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Abstract

Finding a model-based optimal design that can optimally discriminate among a class of plau-

sible models is a difficult task because the design criterion is non-differentiable and requires

2 or more layers of nested optimization. We propose hybrid algorithms based on particle

swarm optimization (PSO) to solve such optimization problems, including cases when the

optimal design is singular, the mean response of some models are not fully specified and

problems that involve 4 layers of nested optimization. Using several classical examples, we

show that the proposed PSO-based algorithms are not models or criteria specific, and with a

few repeated runs, can produce either an optimal design or a highly efficient design. They

are also generally faster than the current algorithms, which are generally slow and work for

only specific models or discriminating criteria. As an application, we apply our techniques to

find optimal discriminating designs for a dose-response study in toxicology with 5 possible

models and compare their performances with traditional and a recently proposed algorithm.

In the supplementary material, we provide a R package to generate different types of dis-

criminating designs and evaluate efficiencies of competing designs so that the user can

implement an informed design.

Introduction

Much of the work in optimal design of experiments assumes a known parametric model, apart

from the unknown model parameters and the objective is to develop a plan to collect data judi-

ciously for accurate statistical inference. For example, one may wish to design a study to esti-

mate parameters in a nonlinear regression model. In practice, the model is rarely known with

certainty and it is likely that there are a few plausible models. Optimal design problems con-

cern identifying the best design, i.e. how to collect data to judiciously select the right model

among the plausible models. When there are 2 models and errors are normally distributed and

one of the 2 models is fully known, [1] introduced T-optimality as a design discrimination
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criterion based on the squared difference between the 2 mean predictions. [2] reviewed opti-

mal discriminating design problems and since then, locally T-optimal designs have been

applied and studied in various setups, see for example, [3–8] and [9]. When the outcomes are

binary [10] or model errors are not normally distributed, [11] proposed KL-optimality crite-

rion based on the Kullback-Leibler (KL) divergence as the distance measure between the 2

competing models.

Analytical descriptions of optimal discriminating designs rarely exist unless there are sim-

ple settings, such as when we want to find an optimal design to discriminate between a con-

stant model and a quadratic model, and both models have homoscedastic errors [1]. When

there are multiple models to discriminate, [12] proposed a Fedorov-Wynn type algorithm to

find a T-optimal design and the convergence of such an algorithm to the optimal discriminat-

ing design was established recently under some restrictive conditions [13]. Over time, there

were several modifications of the algorithm to find various optimal designs, including [11],

who amended it to find KL-optimal designs.

Algorithms are a practical way to find optimal discriminating designs. Recently, nature-

inspired metaheuristic algorithms have been repeatedly shown to be fast, flexible and efficient

for solving hard and high dimensional optimization problems in engineering and computer

science. 2 such algorithms are differential evolutionary (DE) algorithm proposed by [14] and

particle swarm optimization (PSO) proposed by [15]. [16] was the first to show that PSO out-

performed traditional algorithms in statistics for finding a variety of optimal designs. Maximin

design problems are much harder problems to solve because the design criterion is non-differ-

entiable and require multiple nested optimization. [17] developed hybridized PSO-based algo-

rithms to solve more complicated optimal design problems such as the standardized maximin

optimal criteria, which includes the simpler minimax design problems. Most recently, [18]

applied DE to find optimal approximate designs for logistic models with up to 5 factors with

all pairwise interaction terms. The number of variables to optimize for such a model is at least

95 if the optimal design is minimally supported; otherwise, there will be many more variables

to optimize. For example, if the optimal design has 30 support points, there are 179 variables

to optimize.

Our goal is to develop flexible and effective algorithms to solve a broad class of optimal dis-

criminating design problems when there are 2 or more nonlinear models and errors may or

may not be normally distributed. Unlike the traditional setup in optimal discriminating design

problems, we may not require the null model be fully specified. The work is novel because we

apply PSO-based algorithms to solve a broad class of optimal discrimination design problems,

including those that require solving 4-level nested optimization problems. Further, we demon-

strate that they are more effective than traditional algorithms for finding optimal discriminat-

ing designs and also capable of finding optimal discriminating designs that require 4 levels of

nested optimization. Commercial statistical software packages do not have programs for find-

ing optimal discriminating designs and there is only one R package for searching specific types

of optimal discriminating designs. We develop PSO-based R codes and the reader can freely

use them to replicate results in this paper and amend them to solve their optimal discriminat-

ing design problems.

Section 2 reviews background, optimal discriminating criteria and search algorithms. In

Section 3, we propose 2 algorithms based on PSO to find the optimal discriminating design

when there are 2 or more competing nonlinear models with normal or non-normal errors. We

also evaluate the performances of the proposed algorithms using several examples. In Section

4, we apply them to construct an optimal design to discriminate among 5 nonlinear models for

a toxicology study. Section 5 further demonstrates flexibility and ability of the proposed algo-

rithms to find optimal discriminating designs with singular information matrices and find a
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robust discrimination design proposed in [9] where the problem has 4 layers of optimization.

In Section 6, we compare efficiencies of the proposed algorithms with a few other algorithms

and describe a software package that we have developed for finding a user-selected optimal dis-

criminating design. In addition, we compare the performance of the proposed algorithms with

a recent R-package that finds optimal discriminating designs. The last section reinforces the

importance and ubiquity of optimal discriminating design problems and contains a summary.

The appendix further compares results from both current and the proposed algorithms and

the supplementary material contains our R-codes.

Background

Let y be the univariate response variable and let f(y j x, θ, σ2) be its probability distribution

function. The mean response is η(x, θ), where x is an independent variable from a known com-

pact design space X , θ is an unknown parameter vector and σ2 is the variance of y, which we

may treat as a nuisance parameter. Suppose that there are K models with different underlying

probability distributions, f1ðy j x; y1; s
2
1
Þ; . . . ; fKðy j x; yK ; s2

KÞ, where yi 2 Yi � Rmi for some

known positive integers mi, i = 1, . . ., K. Here Θi is the user-selected parameter space for the

parameters in the ith model and a compact subspace of the mi-dimensional Euclidean space

Rmi ; i ¼ 1; . . . ;K.

Approximate designs were proposed by [19] and they are probability measures defined

on X . If an approximate design ξ has support at s1; s2; . . . ; sn 2 X and pi is its weight at the ith

support point si, we denote it by ξ = {s1, s2, . . ., sn;p1, p2, . . ., pn} with ∑i pi = 1. If the total

budget allows for taking a total of N observations for the study, the approximate design ξ takes

roughly Npi observations at the ith support point of ξ subject to each Npi is an integer and Np1

+ . . . + Npn = N. When the design criterion is convex (or concave), there are algorithms for

finding optimal approximate designs and we can use an equivalence theorem to confirm opti-

mality of a design, including an efficiency lower bound to assess its proximity to the optimum,

without knowing the optimum.

T- and KL-optimal design criteria

Suppose we have 2 homoscedastic Gaussian models with common variance σ2 and different

mean functions, η1(x, θ1) and η2(x, θ2) respectively. Additionally, suppose ηtr(x) = η1(x, θtr) is

the assumed true model with pre-specified parameter vector θtr. To discriminate ηtr from η2(x,

θ2), [1] proposed the T-optimal criterion,

T2;trðxÞ ¼ min
y22Y2

Z

X
D2;trðx; y2Þ xðdxÞ

� �

; ð1Þ

where Δ2,tr(x, θ2) = [ηtr(x) − η2(x, θ2)]2 is the L2-distance between the the mean responses from

the 2 models and Θ2 is a user-specified set. A design x
�

T is T-optimal if it maximizes (1) over X,

the set of all designs on X . Because the criterion is concave, optimality of x
�

T can be checked

using an equivalence theorem based on the directional derivative of the criterion evaluated at

the optimum [1]: the design x
�

T is T-optimal if and only if

cTðx; x
�

TÞ ¼ D2;trðx; ŷ2ðx
�

TÞÞ � T2;trðx
�

TÞ � 0; ð2Þ

for all x 2 X , with equality at the support points of x
�

T and ŷ2ðx
�

TÞ is the parameter in Θ2 that

minimizes T2;trðx
�

TÞ.

