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Initially thought to only provide mechanical support for the underlying blood vessels, perivascular adipose tissue (PVAT) has now
emerged as a regulator of vascular function. A healthy PVAT exerts anticontractile and anti-inflammatory actions on the
underlying vasculature via the release of adipocytokines such as adiponectin, nitric oxide, and omentin. However,
dysfunctional PVAT produces more proinflammatory adipocytokines such as leptin, resistin, interleukin- (IL-) 6, IL-1β, and
tumor necrosis factor-alpha, thus inducing an inflammatory response that contributes to the pathogenesis of vascular diseases.
In this review, current knowledge on the role of PVAT inflammation in the development of vascular pathologies such as
atherosclerosis and hypertension was discussed.

1. Introduction

Cardiovascular diseases (CVD) have been widely known for
decades as the leading cause of mortality worldwide. Accord-
ing to the World Health Organization (WHO), in 2019, an
estimated 17.9 million deaths due to CVD were recorded,
representing 32% of global deaths [1]. This alarming situa-
tion raises the importance of investigating the pathophysiol-
ogical aspects of CVD. Perivascular adipose tissue (PVAT)
surrounds most blood vessels and has been implicated in
the pathophysiology of CVD due to its proximity and cross-
talk with the underlying vasculature, with PVAT inflamma-
tion suggested to be contributing to the development of
vascular diseases. A link between PVAT, inflammation, and
CVD was first discovered two decades ago when a study
showed an increase in leukocyte infiltration in the PVAT in
response to coronary angioplasty [2]. This signifies the role

of PVAT inflammation in the pathophysiology of CVD and
as a potential future therapeutic target.

2. Perivascular Adipose Tissue

PVAT consists of adipocytes that surround most systemic
blood vessels, except the cerebral vasculature [3]. Structur-
ally, PVAT consists of adipocytes, fibroblasts, stem cells, lym-
phocytes, and macrophages. The characteristics of PVAT
differ in different anatomical sites. For example, thoracic
aorta PVAT (tPVAT) and abdominal aorta PVAT (aPVAT)
are two subtypes of PVAT which possess different pheno-
types and functions. In rodents, tPVAT’s characteristics are
more similar to brown adipose tissue (BAT), while aPVAT
is phenotypically a mixture of white adipose tissue (WAT)
and BAT, whereas in humans, coronary PVAT’s characteris-
tics are more similar to WAT [4–6]. tPVAT is mainly
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involved in lipolysis and heat generation and facilitates vas-
cular relaxation via adipokine release, whereas aPVAT is
involved in lipid storage and cytokine secretion and contains
more macrophages and immune cells [7]. Hence, aPVAT is
regarded to be more prone to proinflammatory activity and
is proatherogenic compared to tPVAT.

Studies have shown that each type of adipocyte is derived
from a specific precursor and is differentiated at separate
times during embryogenesis [8, 9]. Most white adipocytes
are differentiated from Myf5+ and PAX3+ precursors or
Myf5−/Pax3+, while brown adipocytes are derived from
paraxial mesoderm Myf5+/Pax3+/Pax7+/En1+, a common
precursor of myocytes [10]. Peroxisome proliferator-
activated receptor- (PPAR-) γ is a transcription factor that
is involved in the regulation of gene expression and differen-
tiation of adipocytes [11]. Deletion of PPAR-γ during BAT
adipogenesis impairs PVAT development and increases local
inflammation, which often leads to the progression of ather-
omatous plaque and myocardial injury in vivo [12, 13]. The
activation of PPAR-γ has been shown to attenuate arterial
stiffening and reduce inflammatory and oxidative stress in
the PVAT of obese mice [14]. These findings highlight the
significant role of PPAR-γ in PVAT in modulating inflam-
mation and risk of vascular diseases.

Although PVAT was initially regarded as a structural
support organ for the vasculature, recent findings have
demonstrated its physiological importance, especially in
regulating vascular tone and function [15]. In healthy sub-
jects, PVAT functions as an endocrine and paracrine organ
that secrets more anti-inflammatory, antiatherogenic, and
vasorelaxant adipokines such as adiponectin, omentin, vas-
pin, angiotensin 1-7, methyl palmitate, and nitric oxide
(NO), which contribute to its anticontractile, anti-inflam-
matory, and antiatherogenic actions [16, 17]. However, in
the presence of vascular diseases such as hypertension, ath-
erosclerosis, and obesity, PVAT becomes dysfunctional. A
dysfunctional PVAT secretes less anti-inflammatory adipo-
cytokines and more proinflammatory adipocytokines such
as leptin, interleukin- (IL-) 6, tumor necrosis factor-alpha
(TNF-α), and monocyte chemoattractant protein-1 (MCP-
1) [18, 19]. These trigger inflammatory responses that lead
to vascular dysfunction and an increased risk of developing
CVD (Figure 1).

