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Motor inhibition efficiency in healthy aging: the role 
of γ-aminobutyric acid

Complex behavior does not only require excitation of 
dedicated brain areas but also recruitment of inhibitory 
networks to tune behavior according to environmental 
contingencies. The ability to inhibit inappropriate be-
havior plays a key role in our daily lives and its impor-
tance cuts across multiple domains such as emotional, 
cognitive and motor behavior. Undoubtedly, inhibitory 
control enables high levels of flexibility and adaptabili-
ty in many real-world situations. For example, a lack of 
inhibition can be disruptive for social interactions; just 
imagine yourself insulting a driver who almost hurt 
you when crossing the road or hitting someone at the 
peak of anger during a heated discussion. Also in the 
motor context, preventing or suppressing an already 
planned or initiated motor response plays a key role in 
daily circumstances and even has survival value. For 
example, aborting to cross the street when suddenly 
detecting a fast approaching car can be a life threaten-
ing condition. Overall, this exemplifies the critical role 
of a healthy balance between processes of excitation 
and inhibition in the brain. There are many techniques 
to study inhibition. Here we approach the study of 
human age-related alterations in inhibitory process-
es via the registration of neurochemical compounds 

using medical imaging technology. Our work reveals 
that levels of gamma-aminobutyric acid (GABA) - the 
chief inhibitory neurotransmitter in the human brain - 
is altered during healthy aging and impacts the quality 
of inhibitory control in older adults (Levin et al., 2014; 
Hermans et al., 2018). We have performed a PubMed 
literature search of articles published in the period 
January 2016-November 2018 on the neural under-
pinnings of proactive and reactive inhibitory motor 
control in healthy aging. 

The study of inhibitory processes has a long his-
tory in experimental psychology. Inhibitory control 
is considered to be one of the distinct processes that 
belongs to executive functions, known to be critically 
important for the control of action. We can distinguish 
between at least two prominent types of inhibitory 
motor control, namely reactive and proactive inhibi-
tion. Reactive inhibition is the abrupt stopping of an 
already planned or initiated action. It is triggered by an 
unexpected stop signal such as a car that suddenly ap-
proaches you from the side. Conversely, proactive in-
hibition may come into play when the upcoming stop 
process can be anticipated as a result of environmental 
factors, such as driving more slowly in close proximity 
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to a primary school. The increased expectation of chil-
dren crossing the street leads us to drive much more 
cautiously. 

The study of inhibitory control or a lack thereof 
also has clinical relevance. Addiction to food, alcohol, 
drugs, etc. is a major burden with tremendous con-
sequences for the individual as well as society. Some 
pathological conditions are also associated with gen-
eral inhibitory control deficits (e.g., tourette syndrome 
and attention-deficit/hyperactivity disorder). But in-
hibitory control is also modulated across the lifespan. 
It is gradually shaped during adolescence when risky 
behavior is prominent and not yet fully under control. 
At higher age, inhibitory function is compromised and 
may provide an important clue into processes of ‘brain 
dedifferentiation’. More specifically, the dedifferen-
tiation hypothesis points to increased brain activity 
(reduced specificity of neural representations) and in-
creased connectivity (or reduced segregation) among 
the different functional networks in older as compared 
to young adults (Logan et al., 2002; King et al., 2017). 

From the perspective of different modes of inhibito-
ry control, recent literature suggests that older adults 
are readily able to anticipate upcoming stops (proactive 
inhibition) and this is shaped by lifelong experience. 
Conversely, stimulus-driven stopping in response to an 
external cue (reactive inhibition) gradually deteriorates 
at higher age (Smittenaar et al., 2015; Bloemendaal 
et al., 2016; Kleerekooper et al., 2016). Consequently, 
these behavioral findings suggest distinct neural sub-
strates underlying proactive and reactive inhibition of 
which the latter might be more susceptible to age-re-
lated declines. 