When models do not have homoscedastic or normally distributed errors, [11] proposed the

KL-optimal criterion to discriminate between them. Suppose f1ðy j x; y1; s
2
1
Þ and f2ðy j x; y2; s

2
2
Þ
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are the probability density functions of the 2 competing models and ftrðy j x; s2
1
Þ ¼ f1ðy j

x; ytr; s2
1
Þ is the true model with a pre-specified θtr. To measure the difference between the 2

competing models, the criterion uses the Kullback-Leibler (KL) divergence given by

Iðftr; f2; x; y2Þ ¼

Z

ftrðy j x; s
2

1
Þ log

ftrðy j x; s2
1
Þ

f2ðy j x; y2; s
2
2
Þ

� �

dy; 8 x 2 X : ð3Þ

The KL-optimal criterion of a design ξ is the minimal value of Iðftr; f2; x; y2Þ over θ2 2 Θ2, after

the quantity is averaged out with respect to the design ξ. We denote this value by

I2;trðxÞ ¼ min
y22Y2

Z

X
Iðftr; f2; x; y2Þ xðdxÞ

� �

ð4Þ

and the design x
�

KL that maximizes I2,tr(ξ) among X is the KL-optimal for discriminating between

ftr and f2. For simplicity, we also reference the assumed known mean response from the true

model ftr by “tr” and represent f2 by “2” when convenient, as the subscript of I2,tr in (4). Clearly,

T-optimality is a special case of the KL-optimal criterion when errors are homoscedastic and

normally distributed. [11] showed that the design x
�

KL is KL-optimal if and only if cKLðx; x
�

KLÞ,

the directional derivative of the criterion in the direction of the degenerate design at x evaluated

at x
�

KL satisfies

cKLðx; x
�

KLÞ ¼ Iðftr; f2; x; ŷ2ðx
�

KLÞÞ � I2;trðx
�

KLÞ � 0; ð5Þ

for all x 2 X with equality at the support points of x
�

KL. Here ŷ2ðxÞ is the θ2 value in (4) that min-

imizes the KL divergence when x ¼ x
�

KL.

Most algorithms for finding optimal discriminating designs are based on Fedorov-Wynn

type of algorithms and they work well for discriminating between 2 liner models. When there

are several nonlinear models, [20] proposed using a weighted sum of the T (or KL)-optimal

criteria values for discriminating between each pair of models in the class along with a New-

ton-type algorithm to enhance the search. A potential issue with this approach is that the

choice of the weights can be problematic and an improper choice may result in a design having

low efficiencies for discriminating between some of the pairs. [21] also proposed max-min

optimal discriminating designs for discriminating among 4 logistic models with various pre-

dictor functions. By working with 2 models at a time, she modified the algorithm proposed in

[20] to maximize the minimum efficiencies across all pairs among all models using a grid of

weights. The algorithm took 2,400 seconds to find the maximin KL-optimal design.

[6] used nonlinear approximation theory to find T-optimal designs and characterized them

by considering the maximal absolute difference and not the squared difference between the

means of the 2 models. They found that the number of support points could be determined by

counting the number of sign changes in the differences between the mean responses over the

design space. By taking the absolute value of this difference, they treated the T-optimal design

problem as a uniform approximation problem and identified those support points in advance.

They then calculated the weights for the resulting support points based on the equivalence the-

orem. To identify the support points, they used Remes algorithm [22], which is motivated

from uniform approximation theory. Based on the sign-changing positions in the difference

function, this algorithm alternates the support points iteratively by allocating each one between

2 sign-changing positions. The algorithm stops when all absolute values of the difference at the

support points are about the same. The success of their approach depends on the performance

of the Remes algorithm, which we will later discuss, including how this and Tommasiś algo-

rithm perform relative to the proposed algorithms.
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Maximin T- and KL-optimal design criteria

In this subsection, we consider the case when there are 3 or more competing models to discrimi-

nate. We present discussion for finding maximin KL-optimal designs, with the understanding

that when Gaussian models with homoscedastic errors are assumed, the design maximizing (7)

below is the max-min T-optimal design. [20] and [21] studied the KL-optimal discriminating

design problems using relative design efficiencies. Without loss of generality, we assume the first

model is the true model, ftr = f1, and describe their 2-step approach. First, we identify the KL-opti-

mal designs, x
�

KL;i, i = 2, . . ., K, for discriminating between the ith rival model and the true model

ftr. Given a design ξ, the KL-efficiency of ξ relative to the KL-optimal design x
�

KL;i is defined by

Eff iðxÞ ¼
Ii;trðxÞ

Ii;trðx
�

KL;iÞ
; i ¼ 2; . . . ;K; ð6Þ

where Ii,tr(ξ) is given in (4). The optimal discrimination design maximizes the KL-efficiencies for

all i. Therefore, one may find the optimal discriminating design by treating the problem as a mul-

tiple objective optimization problem. [20] assumed a pre-specified weight vector, α = (α2, . . .,

αK) satisfying 0� αi� 1 with
PK

i¼2
ai ¼ 1 is available and proposed finding generalized KL-opti-

mal designs that maximize the weighted sum of the KL-efficiencies and the vector of weights is α.

The ith component in α represents the relative importance of identifying the correct model from

the ith rival pair of models. If it is problematic to specify α, an alternative is to consider the worst

possible KL-efficiencies [21] and find a design that maximizes the minimal KL-efficiency among

Effi(ξ), i = 2, . . ., K, i.e. we want a max-min KL-optimal design x
�

mmKL in X that maximizes

ImðxÞ ¼ min
2�i�K

Eff iðxÞ: ð7Þ

This criterion is concave and we note that the subset Cðx�mmKLÞ comprising the indices of the clos-

est rival model to the true model satisfies:

Eff iðx
�

mmKLÞ < Eff jðx
�

mmKLÞ; i 2 Cðx�mmKLÞ; j=2Cðx
�

mmKLÞ: ð8Þ

[21] showed that there is a weight vector ~a ¼ ð~a2; . . . ; ~aKÞ 2 ½0; 1�
K� 1

that satisfies

XK

i¼2

~a i ¼ 1 and ~a i ¼ 0 if i=2Cðx�mmKLÞ ð9Þ

such that x
�

mmKL is the max-min KL-optimal design if and only if it is also a generalized KL-opti-

mal design with weight vector ~a. The equivalence theorem then states that the design x
�

mmKL is a

generalized KL-optimal design if and only if

cmmKL x; x�mmKL

� �
¼
XK

i¼2

~a i
Iðftr; fi; x; ŷ iðx

�

mmKLÞÞ

Ii;trðx
�

KL;iÞ
� Imðx

�

mmKLÞ � 0; ð10Þ

for all x 2 X with equality at all the support points of x
�

mmKL and

ŷ iðxÞ ¼ arg min
yi2Yi

Z

X
Iðftr; fi; x; yiÞ xðdxÞ:

To find the maxi-min KL-optimal design, [21] proposed a search algorithm based on the

equivalence theorems for the max-min KL-optimal design and the generalized KL-optimal

design. The algorithm first searches for a special α vector in (9) so that the generalized KL-opti-

mal design corresponds to the sought max-min KL-optimal design. [21] implemented
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MATHEMATICA codes for the iterative search in a laptop with 2.3 GHz CPU and 4Gb RAM

and reported in Section 4 of her paper that the CPU time required to generate the optimal

design for discriminating among 4 nonlinear models was about 2,400 seconds, which is expen-

sive. This motivates us to propose an algorithm that avoids the high computational burden for

finding the right α vector by searching over a set of user-selected grid points. Our new algo-

rithm uses a metaheuristic algorithm and directly optimizes the max-min KL-optimal criterion

using a single optimization procedure.

Hybrid algorithms for finding optimal discriminating designs

Hybridization of 2 or more ways of numerical searches is increasingly common in algorithmic

development. The idea is to take advantages of the strengths in the selected algorithms and

combine them to solve the optimization problem more effectively than either of the algorithms

can. For instance, some algorithms are more effective at determining where the optimum is

roughly located (i.e. exploration) and others are more effective at determining the optimum

precisely and quickly once it is in its vicinity (i.e. exploitation). The literature is replete with

hybrid algorithms and the questions are which is the most appropriate algorithm to hybridize

and how to do so.

We now propose hybrid algorithms to find different types of optimal discriminating

designs and show that they are generally more effective than current algorithms. The recent

successes of using PSO to solve a variety of optimal design problems [16, 17] motivated us to

hybridize PSO with another algorithm to find optimal discriminating designs more effectively.

After a brief review of PSO, we show how PSO can be hybridized to solve various types of opti-

mal discriminating design problems. These are more challenging design problems than those

tackled earlier and as an example, we also apply PSO to solve a complex problem that requires

4 levels of nested optimization.

Particle swarm optimization

Particle swarm optimization (PSO) is a metaheuristic optimization method proposed by [15].

This nature-inspired algorithm simulates how the birds fly in a coordinated way to look for

the optimum, which is where the food is on the ground. Throughout the birds communicate

and adjust their velocities and positions iteratively until convergence or the algorithm is termi-

nated by a user-specified stopping rule.

We initiate PSO by generating a flock of N birds (particles) randomly in the given design

space. Each particle is a design ξ and we represent it by a vector (s1, . . ., sn, p1, . . ., pn−1)>, since

pn ¼ 1 �
Pn� 1

j¼1
pj. Let x

ðtÞ
i be the ith particle at the tth iteration. PSO has 2 defining concepts:

local best and global best. The design with the maximal design criterion value discovered by

the ith particle before the tth iteration is the local best for the ith particle and we denote it by

x
ðt� 1Þ

i� . The global best design is the one found by the whole swarm before the tth iteration and

we denote it by x
ðt� 1Þ

g . The velocity of the ith particle at the tth iteration is VðtÞi and each particle

updates its velocity and position iteratively as follows:

VðtÞi ¼ oðtÞV
ðt� 1Þ

i þ c1R1 � ½x
ðt� 1Þ

i� � x
ðt� 1Þ

i � þ c2R2 � ½x
ðt� 1Þ

g � x
ðt� 1Þ

i � ð11Þ

and

x
ðtÞ
i ¼ x

ðt� 1Þ

i þ V ðtÞi for i ¼ 1; . . . ;N: ð12Þ

Here R1 and R2 are 2 independent random vectors whose components are independently

drawn from a uniform variate on [0, 1] and the notation� indicates component-wise product.
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As with all metaheuristic algorithms, there are tuning parameters. The inertia weight, ω(t), rep-

resents how active the particles are and it is chosen to be a linearly decreasing sequence from

0.95 to 0.2 over the first 80% iterations and fixed at 0.2 for the remaining 20% of the iterations.