3. PVAT-Derived Anti-
Inflammatory Adipocytokines

Adiponectin is one of the most abundant adipokines secreted
by PVAT with anticontractile and anti-inflammatory effects
on the vascular wall. Adiponectin acts via two types of recep-
tors: adiponectin receptor 1 (AdipoR1) and adiponectin
receptor 2 (AdipoR2) [20]. Adiponectin exerts its anti-
inflammatory effects by decreasing the expression of proin-
flammatory cytokines such as IL-6 and TNF-α and suppress-
ing the production of cellular adhesion molecules by
inhibiting the nuclear factor kappa-B (NF-κB) pathway
[21]. Moreover, hypoadiponectinemia results in endothelial
dysfunction, and this is mediated by Nod-like receptor
family pyrin domain-containing 3 (NLRP3) inflammasome

activation [22]. Adiponectin knock-out mice showed an
increase in the gene expression of inflammatory markers
such as TNF-α and MCP-1. This further proves the anti-
inflammatory action of adiponectin [23].

Omentin secreted by PVAT also has an anti-
inflammatory effect. In obese mice, omentin reduces the
expression of proinflammatory cytokines such as IL-6, IL-
1β, and TNF-α and increases the secretion of other anti-
inflammatory adipocytokines such as adiponectin and IL-
10 through the inhibition of thioredoxin-interacting protein
(TXNIP)/NLTP3 signaling pathway [24]. Furthermore,
omentin reduces oxidative stress, mitochondrial dysfunc-
tion, proinflammatory cytokines (IL-6, IL-8, and MCP-1),
cyclooxygenase-2 (COX), and prostaglandin E2 (PGE2) in
lipopolysaccharide-induced macrophages [25]. Omentin
protects against vascular endothelial dysfunction by sup-
pressing endoplasmic reticulum (ER) and oxidative stress.
This is achieved through the activation of AMP-activated
protein kinase (AMPK)/PPAR-δ pathway that stimulates
NO release [26]. In free fatty acid-induced endothelial cells,
omentin decreases proinflammatory agents (MCP-1, IL-6,
IL-1, ICAM-1, TNF-α) and NF-κB activation [27].

Fibroblast growth factor-21 (FGF-21) is a growth factor
expressed in multiple tissues and organs such as adipose
tissue, liver, and pancreas that regulates insulin signaling,
glucose, and lipid metabolism [28]. FGF-21 exerts anti-
inflammatory effects in macrophages and obese adipose tis-
sue via various inflammatory signaling pathways [29, 30].
Treatment of apolipoprotein E-deficient (ApoE-/-) mice with
FGF-21 reduced atherosclerosis formation by increasing
adiponectin expression and inhibiting ER stress, NLRP3
inflammasome activation, and factor-associated suicide
(FAS) signaling [31–33]. FGF-21 also improves oxidative-
stress-induced endothelial dysfunction by activating the cal-
cium/calmodulin-dependent protein kinase kinase 2
(CaMKK2)/AMPKα pathway [34].

Vaspin, which is also known as visceral adipose tissue-
derived serine protease inhibitor, is an anti-inflammatory
adipokine that improves insulin sensitivity [35]. A study
has reported that vaspin inhibits the gene expression of lep-
tin receptor, production of TNF-α, and NF-κB activation in
leptin-induced rat chondrocytes [36] This suggests an
important role of vaspin produced by PVAT in modulating
inflammatory reactions. Meanwhile, interleukin-10, which
is produced by T cells, B cells, and macrophages in the
PVAT, plays a significant role in preventing inflammation
[37]. IL-10 suppresses proinflammatory cytokine secretion
and prevents macrophage and dendritic cell maturation
[38]. IL-10 acts on heterodimeric IL-10 receptors (IL-10R1,
IL-10R2), which activates the Janus kinase (JAK)/STAT sig-
naling pathway. This leads to inhibition of proinflammatory
mediator production [39].

Another PVAT-derived anti-inflammatory factor is NO.
Vascular NO is produced mainly by endothelial NO syn-
thase (eNOS) [40]. NO inhibits vascular smooth muscle pro-
liferation and migration, platelet aggregation, leukocyte
adhesion, and inflammation [41]. eNOS, which is mainly
expressed in the endothelium, has also been found to be
present in PVAT [42]. PVAT-derived adiponectin increases
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eNOS phosphorylation, thus enhancing NO production.
Endothelial dysfunction is characterized by the reduction
of NO bioavailability, and this is associated with inflamma-
tion and development of atherosclerosis and hyperten-
sion [42].

