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� Morphological localization of
trehalase in vivo in the mouse brain.

� Exclusive expression of trehalase in
neurons.

� Astrocytes do not express trehalase.
� A strong trehalase-immunoreactivity
of trehalase was found in the
perikarya and dendrites of neurons.

� Trehalase levels in neurons should
have a physiological significance.
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The non-reducing disaccharide trehalose is biosynthesized in several species but not in vertebrates.
However, trehalase, the enzyme required for its cleavage, has been observed in different mammalian
organs. Even in humans, trehalase was detected in the gastrointestinal tract and the kidney. Trehalase
is an intrinsic glycoprotein of the small intestine and kidney that transports trehalose and hydrolyses
it to two glucose molecules. To our knowledge, no information is available about the in vivo distribution
and localization of trehalase in the mammalian brain. Here, we report the occurrence and distribution of
trehalase in vivo in the mouse brain using Western blotting and immunohistochemical techniques. Using
an antibody against trehalase, we demonstrated that the enzyme showed a band with a molecular mass
of approx. 70 kDa in the hippocampus, cerebral cortex, cerebellum and olfactory bulbs. Strong trehalase
immunoreactivity was found in the perikarya and dendrites of neurons located in the hippocampus, cere-
bral cortex, Purkinje cells and mitral cells. Interestingly, Purkinje cells of the cerebellum showed higher
immunoreactivity than neurons in the hippocampus and cerebral cortex. The distribution of trehalase
appeared to be mainly related to neurons and was not detected in astrocytes. Independent of the pres-
ence of trehalose in neurons, the trehalase levels in neurons should have physiological significance.
Investigating whether the interactions between trehalose and trehalase act on brain energy metabolism
or have other not-yet-identified effects would also be interesting.
� 2019 The Authors. Published by Elsevier B.V. on behalf of Cairo University. This is an open access article

under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Introduction does not occur in vertebrates and mammals [1]. This sugar was
Trehalose is a non-reducing and conserved disaccharide in
prokaryotes, eukaryotes and invertebrates, but its biosynthesis
first described in the haemolymph [2] and muscles of insects as a
source of energy during flight [3]. Trehalose exhibits specific phys-
ical properties, such as high chemical stability and strong resis-
tance to cleavage by glucosidases. Recent data demonstrate that
trehalose can act as a molecular chaperone conferring cell resis-
tance against oxidative stress, heat and dehydration. Furthermore,
trehalose has been shown to be capable of reducing the amyloid
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formation caused by insulin in vitro [4] and attenuating beta amy-
loid deposition associated with AD pathology [5,6]. Trehalose can
also ameliorate pathological features of Huntington’s disease in
mouse models [6–8], delay the progression of the amyotrophic lat-
eral sclerosis (ALS) [9] and reduce retinal degeneration upon lyso-
somal hydrolase deficiency [9]. Trehalose reduced accumulation of
misfolded proteins, such as, polyglutamine aggregates, mutant
SOD1 [10,11], synuclein [12–14], prion protein [15,16], TDP-43
[17]. In addition trehalose also acts as an anti-oxidant and anti-
inflammatory molecule [18–21]. Lotfi et al. [22] elegantly showed
that trehalose induces autophagy in the retina and increases the
removal of autophagic vacuoles in a murine model of brain
mucopolysaccharidosis IIIB. Mounting experimental evidence sug-
gests that trehalose modulates pathophysiological events through
multiple processes and may prevent neurodegenerative diseases
by stabilizing proteins and promoting autophagy [23]. Recently
Mardones et al. [24] have shown that trehalose inhibits cellular
import of glucose through SLC2A (GLUT) transporters, generating
a starvation-like state that stimulates autophagy. In addition to
the autophagy-induction, the effects of trehalose might be exerted
through microbiota-gut-brain signaling, mostly that gut micro-
biota play a central role on many physiological systems, including
the CNS [25]. However, further studies would be needed to eluci-
date the mechanism underlying how trehalose reaches the cells
and activates autophagy in the brain. Almost, trehalose has been
considered generally regarded as safe by the FDA and is currently
being tested in several clinical trials as an autophagy modulator.
All of these properties make this disaccharide very attractive as a
potential therapeutic strategy for many neurodegenerative
diseases.