[15] proposed the parameters c1 and c2 have default values equal to 2 and these choices have

been consistently reported to work well in the literature, including [16], who applied PSO to

find different types of optimal designs for several biomedical models. [23] provides more

details on PSO.

The choice of the initial flock size N is quite arbitrary and likely depends on the size and

complexity of the optimization problem. All designs in the flock must have the same number

of support points which is usually chosen to be the number of parameters in the mean func-

tion, or larger. The typical stopping criterion of PSO is a pre-specified number of the maxi-

mum iterations allowed or CPU time or number of function evaluations. Because PSO is quite

fast for moderate sized problems and typically converges in a few seconds of CPU time, we can

allow a large maximum number of iterations or function evaluations. This also suggests the

choice value of N is likely not very important because if the algorithm does not find the opti-

mum, the algorithm can be quickly rerun using another value of N. The algorithm PSO can

also be terminated when the generated design ξg satisfies the equivalence theorem up to a user-

specified tolerance or meets the user-specified efficiency lower bound requirement. Algorithm

1 summarizes the basic PSO algorithm.

Algorithm 1 PSO for finding optimal designs
1: Define the design criterion function Φ(ξ, θ), e.g. (1), and Input
the following: the swarm size N, along with values for the tuning
parameters (other than the default values)

(1.1). Generate initial particles (designs) x
ð0Þ

i and velocities Vð0Þi ,
i = 1, . . ., N.

(1.2). Calculate design criterion values Fðx
ð0Þ

i ; yÞ for each i.

(1.3). Initialize the local and global best designs, x
ð0Þ

i� ¼ x
ð0Þ

i and
x
ð0Þ

g ¼ maxi x
ð0Þ

i� .
2: At the tth iteration, do

(2.1). Calculate particles’ velocities VðtÞi by (11).

(2.2). Update particles x
ðtÞ
i by (12).

(2.3). Calculate design criterion values Fðx
ðtÞ
i ; yÞ.

(2.4). Update the local best designs x
ðtÞ
i� ¼ maxs¼0;1;...;tx

ðsÞ
i .

(2.5). Update the global best design x
ðtÞ
g ¼ maxi x

ðtÞ
i� .

3: Output the final global best design ξg and Φ(ξg, θ).

PSO-QN algorithm for finding an optimal design for discriminating

between 2 competing models

We now extend PSO to find T- and KL-optimal designs when there are 2 competing models.

As an illustration, we describe the search for a T-optimal design. Given the design space X , the

assumed true model ηtr(x) and the alternative mean function η2(x, θ2), our objective is to find

a design that satisfies

max
x2X

T2;trðxÞ ¼ max
x2X

min
y22Y2

Z

X
½ZtrðxÞ � Z2ðx; y2Þ�

2
xðdxÞ

� �� �

: ð13Þ

To find KL-optimal designs, we replace the inner objective function in (13) by (4).
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There are 2 layers of optimization in this maximin problem with outer and inner optimiza-

tion problems. To tackle a similar maximin optimization problem, [17] showed their Nested-

PSO algorithm was successful in finding different types of maximin optimal designs. The

Nested-PSO algorithm utilizes another PSO in Step (2.3) of Algorithm 1 to obtain the fitness

value for the outer problem. However, a direct application of the Nested-PSO algorithm to

find optimal discrimination designs is computationally demanding and our first proposed

algorithm reduces the computational burden by incorporating properties of the optimal dis-

criminating design criteria.

Specifically, we note that the inner objective function in (13) is differentiable with respect to

the parameter vector, θ2 and this implies that we can use derivative-based optimization algo-

rithms, such as Newton’s method to obtain the optimization values instead of PSO. We used

the limited-memory Broyden–Fletcher–Goldfarb–Shanno (L-BFGS) algorithm which is an

extension of Newton’s method and widely available, like in a R package lbfgs [24] or as a

MATLAB function fminunc. We also compare its performances and PSO algorithms for

solving the inner objective function in (13).

In summary, the proposed algorithm uses PSO to solve the outer problem in (13) with a

non-differentiable objective function. Its value found from Step (2.3) in Algorithm 1 is

obtained by the L-BFGS algorithm. We call this proposed search strategy the PSO-QN algo-

rithm. Our experience is that the L-BFGS algorithm may fail to work if an improper initial

point of θ2 is chosen. We suggest that when this happens, we randomly choose another initial

point and rerun L-BFGS.

We applied PSO-QN algorithm to find an optimal discrimination design when we have 2

rival pharmacokinetic models considered in [11]. The design found by our PSO-QN algorithm

is similar to their KL-optimal designs; details are in Section A.1 of the appendix.

PSO-S-QN algorithm for finding a maximin optimal design for

discriminating among 3 or more models

This sub-section discuses how we used PSO ideas find the maximin KL- (or T-)optimal design,

x
�

mmKL. Let the reference model ftr be f1 and let x
�

mmKL solve the following nested optimization

problem:

max
x

min

(
I2;trðxÞ

I2;trðx
�

KL;2Þ
; . . . ;

IK;trðxÞ
IK;trðx

�

KL;KÞ

)

where Ij,tr(ξ), j = 2, . . ., K, is defined in (4).

To find x
�

mmKL, we apply the PSO-QN algorithm K − 1 times to identify the KL-optimal

designs, x
�

KL;j for each j = 2, . . ., K. These optimal designs are then incorporated into the max-

min KL-optimal criterion Im(ξ) before we solve the 3-layer optimization problem. To solve this

optimization problem, we propose modifying Step (2.3) in Algorithm 1 in 2 ways at the tth

iteration:

(2.3a). For the ith particle, x
ðtÞ
i , use L-BFGS algorithm to compute Ij;trðx

ðtÞ
i Þ for j = 2, . . ., K.

(2.3b). Calculate the design criterion value

Imðx
ðtÞ
i Þ ¼ min

j2f2;...;Kg
Ij;trðx

ðtÞ
i Þ=Ij;trðx

�

KL;jÞ: ð14Þ
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We call this modified algorithm PSO-S-QN which also works for finding max-min T-opti-

mal designs after replacing the objective function by the T-optimality criterion. We note that

“S” in PSO-S-QN stands for“screening” because we need to find the minimal one among all

the K−1 models and the letter “QN” stands for quasi-Newton.

To show the PSO-S-QN-generated design, ξmmKL, is max-min KL-optimal, we first identify

the model index set C satisfying (8) where the corresponding efficiency values are minimum

among all competing pairs. We then implement a basic PSO algorithm to find the weight vec-

tor ~aT ¼ ð~a1; . . . ; ~aKÞ in (9) by minimizing

Z

X

(
X

i¼2;...;K

~a i
Iðftr; fi; x; ŷ iðxmmKLÞÞ

Ii;trðx
�

KL;iÞ
� Im xmmKLð Þ

) 2

xmmKLðdxÞ

over ~a i 2 ½0; 1� at the support points of ξmmKL subject to the constraints in (9).

In Sections A.2 and A.3 of the Appendix, we re-visit a couple of max-min optimal design

problems for discriminating 3 and 4 models in the literature and demonstrate that the

PSO-S-QN algorithms are able to find the same optimal designs or designs that are very close

to the reported optimum.

Application to toxicological experiments

We now apply the PSO-QN and PSO-S-QN algorithms to find an optimal design to discrimi-

nate among 5 models in a toxicological study. [25] proposed 5 dose-response models which

they found adequate for modelling a continuous endpoint in toxicology. The mean responses

from these models are

u1ðx; y1Þ ¼ a; y1 ¼ a > 0; ð15Þ

u2ðx; y2Þ ¼ ae� x=b; y2 ¼ ða; bÞ
>
; a > 0; b > 0; ð16Þ

u3ðx; y3Þ ¼ ae� ðx=bÞd ; y3 ¼ ða; b; dÞ
>
; a > 0; b > 0; d � 1; ð17Þ

u4ðx; y4Þ ¼ aðc � ðc � 1Þe� x=bÞ; y4 ¼ ða; b; cÞ
>
; a > 0; b > 0; c 2 ½0; 1�; ð18Þ

u5ðx; y5Þ ¼ aðc � ðc � 1Þe� ðx=bÞdÞ; y5 ¼ ða; b; c; dÞ
>
; a > 0; b > 0; c 2 ½0; 1�; d � 1: ð19Þ

All errors are assumed to be independent with mean 0 and homoscedastic, and the design

space is user-specified. [25] were interested in how exposure to butyl benzyl phthalate (BBP) in

maternal animals during gestation affects the fetal weights. Their study design had eight dose

groups with BBP dosages at 0, 270, 350, 450, 580, 750, 970 and 1250 mg/kg body weight/day

and 10 female pregnant rats were assigned to each dose. We denote their design by ξP2000 on

the dose interval X ¼ ½0; 1250�.