4. PVAT-Derived
Proinflammatory Adpocytokines

IL-6 is one of the most studied proinflammatory cytokines
secreted by PVAT. IL-6 can directly act on endothelial cells
to increase superoxide production, thus leading to endothe-
lial dysfunction [18]. Another prominent cytokine that mod-
ulates PVAT inflammatory response is TNF-α. TNF-α is
released by a few types of cells including monocytes, vascular
cells, and adipocytes. It inhibits the eNOS expression and
stimulates the production of reactive oxygen species (ROS)
via activation of the NF-κB pathway [18]. Other proinflam-
matory cytokines released by PVAT include MCP-1 and IL-

1β. MCP-1 plays a crucial role in facilitating the infiltration
of macrophages into the vascular wall and is often associated
with the pathogenesis of atherosclerosis [43]. Meanwhile, IL-
1β induces the MCP-1 expression via NF-κB and activator
protein-1 (AP-1) activation [44].

Chemerin, also known as tazarotene-induced gene 2
(TIG2), is a chemoattractant protein that regulates the
immune response, metabolism, and inflammation. Although
some studies have associated chemerin with anti-
inflammatory actions, its function is mainly considered as
proinflammatory [45]. Chemerin is expressed in adipose tis-
sue including PVAT and visceral adipose tissue [46, 47].
Both chemerin and its receptor, CMKLR1, are upregulated
in obesity [48]. Furthermore, chemerin recruits dendritic
cells into adipose tissue, thus increasing the inflammatory
reaction in adipocytes [49]. Chemerin also stimulates the
recruitment and retention of macrophages at inflammation
sites by inducing macrophage adhesion to extracellular
matrix proteins and adhesion molecules [50]. The level of
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Figure 1: The anti-inflammatory state of healthy perivascular adipose tissue (PVAT) compared to the proinflammatory state of
dysfunctional PVAT. CVD: cardiovascular diseases; FGF-21: fibroblast growth factor-21; IL: interleukin; MCP-1: monocyte
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chemerin is closely correlated with the level of other proin-
flammatory cytokines such as TNF-α, C-reactive protein
(CRP), and IL-6, which further supports chemerin’s proin-
flammatory action [51].

Leptin has been suggested as a PVAT-derived proin-
flammatory factor as its expression can be stimulated by
other proinflammatory mediators such as IL-1 and TNF-α,
and its concentration increases during pathological condi-
tions such as fever and sepsis [52]. Leptin activates mono-
cytes, leukocytes, and macrophages to secrete TNF-α, IL-6,
and IL-12, increases CC-chemokine ligand production in
macrophages, and stimulates ROS generation [38]. Addi-
tionally, leptin causes endothelial dysfunction [53] by induc-
ing CRP production, cellular adhesion molecules, and
platelet tissue factors in endothelial cells [54].

Resistin is another proinflammatory adipokine released
by PVAT that enhances the expression of IL-6, IL-1β, and
TNF-α via NF-κB signaling [55]. Other than adipocytes,
resistin is released by immune cells including monocytes
and macrophages, and this suggests its role in atherogene-
sis. Moreover, resistin causes endothelial dysfunction by
enhancing proinflammatory markers such as MCP-1,
TNF-α, IL-6, long pentraxin 3, IL-1β, vascular cell adhe-
sion molecule-1 (VCAM-1), and intercellular adhesion
molecule-1 (ICAM-1). Besides, resistin promotes oxidative
stress and ER stress, thus leading to mitochondrial dys-
function and redox imbalance [56, 57].

The components of the renin angiotensin aldosterone
system are expressed in PVAT. Its bioactive peptide, angio-
tensin II (Ang II), exerts its inflammatory effect by stimu-
lating the expression of adhesion molecules and cytokines
such as MCP-1 and IL-6 [58]. Ang II is also reported to
induce immune cells including T lymphocytes, M1 and
M2 macrophages, and dendritic cell infiltration in PVAT
[59, 60]. Interestingly, a large proportion of these cells,
particularly T lymphocytes, bear regulated on activation,
normal T cell expressed, and secreted (RANTES) CC che-
mokine receptor (CCR)1, CCR3, and CCR5 receptors.
Expression of RANTES chemokine receptors is stimulated
by Ang II [61]. RANTES, also known as CC chemokine
ligand 5 (CCL5), is present in both human and mouse adi-
pose tissue. RANTES acts as a chemoattractant for inflam-
matory cells, particularly T cells, and it is associated with
the development of atherosclerosis and hypertension [62].
The summary of anti- and proinflammatory adipocytokines
secreted by PVAT and its involvement in vascular diseases
is summarized in Table 1.