Intriguingly, vertebrates do not synthetize trehalose, even
though they express significant amounts of trehalase [2]. Previous
data from Ruf et al. [26] showed that trehalases are relatively sim-
ilar in mammals and yeast and can be induced under oxidative
stress and starvation [26]. In addition, deletion of yeast trehalase
increases the vulnerability of cells to heat shock compared with
that of wild-type cells [27].

As already mentioned, trehalase constitutes an intrinsic
glycoprotein of the small intestine and renal membranes in
animals [28–31] and is involved in sugar transport across the
brush-border membranes in the kidney and hydrolysis of ingested
trehalose in the intestine [31]. In fact, people exhibiting intestinal
trehalase deficiency suffer from diarrhoea after consuming prod-
ucts containing trehalose, such as mushrooms [32]. In addition,
the presence of trehalase in urine was recently demonstrated to
be a specific index of renal tubular deficiency [33]. Furthermore,
the activity of trehalase was elevated in patients with diabetes
mellitus and rheumatoid arthritis [34–37] and [41–43].

To our knowledge, no information is available about the in vivo
distribution and localization of trehalase in the brain. Here, we
report the in vivo occurrence and distribution of trehalase in the
mouse brain using Western blotting and immunohistochemical
techniques.
Material and methods

Animals

All animal experiments were performed as approved by the Policy
on the Use of Animals in Neuroscience Research, the Policy on Ethics
of the Society for Neuroscience, the Federal Guidelines and the
European Communities Council Directive (89/609/EEC), and the local
veterinary administration (approval file number: FU/1045). Male
C57BL/6 mice aged 9–12 weeks were purchased from Janvier Labs
(France). Mice were maintained under a standard 12:12 light/dark
cycle with 12 h of light and 12 h of darkness. Animals were kept at
constant room temperature with food and water available ad libi-
tum. Tissue sampling was carried out when animals were sacri-
ficed under deep anaesthesia.

Immunofluorescence

Mice (n = 12) were anaesthetized with an overdose of pentobar-
bital (100 mg/kg i.p.) and were perfused transcardially with saline
followed by paraformaldehyde solution (4% in 0.02 M phosphate-
buffered saline (PBS)). Brains were cut into 12 lm thick sections
in the coronal plane on a cryostat. For immunofluorescence, sec-
tions were treated for 1 h with PBS containing 5% normal goat
serum (NGS; Sigma, Germany). Thereafter, sections were incubated
with primary antibodies at 4 �C for 24 h. Mouse monoclonal anti-
bodies raised against trehalase (Santa Cruz/sc-390034, Heidelberg,
Germany), rabbit monoclonal anti-NeuN (Cell Signaling, Germany),
and mouse monoclonal anti-GFAP (Sigma, Germany) were used.
After several washes in 0.1 M PBS, sections were incubated with
Alexa Fluor 488- or 568-conjugated anti-mouse IgG (1:200, 2 h,
in 0.1 M PBS; Molecular Probes, Eugene, Germany). After rinsing
with PBS, the sections were mounted in Dako fluorescent mount-
ing medium containing DAPI (Dako, Hamburg, Germany). For the
assessment of non-specific immunostaining, alternating sections
from each experimental group were preincubated for 1 h with
the corresponding blocking peptide (Sigma, Heidelberg, Germany).
To validate the specificity of the antibody raised against trehalase,
histological sections from the intestine and kidney were used as
positive controls (see Fig. 1). Small blocks of kidney and intestine
were removed from paraformaldehyde-perfused mice (n = 3) and
sectioned at a thickness of 12 mm. The sections were washed thor-
oughly with PBS and incubated with anti-trehalase IgG (1:250).
Digital illustrations

Fluorescent images were acquired using an Axio-Cam digital
camera mounted on a Zeiss microscope (Carl Zeiss, Jena, Germany).
Single fluorescent images of the same section were digitally super-
imposed. For semiquantitative densitometric analyses of the
immunoreactions, images were digitized using NIH ImageJ soft-
ware (Image Processing and Analysis in Java, developer Wayne
Rasband, USA). Regions of the hippocampal formation, cortex, cere-
bellum and olfactory bulbs were selected individually, and the rel-
ative optical density (rel. O.D.) to background staining was
measured within selected areas. Subsequently, the values were
averaged for each animal (7 to 10 sections per animal).
Preparation of tissue and Western blotting

