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Deiodinases constitute a group of thioredoxin fold-containing selenoenzymes that play an
important function in thyroid hormone homeostasis and control of thyroid hormone action.
There are three known deiodinases: D1 and D2 activate the pro-hormone thyroxine (T4) to
T3, the most active form of thyroid hormone, while D3 inactivates thyroid hormone and
terminates T3 action. A number of studies indicate that deiodinase expression is altered
in several types of cancers, suggesting that (i) they may represent a useful cancer marker
and/or (ii) could play a role in modulating cell proliferation – in different settings thyroid
hormone modulates cell proliferation. For example, although D2 is minimally expressed in
human and rodent skeletal muscle, its expression level in rhabdomyosarcoma (RMS)-13
cells is threefold to fourfold higher. In basal cell carcinoma (BCC) cells, sonic hedgehog
(Shh)-induced cell proliferation is accompanied by induction of D3 and inactivation of D2.
Interestingly a fivefold reduction in the growth of BCC in nude mice was observed if D3
expression was knocked down. A decrease in D1 activity has been described in renal clear
cell carcinoma, primary liver cancer, lung cancer, and some pituitary tumors, while in breast
cancer cells and tissue there is an increase in D1 activity. Furthermore D1 mRNA and activ-
ity were found to be decreased in papillary thyroid cancer while D1 and D2 activities were
significantly higher in follicular thyroid cancer tissue, in follicular adenoma, and in anaplastic
thyroid cancer. It is conceivable that understanding how deiodinase dysregulation in tumor
cells affect thyroid hormone signaling and possibly interfere with tumor progression could
lead to new antineoplastic approaches.
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INTRODUCTION
Deiodinases constitute a group of thioredoxin fold-containing
selenoenzymes that metabolize thyroid hormone via two distinct
pathways, i.e., thyroid hormone activation through outer ring
deiodination (ORD) or thyroid hormone inactivation through
inner ring deiodination (IRD; Bianco et al., 2002; Callebaut et al.,
2003). D2 and D3 are expressed in multiple tissues, representing
the main deiodinases involved respectively in activation and inac-
tivation of thyroid hormone. In contrast, D1 expression is mostly
observed in liver and kidney where it catalyzes both ORD and IRD
of conjugated thyroid hormone. Thus, it has been suggested that
D1 is a scavenger enzyme that recycles iodine from the backbone
of inactive iodothyronine en route to elimination via bile or urine
(Galton et al., 2009). In addition, lower D1 activity levels are also
detected in other tissues, including the thyroid gland itself (Pereira
et al., 2011). However, given its very low Km(T4) and Km(T3), it is
questionable whether D1 in these other tissues plays a significant
physiological role in euthyroid healthy individuals.

The expression of D2 and D3 can be exquisitely cell-specific
and change rapidly in response to a number of developmental,
metabolic, and disease cues through different signaling pathways
(Gereben et al., 2008). Because the expression of these enzymes
can be turned on or off in discrete groups of cells, most of the
time their actions do not affect circulating thyroid hormone lev-
els, which are tightly controlled via the TRH/TSH axis. Thus, the
actions of D2 and D3 are viewed as a cell-specific pre-receptor

mechanism to control thyroid hormone signaling that cannot
be predicted based on the levels of circulating thyroid hormone
(Gereben et al., 2008). For example, stimulation of D2 expres-
sion in brown adipose tissue by the cAMP pathway accelerates
transcription of T3-responsive genes such as UCP-1 and PGC-1,
without elevating serum T3 levels (Hall et al., 2010). In fact, D2
has been shown to play a role in a number of systems by locally
amplifying thyroid hormone action, e.g., interplay between astro-
cytes and neurons (Freitas et al., 2010), hypothalamus and the
reproductive system (Yoshimura et al., 2003), and skeletal mus-
cle (Dentice et al., 2011). In turn, ectopic D3 expression in the
heart and brain during ischemia or hypoxia lifts the T3-dependent
transcriptional footprint in these organs, in what can be seen as
an adaptive mechanism to the disease state (Wassen et al., 2002;
Olivares et al., 2007; Simonides et al., 2008; Pol et al., 2011).