5. PVAT Inflammation in Vascular Diseases

5.1. Atherosclerosis. Atherosclerosis is an inflammatory dis-
ease involving the formation of fibrofatty plaques in the arte-
rial wall that can progress to several chronic diseases such as
coronary artery disease (CAD), stroke, and peripheral artery
disease [63]. The atherosclerotic plaque consists of the accu-
mulation of fatty substances, cholesterol, calcium, cellular
waste products, and fibrin [64]. Several risk factors are
closely related to atherosclerosis, including hypertension,
tobacco smoking, obesity, and diabetes [65]. Traditionally,

the pathogenesis of atherosclerosis has been described as an
“inside-to-outside” model that starts with endothelial dys-
function, inflammation, and formation of foam cells [66].
However, in most vascular studies, PVAT was removed from
the underlying blood vessels prior to experiments as PVAT
was considered to be a nonvascular and inactive tissue [67].

Interestingly, more current studies propose that the
crosstalk between PVAT and the underlying vasculature
happens in two directions, with an “outside-to-inside”
inflammatory signaling activated by the dysfunctional
PVAT [68–70]. For example, it was demonstrated that
inflammation in the PVAT and adventitial layer happened
prior to the development of endothelial dysfunction and for-
mation of atherosclerotic plaques in apolipoprotein E-
deficient (ApoE-/-) mice [71]. Perivascular adipocytes send
signals to both immune cells and endothelial cells via the
release of adipocytokines to modulate the inflammatory
crosstalk in atherogenesis [72]. PVAT plays a crucial role
in the pathogenesis of atherosclerosis through mechanisms
involving endothelial dysfunction and inflammatory cell
recruitment and infiltration [70, 73].

Immune cell infiltration is an important step in PVAT
inflammation and atherosclerosis. T cell infiltration in
PVAT may occur prior to macrophage infiltration in mice
[74]. Both proatherogenic (CD4+ T helper (Th), CD8+ T
cytotoxic (Tc)), and atheroprotective (T regulatory (Treg))
T cells are found in PVAT [75–77]. Th1, Tc1, and Th17 cells
release proinflammatory cytokines such as interferon-γ
(IFN-γ), IL-7, and TNF-α, whereas Treg cells secrete anti-
inflammatory cytokine, IL-10 [78, 79]. Subpopulation of T
cells such as natural killer T cells also release IFN-γ and
TNF-α in PVAT [80].

5.2. Mechanisms Linking PVAT Inflammation to
Atherosclerosis. The endothelium acts as a physical barrier
between blood and the vascular wall. Besides, the endothe-
lium also secretes bioactive molecules involved in the regula-
tion of vascular tone, vascular remodeling, inflammatory
process, and thrombosis [81]. NO produced by eNOS is an
important antiatherogenic molecule, and reduced NO bio-
availability is the hallmark of endothelial dysfunction [82].
Endothelial dysfunction is well established as the precursor
of atherosclerosis. A dysfunctional endothelium loses its
physiological characteristics and transforms into a proin-
flammatory, prothrombotic, and vasoconstrictor state, thus
promoting atherosclerosis [83].

As described earlier, in physiological condition, PVAT
produces a range of vasoprotective adipocytokines with anti-
atherogenic effects such as adiponectin, NO, and hydrogen
sulfide (H2S) [84]. Reduced NO and H2S have been shown
to worsen atherosclerosis progression [82, 85]. Unsurpris-
ingly, since atherosclerosis is closely related to obesity,
PVAT-derived NO, H2S, and adiponectin levels were
reduced in obese animals [86–89]. It is postulated that in obe-
sity, increased PVAT mass and hyperthrophic adipocytes in
PVAT promote endothelial dysfunction and atherosclerosis
through increased oxidative stress and inflammation [90, 91].

Breakdown of fat in hypertrophic PVAT releases free
fatty acids (FFA) into the vasculature. FFA causes
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phosphorylation of insulin receptor substrate 1 (IRS-1) pres-
ent in PVAT and other vascular cells by activating NF-κB,
protein kinase C (PKC), and Toll-like receptors [92]. This
decreases the activation of downstream PI3K/Akt signaling,
leading to inhibition of eNOS expression and NO synthesis
[93]. Besides, PKC activation by FFA causes eNOS coupling,
resulting in further reduction in NO synthesis and produc-
tion of reactive oxygen species (ROS) [7, 94]. Furthermore,
PKC induces the synthesis of endothelin-1 (ET-1), which
is a potent vasoconstrictor. Reduced NO bioavailability,
increased vasoconstrictor, and ROS accumulation result in
endothelial dysfunction and enhance the development of
atherosclerosis [92].

Subsequently, monocyte recruitment and activation ensue.
Dysfunctional PVAT releases more pro-inflammatory adipo-
cytokines such as TNF-α, leptin, and IL-6 that induce the
expression of cellular adhesion molecules like VCAM-1 and
ICAM-1 on the endothelial cells. Cellular adhesion molecules
promote the adherence and migration of monocytes into the
subendothelial layer [95–97]. The migrated monocytes trans-
formed into macrophages that secrete proinflammatory cyto-
kines such as MCP-1, TNF-α, IFN-γ, and IL-6, which further
aggravate monocyte recruitment and low-density lipoprotein
(LDL) oxidation [98].