Mice (n = 6) were anaesthetized with an overdose of pentobar-
bital (100 mg/kg i.p.). Small blocks of the cerebral cortex, cerebel-
lum, hippocampus, olfactory bulbs, kidney and intestine were
processed (blocks of intestine and kidney served as positive con-
trols). Aliquots were stored at �80 �C, and 30 mg of total protein
was used per lane. Samples were resuspended to contain 30 mg of
total protein in loading buffer and heated for 5 min at 95 �C. Sam-
ples were separated on a 4–12% Bis-Tris gel with MES SDS running
buffer using an electrophoresis system (Invitrogen). Gels were run
at 200 V for 55 min and subsequently electroblotted to a PVDF
membrane with iBlot. Blots were blocked with Rotiblock (Carl
Roth, Germany) for 1 h at room temperature to reduce non-
specific binding of antibodies. Anti-mouse monoclonal antibodies
raised against trehalase (Santa Cruz/sc-390034, Heidelberg,
Germany) were used at a 1:500 dilution. b-Actin (Sigma-Aldrich,
USA) (dilution 1:40,000) was used as a control protein, and
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Fig. 1. Sections of kidney (B) and intestine (D) treated with anti-trehalase and DAPI. The sections of kidney treated with anti-trehalase showed clearly defined fluorescence at
the brush border of the proximal tubules (arrows) with no specific fluorescence in the distal tubules (arrowheads). A and C show sections of kidney and intestine, respectively,
assessed by the adsorption of the primary antibody with the corresponding blocking peptide as negative controls. The immunoreactivity was abolished upon preincubation of
trehalase-antibody with the corresponding antigenic peptide. E shows a positive band at 63 kDa in the cerebral cortex, intestine and kidney (Abbr.: TreA; trehalase, (-)TreA,
without trehalase, Ctx; cerebral cortex, Int.; intestine, Kid.; kidney). Scale bar: 80 mm.
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anti-rabbit IgG (Santa Cruz, USA) (1:30,000) and anti-mouse IgG
(P0447 Dako, Germany) (1:30,000) were used as secondary anti-
bodies. To validate the specificity of the antibody raised against
trehalase, mouse trehalase transfected 293 T whole cell lysate
(Sant cruz, Heidelberg, Germany, sc-124274) were used as positive
controls and mouse non-transfected cell lysates (Santa cruz, Hei-
delberg, Germany, sc-117752) were used as negative controls. Sig-
nals were detected using Immobilon Western Chemoluminescent
HRP Substrate (Millipore, Billerica, USA), digitized using a Chemi-
Doc XRS System (Bio-Rad, München, Germany) and analysed using
a luminescence system (Quantity One, ChemiDoc XRS, Bio-Rad,
Hercules, CA, USA). probes from the intestine and kidney were used
as positive controls (see Fig. 1). The optical intensity of all target
signals on any given Western blot (n = 3 to 6) was always normal-
ized to the optical intensity of the actin signal on the same blot.
The normalized signal intensities were then expressed as relative
signal intensities (O.D.). In separate control experiments with the
trehalase antibody, membranes were preincubated for 1 h with
the corresponding blocking peptide (Sigma, Heidelberg, Germany).
Protein expression levels were quantified using gel analysis soft-
ware ImageJ (v1.44p for Windows, National Institute of Health,
Bethesda, USA).
Statistical analysis

Statistical evaluation was performed with GraphPad Prism 3.0
(GraphPad, San Diego, CA, USA). Data are reported as the mean-
s ± SEM of n experiments (n = 6 or more). Means were compared
with One-way analysis of variance (ANOVA) with Bonferronís mul-
tiple comparison test, to estimate differences between examined
groups. Significant differences between means at each time point
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were assessed by unpaired Student’s t-test (*P < 0.05, **P < 0.01 and
***P < 0.001 were considered statistically significant).
Results

This paper addresses the distribution of trehalase in the normal
adult mouse brain. To validate the specificity of the trehalase anti-
body used, histological sections from the intestine and kidney were
used as positive controls. As shown in Fig. 1, the sections treated
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in the dentate gyrus (B-C) and in the Ammońs horn of the hippocampal formation (D-E).
were trehalase-immunoreactive (green). Trehalase immunoreactivity was localized in th
(Abbr.: DG; Dentate gyrus, gc; granule cells, H; hilus, ml; molecular layer; NeuN; neurona
50 mM in C-D-E.
with anti-trehalase showed clearly defined fluorescence in entero-
cytes (Fig. 1C-D) and at the brush border of proximal tubules (with
no specific fluorescence in distal tubules) (Fig. 1A-B). When we
probed homogenates of cerebral cortex, intestine and kidney with
the primary antibody, we detected a protein band at approx.
70 kDa (Fig. 1E). The signals were abolished upon preincubation
of trehalase-antibody with corresponding antigenic peptide.

