack of a statistically significant association between PSS

and epigenetic aging in this study might be the result of several
factors. First, the well-established stress marker employed here
assesses perceived stress over the course of the last month before
the examination. Although cortisol-mediated short-term changes
in the epigenome are known, they might not be distinctive
enough to translate into a detectable change in DNAmAA. It is
unclear how the PSS corresponds with chronic stress in our cohort,
which is often made responsible for the stress-associated adverse
effects on physical and mental health [26, 27]. However, we were
able to show that the PSS is associated with several relevant
clinical phenotypes, such as morbidity burden, frailty, and
symptoms of depression. Therefore, it seems likely that the stress
marker used here does serve as a proxy of more longterm
psychological stress of our participants. Second, we cannot rule
out that we may have missed covariates of relevance in our
regression analyses. However, this is a limitation applicable to
most studies examining epigenetic markers. Furthermore, we note
that we performed a detailed literature search on the topic and
did not identify any additional covariates of relevance in the
screened papers. Third, we cannot rule out the presence of
selection/recruitment bias. The sample analyzed here is character-
ized by its above-average health status at baseline [53, 74].
Similarly, the average PSS scores reflected a generally low stress
level, which might has impacted our results. Although we can only
speculate on the reasons for these findings, a high stress level

seems to be among the plausible reasons that would prevent one
from voluntarily participating in a study. Finally, the lack of
statistically significant findings could be the result of our sample
size. However, it is unlikely that a higher number of analyzed
participants would reveal clinically relevant associations as our
sample size was shown to be sufficient to detect even small effect
sizes in a power analysis (f2= 0.02, power= 0.8, alpha= 0.05).
Nevertheless, it would be of interest to repeat this analysis in an
even larger sample of older participants who perceive a higher
level of stress.
Strengths of this study include the usage of a well-established

instrument to measure perceived stress (PSS), and the application
of five different DNAm algorithms (both first- and second-
generation) based on two molecular methods (MS-SNuPE and
EPIC array). Despite the lack of a significant association here,
further studies using individuals in a comparable age range are
needed to better understand the short- and long-term con-
sequences of acute and chronic psychological stress on biological
and epigenetic age. In addition, it may be interesting to analyze
biological and epigenetic age as a potential risk factor for stronger
stress responses in daily life. This could help explain individual
differences among participants which we observe as association
between perceived stress and several health-relevant clinical
outcomes.

CONCLUSION
Although previous studies suggest an effect of childhood trauma
on DNAmAA, the situation is less clear on the potential association
between psychological stress and DNAmAA during adulthood and
advanced age. In the nearly 1000 individuals aged 64.9 years and
above, we did not observe evidence for a noteworthy association
between psychological stress and epigenetic aging as measured
by five different epigenetic clocks.

DATA AVAILABILITY
Due to concerns for participant privacy, data are available only upon reasonable
request. Please contact Ludmila Müller, scientific coordinator, at lmueller@mpib-
berlin.mpg.de, for additional information.

Table 3. Multiple linear regression analyses of Cohen’s PSS on DNAmAA of five epigentic clocks and covariates.

Model Estimate SE p-value n

7-CpG DNAmAA 1 −0.309 0.205 0.133 980

2 −0.257 0.202 0.204 980

3 −0.168 0.228 0.462 773

Horvath’s DNAmAA 1 −0.290 0.129 0.025 * 976

2 −0.269 0.129 0.037 * 976

3 −0.185 0.146 0.205 771

Hannum’s DNAmAA 1 −0.093 0.125 0.457 976

2 −0.059 0.122 0.632 976

3 0.034 0.140 0.807 771

PhenoAge DNAmAA 1 −0.390 0.174 0.025 * 976

2 −0.366 0.173 0.035 * 976

3 −0.121 0.186 0.518 771

GrimAge DNAmAA 1 −0.049 0.108 0.655 976

2 0.013 0.099 0.899 976

3 0.024 0.105 0.816 771

Model 1: no covariates; Model 2: sex; Model 3: sex, smoking (packyears), alcohol intake (yes/no), BMI, education, and genetic ancestry.
DNAmAA DNA methylation age acceleration, SE Standard Error.
*p < 0.05.
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