The macrophages engulf oxidized LDL (oxLDL) through
scavenger receptors including leptin-like oxLDL receptor-1
and CD36, leading to formation of foam cells. Foam cells

are the hallmark of initial stage of atherosclerosis [98]. Fur-
thermore, PVAT-derived adipocytokines such as leptin,
TNF-α, visfatin, and IL-6 stimulate vascular smooth muscle
cell (VSMC) proliferation and migration, which is an impor-
tant step in neointima formation [99, 100]. Recent evidence
demonstrates that in animal models, infiltration of macro-
phages in the PVAT and adventitial layer is more marked
compared to the intimal layer [101, 102]. This further sup-
ports the notion that PVAT inflammation plays a significant
role in atherosclerosis development.

Proinflammatory chemokines such as macrophage
inflammatory protein 1-α (MIP-1α or CCL3), MCP-1, and
RANTES attract immune cells to the site of perivascular
inflammation in atherosclerotic ApoE-/- mice [103–105].
PVAT of ApoE-/- mice was also found to have increased
levels of IL-6 and IL-1 as well as macrophages and T cell
infiltration [106]. However, there was a decrease in the num-
ber of B-1 cells that secrete antiatherosclerotic IgM in
ApoE-/- mouse PVAT. This further worsens the atheroscle-
rotic lesion formation in the mouse coronary artery and
aorta [107]. Additionally, microRNA-19b in endothelial
cell-derived microparticles promotes atherosclerosis pro-
gression in ApoE-/- mice by increasing the secretion of pro-
inflammatory cytokines (IL-6, IL-10, and TNF-α) and
inducing macrophage infiltration in PVAT [108].

Interestingly, transplantation of normal PVAT from
wild-type mice decreased the size of atherosclerotic plaque

Table 1: Anti- and proinflammatory adipocytokines secreted by PVAT and its involvement in vascular diseases.

Adipokine/cytokine Effect on vasculature Association with vascular diseases

Anti-inflammatory adipocytokines

Adiponectin
(i) Vasodilator [169]
(ii) ↓ adhesion molecule expression [170]
(iii) ↓ oxidative stress [171]

(i) ↓ production in obesity [172] and hypertension [173]

Omentin
(i) ↓ oxidative stress [25]
(ii) ↓ mitochondrial dysfunction [25]
(iii) ↑ NO [174]

(i) ↓ expression in obesity [175] and CAD [176]

FGF-21
(i) ↓ oxidative stress [177]
(ii) ↑ vasorelaxation [178]

(i) Improves vascular dysfunction in hypertension [179]

Vaspin
(i) ↑ insulin sensitivity [35]
(ii) ↑ cytokine production [35]

(i) ↓ production in atherosclerosis [180]

Nitric oxide (i) Vasorelaxant [167] (i) ↓ production in atherosclerosis [181] and hypertension [182]

IL-10 (i) ↓ immune cell infiltration [37] (i) ↓ in atherosclerosis [183]

Proinflammatory adipocytokines

IL-6, TNF-α, IL-1, MCP-1
(i) ↑ immune cell infiltration [184]
(ii) Endothelial dysfunction [90]
(iii) ↑ ROS [185]

(i) ↑ production in obesity [184] and atherosclerosis [186, 187]

Chemerin
(i) ↑ immune cell infiltration [188]
(ii) ↑ adhesion molecule expression [189]

(i) ↑ production in obesity and diabetes [190]

Leptin
(i) ↑ immune cell infiltration [54]
(ii) ↑ ROS [191]
(iii) endothelial dysfunction [192]

(i) ↑ production in obesity, hypertension [192], and CAD [193]

Resistin
(i) ↑ ROS [56]
(ii) ↑ macrophage infiltration [56]

(i) ↑ production in atherosclerosis [194]

RANTES, Ang II (i) ↑ immune cell infiltration [62] (i) ↓ production in atherosclerosis [195] and hypertension [196]

Abbreviations: Ang II: angiotensin II; CAD: coronary artery disease; IL: interleukin; MCP: monocyte chemoattractant protein; NO: nitric oxide; ROS: reactive
oxygen species; TNF-α: tumor necrosis factor-alpha.
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in ApoE-/- mice. This effect was mediated by the anti-
inflammatory action of transforming growth factor (TGF)-
β1 [109]. Besides, adiponectin obtained from PVAT
decreased carotid collar-induced atherosclerosis by stimulat-
ing macrophage autophagy [110]. A study demonstrated that
xenotropic and polytropic retrovirus receptor 1 (Xpr1), a
macrophage regulator, and TATA-box binding protein asso-
ciated factor 3 (Taf3), a core transcription factor, were upreg-
ulated in the PVAT of ApoE-/- mice. Furthermore, an
upregulation of the Taf3 and Xpr1 expression was also
detected in human atherosclerotic plaques [111]. This sug-
gests that Taf3 and Xpr1 have a role in modulating the
chronic inflammatory phenotype of PVAT.