To date, a considerable amount of research has been 
devoted to investigation of the underlying structural 
brain properties of motor inhibition and their differ-
ential involvement in proactive and reactive inhibition. 
In brief, efficient inhibitory control is known to rely 
on the integrity of a fronto-basal-ganglia network (Ja-
hanshahi et al., 2015) (Figure 1). Basically, the frontal 
part of this network produces a stop command via the 
basal ganglia in order to intercept the planned motor 
action that was generated in the primary motor cortex 
(M1) whenever needed. Two regions of the prefrontal 
cortex, namely the right inferior frontal cortex and 
pre-supplementary motor area, are also thought to 
play a critical role in successful stopping and are thus 
considered key nodes of the motor inhibition network. 
At the subcortical level, reactive inhibition is thought 
to rely primarily on the involvement of subthalamic 
nucleus (Aron and Poldrack, 2006), whereas proactive 
inhibition appears to be more dependent on the stria-
tum (Aron, 2011). 

In spite of the well-characterised structural scaffold 

of inhibitory motor control, the neurochemical archi-
tecture of the fronto-basal-ganglia network is less well 
characterized in the context of healthy aging. In gener-
al, there is mounting evidence that the GABA system is 
altered during healthy aging (Levin et al., 2014). More 
specifically, studies in which use is made of non-in-
vasive brain stimulation techniques have shown that 
older adults exhibit a reduced capacity to modulate 
GABAA- and GABAB-ergic inhibition and this is asso-
ciated with degraded motor performance (Levin et al., 
2014). Moreover, evidence from both animal and hu-
man studies suggests an age-related decrease in GABA 
level within various brain regions (Gao et al., 2013). 

Recently, we investigated the role of GABA level 
within the fronto-basal-ganglia network and its age-re-
lated consequences for inhibitory motor control. Using 
magnetic resonance spectroscopy, we quantified base-
line GABA level in key nodes of the fronto-basal-gan-
glia network, that is, the right inferior frontal cortex, 
pre-supplementary motor area, bilateral striatum and 
left sensorimotor cortex (Hermans et al., 2018). Mag-
netic resonance spectroscopy protocols were carried 
out on a magnetic resonance scanner and allowed for a 
non-invasive and in vivo detection of local GABA lev-
els. Although the concentration of GABA is relatively 
low and thus less strongly represented as compared to 
other metabolites in the human brain, we were able to 
accurately quantify GABA levels within specific brain 
areas by isolating the GABA signal from the spectrum, 
using MEGAPRESS (Puts and Edden, 2012). To de-
termine the level of proactive and reactive inhibitory 
control, both young and older adults performed an an-
ticipated response version of the stop-signal task with 
varying levels of stop-signal probability (Coxon et al., 
2012). More specifically, participants were instructed 
to lift their right index finger from a switch when a fill-
ing bar crossed a predefined target line (go trial). The 
target line was fixed across trials such that participants 
could precisely time their responses. In order to esti-
mate the latency of the stop process (i.e., stop-signal 
reaction time), stop trials were included in which the 
participants had to cancel their already planned action. 
That is, the bar stopped automatically before crossing 
the target line such that participants were required to 
inhibit the movement of lifting their finger from the 
switch. Using this stop-signal paradigm, we were able 
to quantify the efficiency of reactive inhibitory control. 
Furthermore, the stop-signal probability was manipu-
lated in order to assess the degree of proactive response 
slowing, i.e., participants slowed down as a function of 
whether less or more stops could be anticipated during 
upcoming trials. At the behavioral level, we demon-
strated age-related decrements in reactive inhibitory 
control whereas proactive inhibition remained intact, 
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in agreement with previous literature. With respect to 
the neurochemical correlates, the magnetic resonance 
spectroscopy data demonstrated that GABA levels 
within regions associated with the fronto-basal-ganglia 
network mediating motor inhibition were found to be 
lower in older as compared to young adults. Further-
more, we showed that GABA levels were functionally 
relevant for behavioral performance in older adults. In 
particular, lower GABA levels in the pre-supplementa-
ry motor area were predictive of longer stop-signal re-
action times, that is, poorer reactive inhibitory control 
in older but not young adults (Hermans et al., 2018). 