[26] used the same study design ξP2000 to illustrate the model selection procedure from this

class of models and concluded that model (19) accurately describes the data and the estimated

parameters were ŷ5 ¼ ðâ; b̂; ĉ; d̂Þ ¼ ð4:282; 835:571; 0:739; 3:515Þ. To fix ideas, we assume

the largest model (19) is the true model with nominal values given by ŷ5. Here, we address

design issues, i.e. how to judiciously collect observations early on to have a good sense which

one of the models is likely be the true model? To this end, we apply the PSO-QN and

PSO-S-QN algorithms to search for an optimal design to discriminate among the models, (15)

to (19) when errors are normally distributed and when errors are lognormally distributed.
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When errors are normally distributed, we use the PSO-QN algorithm to identify all the T-

optimal designs for discriminating between model (19) and each of the rival models, (15), (16),

(17) and (18). The left panel of Table 1 shows the T-optimal designs. We then applied

PSO-S-QN algorithm to find the max-min T-optimal design for discriminating among the

models (15)–(19). The max-min T-optimal design is ξmmT = {0.000, 433.345, 1027.333,

1250.000; 0.214, 0.338, 0.249, 0.200} and its T-efficiencies relative to each T-optimal

design are all 77.47%. This implies that CðxmmTÞ ¼ f1; 2; 3; 4g. To show that the PSO-S-

QN-generated design ξmmT is max-min T-optimal, we calculated the ~a vector in (9) to be

~a ¼ ð0:493; 0:000; 0:183; 0:324Þ. Fig 1(a) shows the graph of ψmmKL on the left-hand-side of

(10) and confirms the max-min T-optimality of the generated design.

When errors are lognormally distributed and the nuisance parameters have a constant coef-

ficient of variation as described in Section A.1 of the Appendix, we follow a similar procedure

to find the max-min KL-optimal design. Table 1 displays KL-optimal designs for pairwise dis-

crimination on the right panel and we observe that they are similar in structure to the T-opti-

mal designs. Interestingly, regardless whether the errors are normally distributed or not, the

maximum dose of the optimal designs for discriminating between models (19) and (15) and

between models (19) and (17) is the largest possible dose allowed, whereas for the other 2

cases, the largest dose in the optimal designs is about the same and equal to about 1064.5. The

max-min KL-optimal design found by PSO-S-QN algorithm is ξmmKL = {0.000, 451.530,

1043.591, 1250.000; 0.223, 0.342, 0.248, 0.188} and its KL-efficiencies relative to each of the

KL-optimal designs are all equal to 76.78%. A direct calculation shows the vector ~a in (9) is

(0.504, 0.001, 0.145, 0.350) and the plot in Fig 1(b) confirms its optimality by (10). Our conclu-

sion is that the PSO-S-QN algorithm generated design ξmmKL is max-min KL-optimal.

We now compare our optimal designs with the design ξP2000 with eight doses in [25].

Table 2 shows the T- and KL-efficiencies for our max-min discrimination designs, ξmmT and

ξmmKL, and ξP2000. The notation T−Effj is the T-efficiency of a design relative to the T-optimal

design for discriminating between models with mean responses υ5 and υj, j = 1, 2, 3, 4; simi-

larly, KL−Effj is the corresponding KL-efficiency. On the left panel of Table 2, the competing

models have normally distributed errors and ξmmT is the best design because its maximized

minimal value of T-efficiency is 77.47%. If one uses ξmmKL as the design to discriminate models

with normally distributed data, its T-efficiency is at least 71.45%. In contrast, the design ξP2000

has less than 60% T-efficiency for discriminating any of the other models with model (19).

When the pharmacokinetic data is lognormally distributed, the right panel of Table 2 shows

the KL-efficiency of each design. The performances of the various designs are similar except

Table 1. The T- and KL-optimal designs on X ¼ ½0; 1250� when the true model is (19) with nominal values (a, b, c, d) = (4.282, 835.571, 0.739, 3.515).

Model Assumption Normal Lognormal

Rival Model T-optimal Design KL-optimal Design

(15) 0:000 1250:000

0:500 0:500

( )
0:000 1250:000

0:500 0:500

( )

(16) 0:000 468:156 1064:178

0:249 0:498 0:253

( )
0:000 487:447 1065:370

0:271 0:500 0:229

( )

(17) 0:000 484:197 963:144 1250:000

0:092 0:280 0:407 0:221

( )
0:000 498:900 979:719 1250:000

0:093 0:290 0:407 0:210

( )

(18) 0:000 468:155 1064:177

0:249 0:498 0:253

( )
0:000 487:448 1065:369

0:271 0:500 0:229

( )

https://doi.org/10.1371/journal.pone.0239864.t001
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Fig 1. The plots of ψmmKL(x, ξ) in (10) for (a) max-min T-optimal design ξmmT and (b) max-min KL-optimal

design ξmmKL found by the PSO-S-QN algorithm for discriminating among the 5 toxicology models. The figures

confirm the max-min T-optimality and the max-min KL-optimality of ξmmT and ξmmKL, respectively.

https://doi.org/10.1371/journal.pone.0239864.g001
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for the design ξP2000 which has poor minimal KL-efficiency relative to the max-min T-optimal

design, ξmmT, which has at least 73.02% KL-efficiency. These findings suggest that care must be

exercised to implement a design to discriminate among a class of models. For this application,

it appears that the performances of the various optimal discriminating designs are not much

affected whether the errors are normally distributed or not.

Further examples

We now further demonstrate that the proposed algorithms are flexible and are also able to (i)

generate singular optimal discriminating designs, (ii) discriminate models when there are con-

straints on the model parameters, and (iii) solve discrimination optimal design problem that

requires 4 layers of nested optimization over different spaces. For (i), we use an example from

[6] and for (ii) we use an example from [1]. [9] proposed robust discrimination designs when

there is uncertainty in both the models and their model parameters and we show our algo-

rithms are also able to solve the 4-layer nested optimization problem and produce the same

designs as they did analytically.

Optimal design with singular information matrix

The problem of finding an optimal design to discriminate between a cubic polynomial model

and a linear model defined on [−1, 1] was considered in [6]. The mean responses from the 2

models are

Z1ðxÞ ¼ g0 þ g1xþ g2x2 þ g3x3; gT ¼ ðg0; g1; g2; g3Þ

and

Z2ðxÞ ¼ y0 þ y1x;

and the vector of nominal values of the parameters in η1 is γ = (1, 1, 0, 1).

A direct application of the PSO-QN algorithm shows that the T-optimal design for this

example is x
�

3pt ¼ f� 0:500; 0:500; 1:000; 0:167; 0:500; 0:333g. This design has 3 unequally

supported points and is singular. Its T-optimality is confirmed by its directional derivative

function (2) plot on the left panel of Fig 2. Clearly, a drawback of this optimal discriminating

design x
�

3pt is that it cannot be used to estimate the 4 parameters in η1. The PSO-QN algorithm

first searches for the best 4-point design, which is

x
�

4pt ¼ f� 1:000; � 0:500; 0:500; 1:000; 0:045; 0:211; 0:455; 0:289g. Its T-optimality is con-

firmed by the directional derivative plot (2) on the right panel of Fig 2. This design has 4 points

Table 2. T- and KL-efficiencies of optimal discriminating designs, ξmmT and ξmmKL, and one selected design, ξP2000.

Design T-efficiency

T−Eff1 T−Eff2 T−Eff3 T−Eff4

Max-min T-optimal ξmmT 77.47% 77.47% 77.47% 77.47%

Max-min KL-optimal ξmmKL 76.78% 80.47% 71.45% 80.47%

Piersma et al. [25] ξP2000 53.40% 57.19% 55.15% 57.19%

Design KL-efficiency

KL−Eff1 KL−Eff2 KL−Eff3 KL−Eff4

Max-min T-optimal ξmmT 77.32% 73.02% 81.20% 73.03%

Max-min KL-optimal ξmmKL 76.78% 76.78% 76.78% 76.78%

Piersma et al. [25] ξP2000 52.62% 53.82% 54.11% 53.82%

https://doi.org/10.1371/journal.pone.0239864.t002
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Fig 2. The plots of ψT(x, ξ) in (2) for the cases when the T-optimal designs have 3 or 4 points.

https://doi.org/10.1371/journal.pone.0239864.g002
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and so it can estimate all the parameters in η1. Both these designs agree with the designs

reported in [6], who also showed that such optimal designs are not unique.