Notably, a growing number of studies indicate that deiodinase
expression is also altered in cancer (previously reviewed in Meyer
et al., 2007; Piekielko-Witkowska and Nauman, 2011). While it is
conceivable that deiodinase expression is unrelated to the cancer
process, there is good indication that deiodinase reactivation could
in some cases constitute a useful marker of the disease (Gereben
and Bianco, 2009; Piekielko-Witkowska et al., 2009). In addition,
it is also likely that the changes in thyroid hormone signaling
resulting from deiodinase expression could play a role in cell pro-
liferation and/or cell viability via affecting the expression of cycling
D1, a protein factor that is part of a larger complex that controls
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G1-S transition in the mitotic cell cycle (Dentice et al., 2007). This
is illustrated in studies of basal cell carcinoma (BCC) cells, in which
sonic hedgehog (Shh)-induced cell proliferation is accompanied
by induction of D3 and loss of D2 activity. In fact, the growth
of BCC cells implanted in mice is dramatically reduced after D3
expression is knocked down, indicating that dampening of thyroid
hormone signaling is important for BCC growth (Dentice et al.,
2007).

MODELS OF ALTERED DEIODINASE EXPRESSION IN CANCER
CELLS
Given the multiple signaling pathways that regulate deiodinase
expression, it is not surprising that in cells that normally have deio-
dinase activity the expression of these enzymes would be affected
by the cancerous transformation (Table 1).

While D1 and D3 are transcriptionally regulated, D2 expression
can be regulated both transcriptionally and post-translationally
via ubiquitin-mediated D2 inactivation (Gereben et al., 2008).
DIO1 is the human gene encoding D1, which consists of four
exons and is located on chromosome 1 p32–p33 (Jakobs et al.,
1997a). The gene is under the control of GC-rich SP1 promot-
ers and contains two TREs in the 5′ flanking region (FR), both
contributing to it T3 responsiveness (Toyoda et al., 1995; Jakobs
et al., 1997b; Zhang et al., 1998). In turn, the DIO2 gene is located
on the long arm of the 14th human chromosome in position
14q24.3 (Celi et al., 1998; Araki et al., 1999). The coding region
is divided into two exons by a ∼7.4-kb intron (Celi et al., 1998).

It has three transcriptional start sites (TSS), 707, 31, and 24 bp
5′ to the initiator ATG (Bartha et al., 2000). The human, mouse,
and rat dio2 5′-FRs contain a functional cAMP responsive ele-
ment (CRE; Bartha et al., 2000; Song et al., 2000; Gereben et al.,
2001). In the human, dio2 5′ FR functional, thyroid transcription
factor-1 (TTF-1 or Nkx-2.1), Nkx-2.5, AP-1, and NF-κB sites have
also been described (Gereben et al., 2001; Dentice et al., 2003;
Zeold et al., 2006). In addition, glucocorticoids also increase D2
expression transcriptionally as established in GC pituitary tumor
cells and in the chicken brain (Kim et al., 1998; Van der Geyten
et al., 2001) via an actinomycin-dependent mechanism, not affect-
ing the half-life of D2 mRNA. Lastly, in animals and in some cell
models, LPS, and the NF-κB pathway have been shown to potently
increase D2 mRNA levels and enzymatic activity, indicating that
pro-inflammatory signals might also upregulate D2 expression
(Fekete et al., 2005).

DIO3 is localized on the human chromosome 14q32 (Hernan-
dez et al., 1998). In the mouse, the coding regions and the 3′ UTR
are contained in a single ∼1.9 kb long exon. The D3 promoter
contains a TATA box, two CAAT boxes, and several GC boxes in
the proximal 180-bp region of the 5′ FR (Hernandez et al., 1999).
A conserved 180-bp-long enhancer was identified ∼6 kb 3′ to the
dio3 TSS, and this region contains a consensus AP-1 site and serum
response element (Hernandez and St Germain, 2003). A conserved
Gli-2 (a member of the Gli transcription factor family that medi-
ates Shh signaling) binding site, D3-A, is located in the mouse and
human DIO3 5′ FR (Dentice et al., 2007). Human and mouse DIO3

Table 1 | Summary of deiodinases changes in human malignancies.