The integrity of the GABA system is of utmost im-
portance for efficient inhibitory control and reactive 
inhibition in particular. In fact, our data suggests that 
reactive inhibitory control is an executive function that 
is vulnerable to degeneration of the aging brain (Coxon 
et al., 2012; Hermans et al., 2018). Even though age-re-
lated declines in GABA level and other neurochemical 
compounds have been observed, whether and how this 
is triggered by structural brain changes remains less 

clear. In this respect, it is less likely that the age-re-
lated effects on GABA level are solely driven by brain 
atrophy (voxel composition). Rather, emerging evi-
dence from animal studies points towards a possible 
decline in GABA production and/or a degradation in 
GABAergic inhibitory interneurons (Ling et al., 2005; 
Hua et al., 2008), although further investigation is re-
quired. Interestingly, despite the fact that GABA level 
was altered across all tested brain regions in the total 
group of older adults as compared to young adults, 
reactive inhibition was better preserved in those older 
adults who maintained higher GABA levels within 
the pre-supplementary motor area, a key hub of the 
motor inhibitory network. This would also fit with 
the observation that patients showing a considerable 
deterioration in motor inhibition efficiency, such as 
attention-deficit/hyperactivity disorder and Tourette’s 
syndrome, also demonstrate degraded GABAergic 
functioning (Puts et al., 2015). Alternatively, the sub-
thalamic nucleus, an important node in the mediation 
of reactive inhibition, may be particularly susceptible 

Figure 1 Tentative scheme of the fronto-basal-ganglia pathways proposed to mediate proactive and reactive inhibition. 
Our data show that in older adults, GABA levels within the pre-SMA are functionally relevant for reactive inhibitory control. More specifically, 
lower GABA levels are associated with longer stop-signal reaction times or poorer reactive inhibitory control in older but not in young adults 
(Hermans et al., 2018). Pre-SMA: Pre-supplementary motor area; RIFC: right inferior frontal cortex; M1: primary motor cortex; STN: subthalamic 
nucleus; GPe: external segment of the globus pallidus; GPi: internal segment of the globus pallidus; THAL: thalamus; SNr: substantia nigra pars 
reticulata. Figure 1 is adapted from Leunissen et al. (2016) and Aron (2011).
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to age-related degradation as its connections with the 
cortex are known to be less abundant as compared with 
those of the striatum (Inase et al., 1999). Indeed, the 
pathways known to be involved in proactive inhibition 
are thought to be richer in quantity, and this might pos-
sibly account for the finding that proactive inhibition 
appears still preserved at older age (Figure 1). 

Altogether, research on the role of GABA within the 
fronto-basal-ganglia network and its implications for 
proactive and reactive inhibition sheds light on the un-
derlying neural mechanisms of age-related deficits in 
motor inhibition efficiency. Nevertheless, even though 
resting-state (baseline) GABA levels provide a window 
into the processes mediating motor inhibition, further 
research examining the role of GABA and its modula-
tory capacity within the fronto-basal-ganglia network 
during task execution is warranted (i.e., its task-related 
dynamics). In view of the demographic evolution of 
society, with the cohort of older adults being the fastest 
growing subpopulation, our ultimate aim is to con-
tribute to a basic understanding of neural mechanisms 
involved in inhibitory control. We argue that the study 
of inhibitory function is critically important for under-
standing mechanisms of ‘dedifferentiation’ in the aging 
brain and its consequences for brain structure, func-
tion, and connectivity. This body of knowledge will be 
instrumental for the development of interventions or 
rehabilitation procedures to counteract age-related de-
terioration in motor functioning in general and motor 
inhibition in particular. If we want to empower, sup-
port and sustain healthy aging, there is an urgent need 
to characterize age-related alterations to the GABAer-
gic system and its consequences for motor and cogni-
tive deficits. 
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