Data from human studies demonstrated that PVAT
derived from patients with CVD have increased expression
of proinflammatory genes and decreased expression of anti-
inflammatory adiponectin [112–114]. For instance, the epi-
cardial adipose tissue of patients with coronary atherosclero-
sis showed increased expression of IL-1β, IL-6, and TNF-α
[113] and lower expression of adiponectin [114]. The levels
of inflammatory mediators such as IL-1β, IL-6, and IL-10
were elevated in the pericoronary PVAT of patients with
CAD compared to patients without CAD [115]. This suggests
the influence of PVAT inflammation on atherosclerosis
development through an outside-to-inside manner.

Besides, the levels of protein inhibitor of activated STAT1
(PIAS1), a key negative regulator of inflammation, were
reduced in PVAT obtained from patients with atherosclero-
tic vessel disease [116]. PIAS1 downregulates inflammation
by inhibiting STAT1 and NF-κB signaling pathways [117,
118]. Besides, the number of macrophages in the PVAT cor-
relates with the number of immune cells in the atherosclero-
tic plaque [119–121].

Unstable plaque is an important culprit for the occur-
rence of acute coronary syndrome. Apart from the estab-
lished factors that influence plaque stability such as
intraplaque neovascularization, inflammation, and intra-
plaque protease activity [122], PVAT inflammation has also
been suggested to affect plaque stability. The number of mac-
rophages was higher in PVAT near unstable plaques com-
pared to the PVAT near stable plaques [123]. Furthermore,
endoplasmic reticulum (ER) stress transforms adipose tissue
to a proinflammatory phenotype [124]. ER stress in PVAT
contributes to plaque instability by stimulating a proinflam-
matory factor, granulocyte macrophage colony-stimulating
factor (GM-CSF), via NF-κB activation [125]. GM-CSF
causes adipose tissue inflammation by recruiting and activat-
ing M1 macrophages [126]. The mechanisms linking PVAT
inflammation and atherosclerosis are summarized in
Figure 2.

6. Hypertension

There are several mechanisms involving PVAT that contrib-
ute to hypertension, such as loss of PVAT anticontractile
effect, increase in PVAT proinflammatory adipocytokines,
decrease in PVAT anti-inflammatory adipocytokines,
immune cell infiltration, activation of local RAAS, and
increase in vascular oxidative stress [12]. The initial site of

inflammation during the development of hypertension is in
the PVAT and in the border between the PVAT and the
adventitial layer [61, 127, 128].

6.1. Mechanisms Linking PVAT Inflammation to
Hypertension. In hypertension, PVAT releases more proin-
flammatory adipocytokines such as IL-6, IL-17, IL-8, IL-23,
IL-1β, TNF-α, and TGF-β [129] and less anti-inflammatory
adipocytokines such as adiponectin, IL-10, and IL-4 [129,
130]. Consequently, there is infiltration of immune cells in
the PVAT, loss of PVAT anti-contractile action, and
increased vascular resistance [19]. These events are mediated
by numerous inflammatory cells and cytokines. For exam-
ple, complement C5a mediates the reduction in PVAT adi-
ponectin release [131], RANTES mediates the invasion of
lymphocyte T cells into the perivascular space [38], and
IFN-γ is released by CD8+ cells that invade the PVAT
[132]. All these changes intensify PVAT dysfunction and
proinflammatory crosstalk between PVAT and the underly-
ing hypertensive vessels.

A study involving spontaneously hypertensive mice
induced by perilipin-1 deletion showed that the mice had
higher aortic blood pressure, loss of PVAT anti-contractile
effect, and decreased adiponectin expression. These findings
are associated with increased expression of MCP-1, TNF-α,
and IL-6 in the aorta [133]. Meanwhile, PVAT of DOCA-
salt hypertensive mice displayed an increase in the comple-
ment C3 expression, leading to increased proinflammatory
M1 macrophages and decreased anti-inflammatory M2 mac-
rophage expression in the PVAT [134]. Recruitment of pro-
inflammatory macrophages in the PVAT of DOCA-salt
hypertensive mice enhances complement activation and
promotes TNF-α release, thereby reducing adiponectin
expression [135].

During the progression of hypertension, accumulation of
immune cells has been reported in the PVAT surrounding
both the aorta and mesenteric arteries of hypertensive ani-
mals [18]. Hypertension is associated with a significant
increase in T cell infiltration in the PVAT. This promotes
inflammation and endothelial disyfunction via NF-κB-
dependent, Notch ligand Jagged 1-regulated integrin, and
adhesion molecule expression [136, 137]. Additionally, both
CD4+ and CD8+ T cell subpopulations are increased in the
PVAT of hypertensive mice. T cell- and monocyte-deficient
mice exposed to various hypertensive stimuli showed
reduced perivascular inflammatory reaction [75, 138].