Type of cancer D1 D2 D3 Author/year

Follicular thyroid carcinoma N/A Increased N/A Kim et al. (2003)

Papillary thyroid carcinoma Decreased Decreased N/A Arnaldi et al. (2005)

Follicular thyroid carcinoma Increased Increased N/A

Papillary thyroid cancer Decreased Decreased N/A Ambroziak et al. (2005)

Papillary thyroid cancer Decreased N/A N/A de Souza Meyer et al. (2005)

Follicular thyroid carcinoma Increased Increased N/A

Anaplastic thyroid cancer Increased Increased N/A

Medullary thyroid cancer N/A Increased N/A Meyer et al. (2008)

Breast cancer Increased N/A N/A Debski et al. (2007)

Clear cell renal cell carcinoma Decreased N/A N/A Pachucki et al. (2001), Piekielko-Witkowska et al. (2009), Boguslawska

et al. (2011)

Liver hemangioma N/A N/A Increased Huang et al. (2000), Peters et al. (2010), Balazs et al. (2007)

Lung cancer Decreased Unchanged N/A Wawrzynska et al. (2003)

Hepatic adenoma Decreased N/A N/A Sabatino et al. (2000)

Gliomas N/A N/A Increased Mori et al. (1993)

Astrocytoma N/A Decreased N/A Murakami et al. (2000)

Glioblastoma N/A Decreased N/A

Oligodendroglioma N/A Increased N/A

Astrocytoma N/A Increased Decreased Nauman et al. (2004)

Gliosarcoma N/A Increased Increased

Glioblastoma multiforme N/A Increased Increased

Prostate cancer Decreased N/A N/A Dutkiewicz et al. (1995)

Pituitary tumor N/A Increased N/A Baur et al. (2002)

Pituitary tumors N/A Increased Increased Tannahill et al. (2002)

TSH and ACTH producing tumors N/A Decreased Increased
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genes map to chromosomal regions known to include imprinted
genes and there is consensus that the DIO3 gene is imprinted,
with preferential expression from the paternal chromosome
(Hernandez, 2005). The expression of the DIO3 gene is regu-
lated in vivo and in vitro by a number of different signaling
pathways. Thyroid hormone up-regulates D3 activity in the rat
brain (Peeters et al., 2001). In addition, D3 expression is also
up-regulated by the action of serum, phorbol esters, and the
epidermal and fibroblast growth factors (EGF, FGF; Hernandez
and Obregon, 1995; Pallud et al., 1999; Hernandez and St Ger-
main, 2002). High D3 activity can be found in human infant
hemangiomas, a tumor enriched in blood vessels (Huang et al.,
2000), indicating a relationship between D3 expression and angio-
genic processes possibly through the basic FGF (bFGF) signaling
pathway. In glial cells, induction of the DIO3 gene by growth fac-
tors appears to be mediated by the extracellular signal regulated
kinases (ERKs; Pallud et al., 1999). In particular, D3 expression
in astroglial cells is regulated by mitogens, growth factors, and
hormones, and exposure to certain combinations of these agents
results in synergistic induction of D3 mRNA levels and activ-
ity. The compounds that generate signals from the cell surface
[tetradecanoyl phorbol acetate (TPA) and bFGF] induce rapid
increases in D3 mRNA and activity, whereas treatment with lig-
ands that interact with nuclear receptors (T3 and retinoic acid)
result in slower effects. TGF-b stimulates transcription of the
human DIO3 gene via a Smad-dependent pathway. Combina-
tions of Smad2 or 3 with Smad4 stimulate the human DIO3
gene transcription only in cells that express endogenous D3 activ-
ity, indicating that Smads are necessary but not sufficient for D3
induction (Huang et al., 2005). TGF-b induces endogenous D3
in diverse human cell types, including fetal and adult fibrob-
lasts from several tissues, hemangioma cells, and fetal epithelia.
AT the same time, D3 promoter activity is induced threefold to
fourfold by estradiol, a mechanism that could contribute to the
increased T4 requirements during human pregnancy (Alexander
et al., 2003; Huang et al., 2003). During embryonic development,
secondary epithelia trans-differentiates into mature epithelia or,
under the influence of TGF-b and other paracrine factors, under-
goes epithelial-mesenchymal transition to produce the various cell
types of connective tissue. Thus, D3 expression in fetal epithelia
can be retained through the process of epithelial-mesenchymal
transition or reactivated after terminal differentiation by the action
of TGF-b (Huang et al., 2005).