A larger rival model with a constraint on the model parameters

The design problem to discriminate between 2 models, where the hypothesized true model η1

is simpler in structure than the alternative model η2 with a constraint on its model parameters

was considered in [1]. The 2 models are defined on [−1, 1] and their mean responses are

Z1ðxÞ ¼ g

and

Z2ðxÞ ¼ y0 þ y1xþ y2x2;

where y
2

1
þ y

2

2
� 1.

We first transform the constraint in η2 to box-type constraint by letting θ1 = r cos ϕ and

θ2 = r sin ϕ where r 2 [1,1) and ϕ 2 [0, 2π]. the PSO-QN algorithm generated the T-optimal

design ξ� = {−1.000, 0.000, 1.000;0.25, 0.50, 0.25}, which coincides with the T-optimal design

found in [1]. Fig 3 displays the plot of the directional derivative of the T-optimality criterion

evaluated at ξ� and confirms its optimality.

Fig 3. The plot of ψT(x, ξ) in (2) for the case of singular design example in [1].

https://doi.org/10.1371/journal.pone.0239864.g003
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Standardized maximin T-optimal design

To find T- and KL-optimal designs, we need to pre-specify the true model with assumed

parameter values. However, mis-specified model parameter values can lead to a much less effi-

cient discrimination design. To overcome the mis-specification problem, a robust T-optimal

criterion was proposed by [9]. Let Θtr be a user-selected set containing plausible true values of

the model parameters. The strategy is to find a design which is robust to mis-specification of

the nominal values of Θtr. If θtr is the vector of model parameters in the true model, the T-effi-

ciency of a design ξ is

Effðx; ytrÞ ¼
T2;trðx; ytrÞ

T2;trðx
�

TðytrÞ; ytrÞ
; where T2;tr x; ytrð Þ ¼ min

y22Y2

D2;tr x; ytr; y2ð Þ

and x
�

TðytrÞ is the locally T-optimal design when the true model has parameter θtr, i.e.

x
�

TðytrÞ ¼ arg maxx2XT2;trðx; ytrÞ:. [9] proposed finding a standardized maximin T-optimal

design, x
�

rbstT , that maximizes the minimal T-efficiency, i.e.

x
�

rbstT ¼ arg max
x2X

min
ytr2Ytr

Effðx; ytrÞ
� �

¼ arg max
x2X

min
ytr2Ytr

min
y22Y2

D2;trðx; ytr; y2Þ

max
l2X

min
y22Y2

D2;trðl; ytr; y2Þ

8
<

:

9
=

;

8
<

:

9
=

;
: ð20Þ

To tackle this 4-layer optimization problem, we propose the Nested-PSO-QN algorithm

that combines the Nested-PSO in [17] and the PSO-QN algorithm. The outer loop of the

Nested-PSO-QN maximizes the minimal T-efficiency across the design space and this minimal

T-efficiency is obtained by searching the interior of the parameter space,Θtr in the inner loop.

In calculating the T-efficiency, we note that the term in the numerator is differentiable and so

we used the L-BFGS algorithm to optimize it. The denominator in the T-efficiency formula is

a locally T-optimal design problem, and we had solved it using the PSO-QN algorithm. In the

event that the locally T-optimal design can be analytically described, the speed of the Nested-

PSO-QN algorithm could be accelerated and computation time will be greatly reduced. Below

is an example where we used 64 particles and 200 iterations for the outer Nested-PSO-QN

loop computation using 64 particles and 50 iterations for the inner Nested-PSO-QN loop

computation.

Example in Dette et al. [9]. Consider 2 homoscedastic polynomial models defined on x 2
[−1, 1] with normally distributed errors and the mean responses are

Z1ðx; bÞ ¼ b0 þ b1xþ b2x2 þ � � � þ bmxm; ð21Þ

and Z2ðx; y2Þ ¼ y20 þ y21xþ y22x2 þ � � � þ y2;m� 2xm� 2; m > 2: ð22Þ

Here the larger of the 2 nested models is the true model, i.e. ηtr = η1. If θtr = βm−1/βm and θtr 2
Θtr, [9] showed that the problem of finding a standardized maximin T-optimal design to dis-

criminate between (21) and (22) is equivalent to that for discriminating between the 2 models

with means given by

Ztrðx; ytrÞ ¼ xm� 1 þ
xm

ytr
and Z2ðx; y2Þ ¼ y20 þ y21xþ y22x

2 þ � � � þ y2;m� 2x
m� 2:

Suppose the parameter of ηtr is known to be in the interval Θtr = [−1, 1] and we use the

Nested-PSO-QN algorithm to find a standardized maximin T-optimal design. In this example,

the locally T-optimal design has a closed-form solution for each θtr 2 Θtr [8] and so we were

able to accelerate the Nested-PSO-QN algorithm by incorporating the information into the

PLOS ONE Hybrid algorithms for discriminating multiple nonlinear models using various criteria

PLOS ONE | https://doi.org/10.1371/journal.pone.0239864 October 5, 2020 15 / 30

https://doi.org/10.1371/journal.pone.0239864


denominator of the T-efficiency formula without using the PSO-QN algorithm. We ran the

Nested-PSO-QN algorithm for 2 cases when m = 2 and m = 3 in the above problem. Table 3

displays the standardized maximin designs (ξrbstT), along with the optimal designs ξDMS2013

found by [9], who used a special algorithm to convert the problem to one of finding the root

for a Chebyshev’s polynomial. The table also displays the various T-efficiencies and shows our

algorithms were able to produce optimal designs similar to those in [9].

Implementation, computational efficiency of proposed algorithms

and an online tool for finding optimal discriminating designs

We now discuss (i), performances of our algorithms PSO-QN, PSO-S-QN and Nested-

PSO-QN relative to other algorithms, (ii) our package for generating a tailor-made optimal

discriminating design, and (iii) how to implement our algorithms using C++ codes in a Rcpp

package in R [27]. All computations were done on the Linux server with Intel Xeon CPU E5-

2620 2.0 GHz and 64GB RAM. In addition, we compare the performance with a R-package

which contains 2 functions for the T-optimal design and the KL-optimal designs.

Runtime

Table 4 shows the CPU times of one run for all cases investigated in this paper. The computing

time for the PSO-QN algorithm depends on the complexity of the model structure. For exam-

ple, it took only 7 seconds of CPU time to find the optimal design for discriminating between

model (19) versus a constant rival model (15). When the rival model is a more complicated

model, like model (17), the algorithm took 90 seconds to find the optimal design for discrimi-

nating between models (19) and (17).

We expect the PSO-S-QN algorithm requires more time to search for the max-min optimal

discriminating designs because we have a 3-layer optimization problem. The total computing

time for finding such an optimal discrimination design should becomes noticeably longer

when we include time for finding the optimal designs for all the pairwise optimal discriminat-

ing design problems. For example, consider the problem, where there are 5 competing models

and the PSO-S-QN algorithm was applied to find a max-min T-optimal design. We first

applied the PSO-QN algorithm to find T-optimal designs for discriminating between the

assumed true model and each of the rival models (15), (16), (17) and (18). The computing

time for searching the T-optimal design for each of these 4 2-model discrimination problems

was 7.12, 29.02, 90.94 and 73.28 seconds, respectively. We then ran the PSO-S-QN algorithm

and it took 399.12 seconds to find the max-min T-optimal design. The total computing time

Table 3. T-efficiencies of standardized T-optimal designs found by the proposed Nested-PSO-QN algorithm and those reported in [9].

m Optimal Design T−Eff

2 ξrbstT � 1:0000 0:0022 1:0000

0:3137 0:3712 0:3151

( )
64.00%

ξDMS2013 � 1:0000 0:0000 1:0000

0:3125 0:3750 0:3125

( )
64.00%

3 ξrbstT � 1:0000 � 0:4161 0:4162 1:0000

0:1969 0:3031 0:3035 0:1965

( )
61.79%

ξDMS2013 � 1:0000 � 0:4170 0:4170 1:0000

0:1973 0:3027 0:3027 0:1973

( )
61.79%

https://doi.org/10.1371/journal.pone.0239864.t003
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for finding the max-min discrimination design is the sum of these computing time which

equals 599.48 seconds.

For the standardized maximin T-optimal design problems, the Nested-PSO-QN algorithm

required 1057.83 and 8344.12 seconds for solving the same problems just discussed when

m = 2 and m = 3, respectively. The computational time for each problem is unsurprisingly

long because we were trying to solve 4-layer optimization problems.

Efficiency of the PSO-QN algorithm

This subsection compares the performance of the PSO-QN algorithm with some well-known

algorithms for finding optimal discriminating designs. For T-optimal design problems, we

consider 2 algorithms, the Fedorov-Wynn algorithm in [1] and the Remes algorithm in [6].

For KL-optimal design problems, we consider the Fedorov-Wynn algorithm and also the

Nested-PSO algorithm proposed in [17] for solving T- and KL-optimal design problems.