Macrophage infiltration in PVAT is also significantly
increased in hypertension, and this is regulated by T cell-
dependent mechanisms [61]. Depriving the lymphocyte
adaptor protein (Lnk) gene that encodes the negative regula-
tor of T cell activation promotes PVAT inflammation, as the
number of macrophages increase in both aorta and adipo-
cytes [139]. The increase in blood pressure also corresponds
with the expression of macrophage chemokine receptors
CCR2 and its ligands such as CCL2, CCL7, CCL8, and
CCL12 in the PVAT [140]. Moreover, the expression of
proinflammatory M1 macrophage is increased in hyperten-
sion compared to healthy condition, whereby the anti-
inflammatory M2 macrophage is more dominant [61].
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Overactivation of RAAS is critical to the development of
hypertension. Adipose tissue has been suggested as one of
the main sites of RAAS activation in hypertensive patients
[92]. In obese hypertensive patients, adipose tissues are the
major source of RAAS [141]. All components of RAAS can
be found in PVAT except renin [142, 143]. Angiotensinogen
and Ang II levels in PVAT were significantly increased in
SHR [144]. Knockout of angiotensinogen gene in PVAT suc-
cessfully decreased local Ang II production in mice
PVAT [145].

PVAT of Ang II-induced hypertensive mice displayed a
higher number of immune cells such as macrophages, leuko-
cytes, T cells, and dendritic cells. Ang II induction also
enhances RANTES, MCP-1, and CCL3 expression in the
periaortic PVAT and the aortic wall of the mice [61, 146].
Moreover, activation of angiotensin II type 1 receptor
(AT1R) in PVAT promotes vascular inflammation and
endothelial dysfunction [147].

Sirtuin-3 (SIRT3), a mitochondrial NAD+-dependent
deacetylase that regulates multiple metabolic enzymes, plays
a significant role in Ang II-related PVAT inflammation. It
was reported that Ang II promotes PVAT inflammation
and fibrosis by stimulating NLRP3/IL-Iβ pathway in mye-
loid SIRT3 knockout mice [148]. Activation of NLRP3
inflammasome is involved in vascular inflammation and its
blockade has been proven to reduce adipose tissue inflam-
mation and fibrosis (P. [149, 150]). SIRT3 is therefore a
potential therapeutic target to inhibit NLRP3-related PVAT
inflammation and fibrosis [148].

In addition to the direct actions of Ang II, aldosterone
that is released in response to Ang II stimulation also has a
proinflammatory action on PVAT [151]. Treatment with
aldosterone receptor antagonists improves endothelial func-
tion, reduces oxidative stress, and decreases blood pressure
[152, 153]. Meanwhile, treatment with angiotensin receptor
blockers lower the release of Ang II from PVAT. This leads
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to the release of PVAT-derived relaxing factors that stimu-
late vasodilation through the opening of voltage-gated
potassium channels in the vascular smooth muscle cells
[147, 154, 155].

A complex reactive oxygen species (ROS) machinery
containing NADPH oxidase (Nox) and antioxidative
enzymes are also expressed in PVAT [156, 157]. Chronic
oxidative stress enhances vascular inflammation in hyper-
tension, with Nox being the main source of superoxide in
the vasculature [158]. ROS derived from Nox in PVAT
induces endothelial dysfunction by scavenging endothelial
NO and modulating perivascular inflammation [90, 159].

SHR showed greater T cell accumulation in the PVAT
and higher mRNA expression of Nox1 and Nox 4 in the ves-
sels, an effect that was exacerbated with aging [160]. Mice
with the overexpression of Nox p22phox catalytic subunit
have enhanced vascular superoxide production and
increased PVAT leukocyte infiltration that worsens hyper-
tension progression [161]. Meanwhile, mice with loss of
Nox subunit such as p47phox, Nox1, and Nox4 show pro-
tection against hypertension [162, 163]. Surprisingly, treat-
ment of SHR with GKT137831, a dual inhibitor of Nox1/4,
raised both blood pressure and PVAT macrophage infiltra-
tion and accelerated vascular aging. This observation was
associated with increased expression of proinflammatory
chemokine expression (CCL2 and CCL5) in the PVAT
[160]. Therefore, these changes need to be considered when
designing a therapy that targets Nox to treat hypertension.