As shown in Figs. 2–4, the sections of mouse brains treated with
anti-trehalase showed clearly defined fluorescence in the hip-
pocampus, cerebral cortex and cerebellum. Moreover, these results
TreA+ NeuN

TreA+ NeuN

TreA+ NeuN

TreA+ NeuN

B

C

D

E

TreA+Dapi+ BP

Ab

DG

tion treated with anti-trehalase antibody (green) and Dapi (blue). (Ab) The
h the corresponding antigenic peptide. Trehalase immunoreactivity was detected
Granule cells of the dentate gyrus and pyramidal cells of the CA1- and CA3-subfields
e cytosol as well as in dendrites. Neurons have been characterized with NeuN (red).
l marker, TreA; trehalase, BP; blocking peptide). Scale bars: 100 mm in A; 80 mm in B;



H
gc

ml

mf

mf

gc

gc gc

gc
H

ml

Dapi

TreA

TreA TreA+Dapi

TreA

A

B

C

Fig. 3. Details of trehalase immunoreactivity in the dentate gyrus (triple staining with DAPI (blue), NeuN (red) and trehalase (treA- green) in A and double staining with DAPI
(blue) and trehalase (green) in B and C). Trehalase immunoreactivity was seen in the granule cells, including the molecular layer (ml) and the hilus (H). B clearly shows the
trehalase immunoreactivity in the perikarya as well as in the axons of granule cells, the so-called mossy fibres (mf). Scale bars: 100 mm in A, 70 mm in B and 50 mm in C.

L. Halbe, A. Rami / Journal of Advanced Research 18 (2019) 71–79 75
coincided with the biochemical results of Western blotting, indi-
cating the localization of trehalase in the hippocampus, cerebral
cortex and cerebellum (Fig. 5E). No signals were detected in Wes-
tern blots with trehalase antibody, when they were pre-incubated
with the corresponding antigenic peptides (Fig. 5E).

In the hippocampal formation, trehalase antibody showed mod-
erate immunoreactivity (IR) in all parts of the granule cells in the
dentate gyrus (soma, dendrites, axons). However, axons of the
granule cells, the so-called mossy fibres, were detectable only in
the hilus (Fig. 3B-C). Moreover, the hilus of the dentate gyrus
showed stronger trehalase-immunoreactivity than the granular
layer (Figs. 2B & 3A-B). The immunostaining in the molecular layer
of the dentate gyrus was homogeneous and diffuse. Pyramidal
neurons located in the CA1, CA2, CA3 and CA4 subfields exhibited
clear trehalase-IR in their soma and dendrites, but without any
discrete differences between the different hippocampal subfields
(Fig. 2D-E).

Fig. 3A shows representative views of the cerebral cortex.
Immunostaining with the trehalase antibody in the cerebral cortex
showed homogeneous and strong labelling of all cortical layers. In
these layers, most pyramidal cells, their dendrites and the sur-
rounding neuropil were trehalase-immunopositive. Positive axons
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were difficult to detect within the cerebral cortex, but they could
be clearly observed in the corpus callosum (Fig. 4B).

In the cerebellum (Fig. 4C), the molecular layer was immunore-
active, as were the granule and Purkinje neurons. Interestingly, we
observed higher trehalase-IR in the cerebellum compared to other
brain regions (Fig. 4E). In particular, Purkinje cells exhibited the
highest trehalase-IR among all examined areas. In the granular
layer, immunoreactivity was observed in most granule cells.
Immunoreactivity to trehalase was also observed in axon terminals
distributed throughout the cerebellar cortex (Fig. 4B). In the olfac-
tory bulbs (OB), trehalase immunoreactivity was seen in the mitral
cells (Fig. 4D).