We used 32 particles and 200 iterations for the PSO-QN and Nested-PSO algorithms and

32 particles and 100 iterations in the inner loop of the Nested-PSO algorithm to minimize the

squared difference between the 2 means from the 2 models over the parameter space. For the

Fedorov-Wynn type algorithm, we started with a random initial design and pruned the design

every 3 iterations during the 200 iterations. For the Remes algorithm, the initial support points

were randomly chosen before we ran it for 200 iterations. We implemented them using Rcpp

package in R [27] and ran them repeatedly for 50 times by randomly selecting the initial status

of the different approaches and computed the efficiencies of the resulting designs relative to

the optimal designs.

Table 4. Computing times of one run of the proposed algorithms for all our examples.

Algorithm Number of Layers Criterion Section† Case CPU time

PSO-QN 2 T (19) vs. (15) 7.12

(19) vs. (16) 29.02

(19) vs. (17) 90.94

(19) vs. (18) 73.28

A.2† (A25) vs. (A26) 23.11

(A25) vs. (A27) 62.38

KL (Lognormal) (19) vs. (15) 6.84

(19) vs. (16) 32.41

(19) vs. (17) 90.08

(19) vs. (18) 84.52

KL (Lognormal) A.1† (A24) vs. (A23) 21.12

KL (Gamma) (A24) vs. (A23) 20.43

KL (Binomial) A.3† (A31) vs. (A28) 1.39

(A31) vs. (A29) 16.75

(A31) vs. (A30) 2.41

PSO-S-QN 3 max-min T 399.12

A.2† 165.78

max-min KL (Lognormal) 423.93

max-min KL (Binomial) A.3† 85.65

Nested-PSO-QN 4 Standardized m = 2 1057.83

maximin T m = 3 8344.12

† Sections A.1, A.2 and A.3 are in the appendix.

https://doi.org/10.1371/journal.pone.0239864.t004
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Table 5 shows the performances of the 4 algorithms for finding the T-optimal designs for

the toxicological Experiments and Section A.2 of the Appendix. The results are based on 50

replications and show the range of T-efficiency values of the generated designs by different

algorithms and the frequencies of their success in finding a design with at least 90% T-effi-

ciency. We also report average computing time for each algorithm.

Our overall numerical results show that PSO-QN algorithm outperforms the other 3 algo-

rithms in 5 out of 6 cases in terms of frequency for finding optimal designs. For example, to

discriminate between toxicological models (19) and (17), PSO-QN algorithm can find the T-

optimal design while the rest of the 3 algorithms cannot. For the case of discriminating models

(19) and (18), PSO-QN algorithm finds designs with at least 90% T-efficiency in all 50 replica-

tions and 49 out of them are T-optimal. For the same case, Nested-PSO algorithm finds the T-

optimal design for 26 times; Fedorov-Wynn algorithm and Remes algorithms perform the

worst due to low frequency in identifying the optimal design. Only when a simple competing

model like model (15) is involved, all algorithms performs similarly. In terms of computational

cost, Fedorov-Wynn algorithm and Remes algorithm require shorter computing time than

PSO-based algorithms because they start with a single initial design. However, with the same

Table 5. Performance of various search algorithms for finding T-optimal designs.

True Model Rival Model Search Algorithm T-Efficiency CPU Time

(seconds)Min. Max. #(90%+)† #(100%)‡

(19) (15) PSO-QN 100.00 100.00 50 50 7.59

Nested-PSO 100.00 100.00 50 50 200.11

Fedorov-Wynn 97.58 99.92 50 0 12.00

Remes 100.00 100.00 50 50 1.89

(19) (16) PSO-QN 58.80 100.00 47 47 32.00

Nested-PSO 58.81 100.00 48 46 213.91

Fedorov-Wynn 91.18 99.31 50 0 37.95

Remes 83.00 100.00 11 6 11.03

(19) (17) PSO-QN 0.00 100.00 43 43 94.38

Nested-PSO 0.00 62.38 0 0 232.78

Fedorov-Wynn 89.81 95.73 49 0 116.84

Remes 0.00 61.18 0 0 15.74

(19) (18) PSO-QN 94.51 100.00 50 49 77.85

Nested-PSO 0.04 100.00 46 26 216.87

Fedorov-Wynn 0.00 100.00 49 1 109.85

Remes 51.73 99.82 7 0 12.02

Section A.2 of the appendix

(A25) (A26) PSO-QN 99.67 100.00 50 12 22.75

Nested-PSO 0.00 4.57 0 0 202.45

Fedorov-Wynn 87.83 95.64 45 0 19.35

Remes 0.00 99.99 48 0 22.06

(A25) (A27) PSO-QN 100.00 100.00 50 50 60.26

Nested-PSO 0.00 41.66 0 0 246.63

Fedorov-Wynn 84.90 95.95 42 0 44.68

Remes 82.58 100.00 49 5 47.15

†the number of designs with at least 90% T-efficiency found over 50 replications.
‡the number of T-optimal designs found over 50 replications.

https://doi.org/10.1371/journal.pone.0239864.t005
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32 initial designs, PSO-QN algorithm is faster and more efficient than Nested-PSO algorithm.

This shows the need for having a specialized algorithm for optimal discrimination design

problems.

The Nested-PSO algorithm may not converge when it searches in the inner loop of PSO.

One may wonder whether the performance of Nested-PSO depends on the accuracy sought

for the optimal solution in the inner loop. Our experience is that the L-BFSG algorithm as the

inner loop solver in our PSO-QN algorithm tends to work better. For example, consider the

case of discriminating between models (A3) and (A4) in Section A.2 of the appendix. We cal-

culated the inner optimization problem in (1) at the T-optimal design, T2,tr(ξT,2), by L-BFGS

and PSO algorithms. To have a fair comparison, we terminate both algorithms when the stop-

ping criterion, |g(t − 1) − g(t)|/g(t) < 10−6, is achieved and g(t) is the value of the objective

function at the tth iteration.

We use 4 different swarm sizes in PSO and there are 32, 64, 128 and 256 particles. We ran

both algorithms 100 times, each time with a randomly chosen initial value of θ2, and report the

mean value of T2,tr(ξT,2) in Table 6.

Our results suggest that with more particles, PSO is more likely to find the value of T2,

tr(ξT,2). This can be seen from Table 6 that shows the standard deviations of the minimal values

decreases as the swarm size increases. However, L-BFGS algorithm finds the minimal value,

which is smaller than those found by PSO using different swarm sizes. Table 6 also reports the

average computing time required for convergence and suggests that L-BFGS algorithm is also

faster than PSO. This is a reason that encourages us to use the L-BFGS algorithm to solve the

inner optimization problem in (13).

Lastly we compare the performances of the various algorithms for finding KL-optimal

designs. The Remes algorithm in [6] is not included because we cannot find the details on how

to modify the Remes algorithm to find KL-optimal designs in their paper. Table 7 shows per-

formances of PSO-QN, Nested-PSO and Fedorov-Wynn algorithms. The results are similar to

the previous discussion and suggests that the proposed PSO-QN algorithm is more effective

for finding KL-optimal discrimination designs since it has the highest frequency for identifying

the KL-optimal designs in all cases. Fedorov-Wynn algorithm seems adequate for finding

highly efficient designs under the KL-optimality criterion but seems to have trouble finding

the optimal designs. Nested-PSO requires more computing time to find the optimum and its

overall performance is not as good as that from PSO-QN.

Comparison with a R-package

It is instructive to compare performance of the proposed algorithm with other algorithms

coded in R for compatibility. After an extensive search, we were only able to find an

Table 6. Efficiencies of the L-BFGS and PSO algorithms for solving the inner optimization problem (1) in the T-optimal design problem in Section A.2 of the

appendix.

Algorithm Swarm Size T2,tr(ξT,2) (Unit: 10−3) CPU time

(seconds)Min. Max. Mean SD†

L-BFGS – 1.087 1.087 1.087 � 0 0.001

PSO 32 1.106 10.500 3.614 2.413 0.056

64 1.101 4.534 1.986 0.805 0.107

128 1.090 3.507 1.558 0.474 0.327

256 1.091 2.241 1.280 0.234 0.601

†standard deviation.

https://doi.org/10.1371/journal.pone.0239864.t006
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appropriate R package called rodd for comparison. The R package was published in 2016 and

it generates locally and Bayesian optimal discriminating designs [28]. In the rodd package, the

function, tpopt, is for constructing T-optimal designs and the function, KLopt.lnorm, is

for finding KL-optimal designs with lognormal errors. These 2 functions were coded based on

the algorithms in [29] and [30], respectively. After an initial design is provided, the 2 functions

search for an optimal discriminating design using 2 common steps. The first common step is

to update the candidate set of the support points by combining the current support points and

points that locally maximize FT orFKL. The second common step determines the weights of

the candidate support points by maximizing the T- or KL-criterion directly, and support

points with extremely small weights are removed. To speed up the optimization process, a qua-

dratic programming method was proposed and [29, 30] showed that these functions were able

to find the optimal discriminating designs after a few iterations.