Hypertension is more common in people who are obese
compared to people who are lean [164]. Animal studies
showed that obesity leads to increased PVATmass and adipo-
cyte hypertrophy with signs of PVAT inflammation, endothe-
lial dysfunction, and altered release of adipocytokines. The
release of proinflammatory cytokines such as TNF-α, MCP-
1, IL-6, and IL-8 is markedly enhanced, whereas the anti-
inflammatory adipokine, adiponectin, is markedly reduced
[90, 91]. TNF-α inhibits adiponectin and NO production
and stimulates ET-1 release. Imbalance between the vasocon-
strictor ET-1 and the vasodilators such as NO and adiponectin
is implicated in obesity-induced endothelial dysfunction and
hypertension [42]. Adiponectin level is restored in hyperten-
sive patients who received antihypertensive agents to control
their blood pressure, which signifies the beneficial effect of adi-
ponectin in hypertension [165].

PVAT inflammation and altered adipocytokine profile in
obesity have significant effects on the anticontractile effect of
PVAT and blood pressure [166]. Obesity causes the loss of
anticontractile function of PVAT [90] and impairs
endothelium-dependent vasorelaxation which contribute to
hypertension [167]. The loss of anticontractile function of
PVAT correlates with the increase in blood pressure in rodent
models of diet-induced obesity [87]. Like obese animal models,
the anticontractile effect of PVAT is lost in obese patients [168].
TNF-α expression is also elevated in the vascular wall and
PVAT isolated from the small arteries of obese patients [42].
Six months following bariatric surgery, reduction in the body

Table 2: Changes related to PVAT inflammation in atherosclerosis and hypertension.

Atherosclerosis Hypertension

(i) ↑ MCP-1 [197] (i) ↑ IL-6, IL-17, IL-8, IL-23, IL-1β, TNF-α, TGF-β, MCP-1 [198–200]

(ii) ↑ RANTES [201] (ii) ↓ adiponectin, IL-10, IL-4 [202]

(iii) ↑ IL-6, IL-1, IL-7 [203–205] (iii) ↑ RAAS, aldosterone, and Ang II [206]

(iv) ↑ TNF-α [207] (iv) ↑ activation of AT1R [208]

(v) ↓ adiponectin [209] (v) ↑ ROS [210]

(vi) ↑ Xpr1 & Taf3 [111] (vi) ↑ NOX [211]

(vii) ↑ PIAS1 [212] (vii) ↑ complement C3 [213]

(viii) ↑ FFA [214] (viii) ↑ CCR2, CCL2, CCL7, CCL8, CCL12, CCL3 [140]

(ix) ↑ ROS [215] (ix) ↑ ET-1 [210]

(x) ↓ NO [216]

(xi) ↓ H₂S [217]

(xii) ↑ IFN-γ [218]

(xiii) ↑ Leptin [219]

(xiv) ↑ Visfatin [220]

(xv) ↑ MIP-1α [221]

(xvi) ↓ IgM [222]

Abbreviations: Ang II: angiotensin II; AT1R: angiotensin II type 1 receptor; C3: component 3; CCR: CC chemokine receptor; CCL: CC chemokine ligand; ET-
1: endothelin-1; FFA: free fatty acid; H2S: hydrogen sulfide; IFN-γ: interferon-γ; IL: interleukin; IgM: immunoglobulin M; MCP-1: monocyte chemoattractant
protein-1; MIP-1α: macrophage inflammatory protein 1-α; NO: nitric oxide; NOX: NADPH oxidase; PIAS1: protein inhibitor of activated STAT1; RAAS:
renin-angiotensin-aldosterone system; RANTES: regulated on activation, normal T cell expressed, and secreted; ROS: reactive oxygen species; Taf3:
TATA-box binding protein-associated factor 3; TNF-α: tumor necrosis factor-alpha; Xpr1: xenotropic and polytropic retrovirus receptor 1.
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weight of obese patients is accompanied by improvement in
their PVAT adipocytokine profile, PVAT anticontractile func-
tion, and blood pressure [168]. The mechanisms linking PVAT
inflammation and hypertension are summarized in Figure 3.

7. Conclusion

PVAT inflammation plays a mechanistic role in the patho-
genesis of vascular diseases such as atherosclerosis and
hypertension (Table 2). The vicinity of PVAT as an active
endocrine and paracrine organ that produces various adipo-
cytokines as well as the related changes in this tissue supports
the idea that alteration in PVAT phenotype contributes to
disease processes in the adjacent vascular wall. Inflammation
leads to PVAT dysfunction through the release of various
proinflammatory adipocytokines and immune cell infiltra-
tion. Although the mechanisms on how PVAT inflammation
is linked to vascular diseases are not entirely clear, hence the
need for more mechanistic studies to explore this matter, the
available evidence shows that PVAT inflammation occurs at
the initial part of vascular pathology in a tightly regulated
manner. Therefore, further studies are needed to explore
the potential of PVAT as a target for the prevention and
treatment of vascular diseases.
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