Since immunoreactivity was mainly detected in neurons, estab-
lishing whether trehalase exhibits immunoreactivity in astrocytes
was of interest. However, no evidence was found for the co-
existence of trehalase and GFAP in astrocytes in any of the exam-
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ined areas (Fig. 5C-D). Interestingly, trehalase-IR was strictly corre-
lated with the neuronal marker NeuN in all examined areas, which
confirmed the strict neuronal localization (Fig. 5A-B).
Discussion

In mammals, although trehalose biosynthetic genes are missing,
two trehalose-hydrolysing enzymes are detectable. These enzymes
act as intrinsic glycoproteins of the intestine and renal brush-
border membranes. Until now, intestinal trehalase was known to
be the sole hydrolase that is capable of cleaving trehalose, and in
this context, deficiency in its catalytic activity leads to severe diges-
tive disorders in mammals. Individuals with trehalase deficiency
suffer abdominal pain after consuming foods containing trehalose
[32]. The emerging symptoms include, for instance, bloating,
abdominal pain and diarrhoea. These symptoms can be abolished
upon treatment with the probiotic Saccharomyces boulardii, which
can deliver trehalase in to the gastrointestinal tract [38-40].

The fact that trehalase is expressed in the small intestine of sev-
eral mammalian species, although these species do not synthesize
trehalose, is at the same time fascinating and not surprising. This
finding is not surprising because mammals, including humans,
can use trehalose as nutrition [35]. Lotfi et al. [22] recently reported
a positive correlation between trehalose in food consumption and
brain bioavailability of trehalose in mice. In addition, mammals
express trehalase during gestation, and the highest concentrations
are reached after parturition [39], suggesting that trehalase might
be an important enzyme in the early stages of life [39].
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Nevertheless, no information was available about the expres-
sion and distribution of trehalase in the nervous system. Here,
we report on the expression of trehalase in the hippocampus, cere-
bral cortex, cerebellum and olfactory bulbs of mice. Trehalase
immunoreactivity was found in the perikarya, dendrites and axons
of neurons, with higher expression in Purkinje neurons compared
to that in the other brain areas. Moreover, the distribution of treha-
lase appears to be exclusively related to neurons; trehalase was not
detected in astrocytes. The function of the enzyme in these loca-
tions is not known. On the basis of the fact that trehalase localizes
in neurons but not in astrocytes, Martano et al. [44] suggest the
existence of a novel neuro-glia metabolic pathway [44].

Recently, Mayer et al. [45] reported that trehalose transport in
hepatocytes is carrier-mediated and that the Glut8 transporter is
indispensable for trehalose-mediated autophagy [45]. Interest-
ingly, trehalase and Glut8 exhibited the same cellular distribution
and are both expressed in neurons and not in glial cells. Thus, the
co-existence of trehalase and Glut8 in neurons should have, to
some extent, functional importance.

Interestingly, Chen et al. [46] have shown that trehalase plays
an important role in the maintenance of neuroepithelial stem cells
in the Drosophila optic lobe. Loss of trehalase function causes neu-
roepithelial damage and a drastic reduction in precursor cell den-
sity [46]. The authors also showed that exogenous glucose was not
able to compensate for the loss of trehalase. This finding indicates
that trehalase may regulate neuroepithelial maintenance and dif-
ferentiation independently of its hydrolase activity.

Martano et al. [44] were the first to detect trehalose in rodent
hippocampus and showed that trehalose influences the morphol-
ogy of neurons by increasing dendritic arborization during neu-
ronal maturation [44]. These authors have suggested that
neurons are the main consumers of trehalose, but the source of tre-
halose was unclear.

Interestingly, human trehalase increased the vulnerability of
yeast to various stressors, such as heat shock, oxidative stress,
and osmotic stress, resulting in cell death [47]. These results sug-
gest that human trehalase is a stress-response protein in the kid-
ney rather than being involved in the utilization of exogenous
trehalose [47].
Conclusions

The function of trehalase in the nervous system is not known;
however, mammalian trehalase may also have hydrolase-
independent functions and perhaps play a role in the maintenance
and differentiation of cells during brain development. Questions
concerning the fate of trehalose in neurons expressing trehalase
and the function of trehalase in neurons are important. Indepen-
dent of the presence of trehalose in neurons, the trehalase levels
in neurons should have physiological significance. Furthermore,
investigating whether the interactions between trehalose and tre-
halase act on brain energy metabolism or have other not-yet-
identified effects would also be interesting.
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