We report the performances of these 2 functions for searching T-optimal designs and KL-

optimal design for the 5 models, (15)–(19), in the toxicological experiment and errors are log-

normally distributed when we consider the KL-optimal criterion. We assume model (19) is the

true model, as was the case in the earlier comparison section. The tuning parameters in the 2

functions are the same as the default settings in the package. For each function, we ran the

algorithm independently 50 times using a specially selected initial design. In the first instance,

the initial design was the design equally supported at 10 points generated from Uniform[0,

1250]. For the other 49 instances, the initial design was selected as follows. The number of sup-

port points of each of the initial designs was randomly generated from a Poisson distribution

with a mean equal to 10. Then we independently sample the required number of support

Table 7. Performance of various search algorithms for finding KL-optimal designs.

True Model Rival Model Error Assumption Search Algorithm KL-Efficiency CPU Time

(seconds)Min. Max. #(90%+)† #(100%)‡

(19) (15) Lognormal PSO-QN 100.00 100.00 50 50 7.08

Nested-PSO 100.00 100.00 50 50 211.02

Fedorov-Wynn 99.78 99.95 50 0 14.82

(19) (16) Lognormal PSO-QN 100.00 100.00 50 50 32.58

Nested-PSO 51.30 100.00 49 46 229.05

Fedorov-Wynn 91.29 96.39 50 0 43.26

(19) (17) Lognormal PSO-QN 62.18 100.00 35 35 128.83

Nested-PSO 0.00 39.36 0 0 252.82

Fedorov-Wynn 0.00 96.19 48 0 128.69

(19) (18) Lognormal PSO-QN 99.55 100.00 50 49 90.42

Nested-PSO 14.49 100.00 45 35 231.85

Fedorov-Wynn 0.00 96.78 48 0 114.72

Section A.1 of the appendix

(A24) (A23) Lognormal PSO-QN 15.22 100.00 49 49 20.68

Nested-PSO 15.26 100.00 48 41 209.26

Fedorov-Wynn 91.64 96.11 50 0 18.80

(A24) (A23) Gamma PSO-QN 15.18 100.00 48 48 19.88

Nested-PSO 69.81 100.00 46 41 198.25

Fedorov-Wynn 92.00 97.46 50 0 17.19

†the number of designs with at least 90% KL-efficiency found over 50 replications.
‡the number of KL-optimal designs found over 50 replications.

https://doi.org/10.1371/journal.pone.0239864.t007
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points from Uniform[0, 1250], generate a random sample w0is from Uniform(0,1] and assign

weight wi/∑i wi to the ith support point. The relative T- and KL-efficiencies are then recorded

and compared with other search algorithms. Due to the different initial designs, we also report

the frequencies that the function can successfully generate designs without an error message.

Tables 8 and 9 report the comparison results. We observe that the function, tpopt, for

finding T-optimal designs is sensitive to the initial design. In particular, there were only 29

times that the tpopt function was able to generate a design without an error message for dis-

criminating between models (15) and (19). In contrast, the other function KLopt.lnorm
appeared more numerically stable because there was no error message for all the 50 runs and

had fast computational time. The design generated by KLopt.lnorm frequently had more

than 90% design efficiencies, except for the case when we want to discriminate between models

(15) and (19), which can be low. In contrast, Table 7 shows the PSO-QN generated designs

consistently have higher KL-efficiencies in all the 4 cases.

An open resource in R software for finding optimal discrimination designs

We have devoted much time to develop a software package called DiscrimOD for R users to

find various types of optimal discrimination designs in this paper. The user can download the

file, DiscrimOD_0.1.1.tar.gz, from the supplementary material and install the Discri-

mOD package by the R code, DiscrimOD_Install.r. This package allows the

user to implement the PSO-QN and the PSO-S-QN algorithms to find the discrimination

designs for their own problems. For comparison purposes, we have included both the

Fedorov-Wynn and Remes algorithms for finding optimal discrimination designs when there

are 2 competing models.

There are previously developed R packages, such as Rcpp [27], RcppDE [31] and lbfgs
[24] that have high-end programming techniques and we had incorporated them to make our

Table 8. Performance of tpopt function for finding T-optimal designs.

True Model Rival Model T-Efficiency Succ. Trails CPU Time

(seconds)Min. Max. #(90%+)† #(100%)‡

(19) (15) 0.00 0.00 0 0 29 0.02

(19) (16) 0.00 100.00 16 16 35 0.07

(19) (17) 0.00 100.00 7 7 31 0.11

(19) (18) 0.00 0.88 0 0 9 0.59

†the number of designs with at least 90% T-efficiency found over 50 replications.
‡the number of T-optimal designs found over 50 replications.

https://doi.org/10.1371/journal.pone.0239864.t008

Table 9. Performance of KLopt.lnorm function for finding KL-optimal designs.

True Model Rival Model KL-Efficiency Succ. Trails CPU Time

(seconds)Min. Max. #(90%+)† #(100%)‡

(19) (15) 59.27 100.00 47 44 50 0.06

(19) (16) 8.31 100.00 44 15 50 0.39

(19) (17) 0.00 100.00 39 14 50 0.81

(19) (18) 56.06 100.00 47 1 50 2.49

†the number of designs with at least 90% KL-efficiency found over 50 replications.
‡the number of KL-optimal designs found over 50 replications.

https://doi.org/10.1371/journal.pone.0239864.t009
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software package more flexible and broadly applicable. For instance, the user can input his or

her distance measures between 2 models, along with the error distributional assumptions and

compute the optimal discriminating design of interest. All the algorithms in the DiscrimOD

package are built using C++ coding for faster computation. The user only needs basic knowl-

edge of R programming to modify the codes by redefining a function or list object in R. For an

advanced R user, one can input the competing models and distance function in C++ codes to

accelerate the computation.

We provide R codes for implementing all the examples in this paper and Sections A.1 to

A.3 in the Appendix. For example, by running the R codes in demo_Section_4_tox_T.
r, our package will generate T-optimal and max-min T-optimal designs for the 5 toxicology

models in the section of application to toxicological experiments. Specifically, there are 6 steps:

(#1) define the 5 competing models (15)–(19) using the R function object;

(#2) specify the set of nominal values for the parameters in the true model and the parameter

space for each rival model;

(#3) define the distance measure function, which is the squared difference, between any 2

models;

(#4) set the values of the tuning parameters for the algorithms;

(#5) use the PSO-QN algorithm to find the T-optimal designs for each pair of the models to be

discriminated and check their T-optimality by the equivalence theorem; and

(#6) use T-optimal designs obtained in the previous step and the PSO-S-QN algorithm to find

the max-min T-optimal design for discriminating among the 5 models, and confirm its

max-min T-optimality by the equivalence theorem.

Similar to the first case shown in Table 5, we also provide an illustrative set of the R codes

that we have implemented in demo_Section_62_comparison.r. This file shows how

to run PSO-QN, NestedPSO, Fedorov-Wynn and Remes algorithms in R and compare the

resulting designs. We also provide the codes to generate the results in Table 6, where we show

that the L-BFGS algorithm is more efficient than PSO in solving the inner optimization prob-

lem in the T-optimal design criterion.

Summary

Optimal discriminating design problems are common across disciplines. For example, [32]

developed an optimal design for model discrimination and parameter estimation for studying

population pharmacokinetics in cystic fibrosis patients treated with itraconazole. Their design

found optimal sampling times to provide reliable estimates of the population parameters and

at the same time, discriminate between 2 competing models. Other examples of optimal dis-

criminating design problems are available in cognitive science [33], psychology [34] and

chemical engineering [35], to name a few. These are important optimization problems that are

still both theoretically and computationally challenging.

We believe the practical way to solve optimal discriminating design problems in practice is

to develop increasingly effective algorithms and make them available to the reader. This paper

proposes using nature-inspired metaheuristic algorithms to find these hard to find optimal dis-

criminating designs for the first time and we show that they generally perform as well or out-

perform current algorithms for finding optimal discriminating designs; the Remes algorithm

appears competitive in terms of CPU times, except that in all our examples, it did not find

the optimal designs as often as our algorithms. Unlike traditional algorithms, PSO is able to
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generate optimal designs neatly without need to periodically collapse clusters of points into

distinct points. It is also able to generate singular optimal designs seamlessly. Another advan-

tage of PSO is that is does not require the design space to be discretized, which is helpful for

solving high-dimensional optimization problems. We applied our algorithms to a toxicology

study and generated a design that optimally discriminates among 5 nonlinear models all with a

continuous outcome.

To facilitate practitioners implement the proposed algorithms, we provide as supplemen-

tary material, a R package for generating optimal designs in this paper. The user-friendly codes

can additionally evaluate efficiencies of other designs and be amended to find tailor-made

optimal discriminating designs for user-specified problems.

Appendix

We re-visit a couple of optimal discriminating problems and demonstrate our algorithms can

find the same optimal designs. For all the examples, we set tuning parameters for the proposed

algorithms in the following way. For the PSO-QN algorithm to identify the T- and KL-optimal

designs, we employed 32 particles and the stopping criterion was 200 iterations. For the

PSO-S-QN algorithm to find max-min T- and KL-optimal designs, we used 32 particles and

400 iterations. The remaining PSO parameters were the same as what we had set before. In the

inner loop of both algorithms, we ran the L-BFGS algorithm for 4 times with randomly chosen

initial values to check whether it had converged to the same criterion value. The values of the

tuning parameters we used for the L-BFGS algorithm were their default values in [24].

A.1 2 pharmacokinetic models

[11] constructed KL-optimal designs for discriminating between the Michaelis-Menten (MM)

model and modified Michaelis-Menten (MMM). The 2 mean functions, respectively, are

Z1ðx; y1Þ ¼
V1x

K1 þ x
; y1 ¼ ðV1;K1Þ; ðA23Þ

and Z2ðx; y2Þ ¼
V2x

K2 þ x
þ F2x; y2 ¼ ðV2;K2; F2Þ: ðA24Þ

The variable x is the substrate concentration in an experimental range X ¼ ½0:1; 5�. For j = 1,

2, the parameters V1 and V2 are the reaction rates at maximal concentration level, and K1 and

K2 are the Michaelis-Menten constants that represent the concentrations at which half of the

maximum velocity rates are reached for the 2 models. The MMM model generalizes the MM

model by adding a linear term with coefficient F2.

In this example, we assumed that the MMM model ηtr(x) = η2(x, θ2) is the true model with

nominal values θ2 = (V2, K2, F2) = (1, 1, 1). [36] assumed the model errors can have a log-nor-

mal or gamma distribution. For such distributions, a common assumption of the nuisance

parameters is that the response has a constant coefficient of variation [37]. Let s2
1

and s2
2

be the

variances of the random errors in the MM and MMM models, respectively, and assume that

s2
1
=Z1 ¼ s

2
2
=Z2 ¼ 1. The analytical form of the KL-divergence is given in [11].

Table 10 shows the PSO-QN-generated designs ξKL and their KL-optimal criterion values,

along with the corresponding designs, ξLTT2007 for the 2 error distributions from [11]. We

observe that they are similar. Fig 4 shows the plot for the directional derivative of the criterion

evaluated at the generated design for each error distribution and confirms that the PSO-QN
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generated designs are numerically KL-optimal because both graphs have non-positive values

with values close to zero at the support points of the generated designs.

A.2 3 models with normal errors

Suppose we wish to find an optimal design to discriminate among 3 linear models with homo-

scedastic errors defined on X ¼ ½� 1; 1� with mean responses given by

Z1ðx; y1Þ ¼ y10 þ y11ex þ y12e� x; ðA25Þ

Z2ðx; y2Þ ¼ y20 þ y21xþ y22x2; ðA26Þ

and Z3ðx; y3Þ ¼ y30 þ y31 sin
px
2

� �
þ y32 cos

px
2

� �
þ y33 sin pxð Þ: ðA27Þ

We assume the true model is ηtr(x) = η1(x, θ1) with nominal values θ1 = (θ10, θ11, θ12) = (4.5,

−1.5, −2). We first applied PSO-QN algorithm to find T-optimal designs for discriminating

between the 2 rival pairs of models, (A25) and (A26), and, (A25) and (A27). The T-optimal

designs are, respectively, given by

xT;2 ¼ f� 1:0000; � 0:6693; 0:1438; 0:9570; 0:2527; 0:4277; 0:2473; 0:0723g and

xT;3 ¼ f� 1:0000; � 0:7405; � 0:1044; 0:6340; 1:0000; 0:1916; 0:3228; 0:2274; 0:1772; 0:0810g;

and their T-optimal criterion values are T2,tr(ξT,2) = 0.001087 and T3,tr(ξT,3) = 0.005715. [1]

considered discriminating between the first pair only as an example in their work and their T-

optimal design is the same as ours. Results for the second rival pair are new. Fig 5(a) and 5(b)

display plots of the directional derivative of the T-optimality criterion evaluated at these

designs in the direction of the degenerate design at x and they confirm their T-optimality

because the graphs satisfy the conditions of the equivalence theorem.

To use the above results to discriminate among 3 models, the first step is to substitute the 2

T-optimal designs for discriminating each pair of the rival models and their optimal values

into the numerator of

Eff jðxÞ ¼
Tj;trðxÞ

Tj;trðxT;jÞ
; j ¼ 2; 3;

to calculate their T-efficiencies required in the PSO-S-QN algorithm. The resulting max-min

T-optimal design found from the PSO-S-QN algorithm is

xT;23 ¼ f� 1:0000; � 0:7034; � 0:0196; 0:5725; 1:0000; 0:2279; 0:3822; 0:2167; 0:1133; 0:0599g

and the max-min T-optimal criterion value is Im(ξT,23) = Eff2(ξT,23) = Eff3(ξT,23) = 0.806.

Table 10. PSO-QN generated KL-optimal designs for discriminating between the modified Michaelis-Menten model and Michaelis-Menten model versus corre-

sponding designs ξLTT2007 found by [11] based on a common and constant coefficient of variation for 2 error distributions.

Assumption ξKL I1,tr(ξKL) ξLTT2007 I1,tr(ξLTT2007)

Lognormal 0:1000 1:5690 5:0000

0:2940 0:5000 0:2060

( )
0.002565090 0:1000 1:5730 5:0000

0:2935 0:4996 0:2069

( )
0.002565069

Gamma 0:1000 1:5690 5:0000

0:2870 0:5119 0:2011

( )
0.002564359 0:1000 1:5730 5:0000

0:2868 0:5116 0:2016

( )
0.002564341

https://doi.org/10.1371/journal.pone.0239864.t010
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Fig 4. The plots of the directional derivative of the KL-optimality criterion for discriminating between the

Michaelis Menten and Modified Michaelis Menten models in the direction of the degenerate design at x and

evaluated at the PSO-QN-generated designs when errors are (a) lognormal and (b) gamma distributed. The figures

confirm the KL-optimality of the 2 designs in Section A.1.

https://doi.org/10.1371/journal.pone.0239864.g004
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We next show that ξT,23 is max-min T-optimal. Our numerical results suggest that the model

index set is CðxT;23Þ ¼ f2; 3g and a further application of PSO gives ð~a2; ~a3Þ ¼ ð0:688; 0:312Þ.

Fig 5(c) displays the directional derivative plot of the criterion in the direction of the degenerated

design at x and evaluated at the 5-point design ξT,23 and its graph confirms its optimality.

Fig 5. The plots of the directional derivatives of the optimality criteria evaluated at the generated designs for discriminating between the assumed true model

(A25) (a) against model (A26) and (b) against model (A27) and (c) for discriminating among all 3 models. The figures confirm the T-optimality and the max-min T-

optimality of the 3 designs in Section A.2.

https://doi.org/10.1371/journal.pone.0239864.g005
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A.3 Four logistic regression models

[21] considered the design problem for discriminating among 4 logistic models with different

regression mean structures:

Z1ðx; y1Þ ¼ y10x; y1 ¼ y10; ðA28Þ

Z2ðx; y2Þ ¼ y20 þ y21x; y2 ¼ ðy20; y21Þ; ðA29Þ

Z3ðx; y3Þ ¼ y30xþ y31x2; y3 ¼ ðy30; y31Þ; ðA30Þ

and Z4ðx; y4Þ ¼ y40 þ y41xþ y42x2; y4 ¼ ðy40; y41; y42Þ: ðA31Þ

It is assumed that the true model is ηtr(x) = η4(x, θ4) with nominal values θ4 = (1, 1, 1).

To find the max-min KL-optimal design, we first use PSO-QN to find KL-optimal designs

for discriminating between the true model ηtr = η4 and each of the rival model ηi, i = 1, 2, 3. A

direct application of the proposed algorithm produces designs that are similar to those in [21].

Then we apply the PSO-S-QN algorithm and obtain the max-min KL-optimal design, ξKL,123 =

{0.0000, 0.3598, 1.0000; 0.6185, 0.2393, 0.1423}. The optimal criterion values is Im(ξKL,123) =

0.619. We were also able to use the proposed algorithm and reproduce the design, ξTML2016 =

{0.0000, 0.3615, 1.0000; 0.6184, 0.2391, 0.1425} found by [21]. The optimal value for this design

● ● ●

Fig 6. The directional derivative plot of the PSO-S-QN generated design ξKL,123 for the max-min KL-optimal

discriminating design problem in Section A.3. This figure confirms the max-min KL-optimality of ξKL,123.

https://doi.org/10.1371/journal.pone.0239864.g006
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is Im(ξTML2016) = 0.618 and the KL-efficiencies of ξKL,123 relative to the KL-optimal designs are

ImðxKL;123Þ ¼ Eff2;trðxKL;123Þ ¼ Eff3;trðxKL;123Þ ¼ 0:619 < 0:634 ¼ Eff1;trðxKL;123Þ;

which imply that CðxKL;123Þ ¼ f2; 3g. A further calculation shows the sought vector of α is

~a ¼ ð~a1; ~a2; ~a3Þ ¼ ð0; 0:409; 0:591Þ and the directional derivative plot in Fig 6 confirms the

max-min KL-optimality of ξKL,123.
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