TYPE 1 DEIODINASE
D1 activity is readily detectable in the liver, kidney, and thyroid
gland (Larsen et al., 1981). Notably, D1 expression is often sup-
pressed in cancer cells compared with the healthy tissue. This is the
case for example in the renal clear cell carcinoma (RCCC) where
both D1 expression and activity were found to be undetectable
compared with normal kidney cells (Pachucki et al., 2001). Fur-
thermore D1 activity was studies in 44 patients with lung cancer
(23 squamous cell and 21 adenocarcinoma) and found to be signif-
icantly lower as compared to peripheral lung tissue (Wawrzynska
et al., 2003). Additionally, DI activity is decreased in hepatic ade-
nocarcinoma (Sabatino et al., 2000) and in prostate cancer tissue
(Dutkiewicz et al., 1995).

Interestingly, an opposite pattern has been detected in different
histological types of mammary gland tumors induced in Sprague-
Dawley rats by injections of 1-methyl-1-nitrosourea (MNU). D1
activity was twofold higher in malignant mammary gland tumors
compared with non-lactating mammary gland (Macejova et al.,
2001). D1-mediated ORD was also tested in two breast cancer cell
lines: MCF-7 (ovarian hormone-dependent) and MDA-MB-231
(ovarian hormone-independent). While D1 activity was present
in MCF-7, which was stimulated only by retinoic acid treatments
but not by T3 or the beta-adrenergic agonist isoproterenol, in
MDA-MB-231 cells, no deiodinase activity could be detected in
control conditions or under any of these treatments. These results
suggest that D1 expression could represent a sensitive differen-
tiation marker of breast cancer cells (Garcia-Solis and Aceves,
2003). More recently, the D1 activity was evaluated in 36 sam-
ples of breast cancers (grade G1 to G3) and in non-cancerous
breast tissue taken from the opposite side to the location of the
tumor. D1 activity in non-cancerous breast tissues was found to
be very low or non-measurable. In contrast, in cancer tissues from
the same breasts – especially in G1 and G2 tumors – D1 activity
was significantly increased (Debski et al., 2007).

There are several studies assessing D1 expression in thyroid
cancer. D1 mRNA and enzyme activity were noted to be sig-
nificantly decreased in papillary thyroid cancer compared with
the normal thyroid tissue, regardless of the histological subtype
and/or the clinical stage (de Souza Meyer et al., 2005). Addi-
tionally, D1 gene expression was significantly lower in papillary
thyroid cancer as assessed from a cDNA analysis of three thy-
roid carcinoma cell lines using 1807 open reading frame expressed
sequence tags (ORESTES) previously recognized as cancer related
genes (Arnaldi et al., 2005). In one study, even though both D1
activity and mRNA levels were found to be decreased in papillary
thyroid cancer compared with healthy thyroid tissue, there was
no correlation between protein expression and enzymatic activity,
possibly due to both transcriptional and posttranslational mecha-
nisms; it was also observed that there was a statistically significant
correlation between D1 and Pax-8 expression in papillary thyroid
tissue (Ambroziak et al., 2005).

In contrast, D1 expression was found to be higher in follicular
thyroid cancer tissue and in follicular adenoma (de Souza Meyer
et al., 2005). However, in follicular thyroid cancer cell lines D1
activity appeared to be present and to have a normal response to
retinoic acid but lost the physiologic responsiveness to TSH and T3
(Schreck et al., 1994). D1 activity was evaluated in anaplastic cell
carcinoma cell line as well and found to be undetectable, even after
retinoic acid stimulation (Schreck et al., 1994); the opposite find-
ing was obtained in other study (de Souza Meyer et al., 2005),with
D1 activity significantly higher in one sample of anaplastic cancer
compared with normal tissue. This opposite result, if confirmed,
may be due to the different histological characteristic present
before the dedifferentiation process took place.

TYPE 1 DEIODINASE EXPRESSION AS A MARKER OF HUMAN RENAL
CANCER
As mentioned above, D1 is highly expressed in the normal kid-
ney. However, DIO1 expression is reduced in the most common
subtype of renal cancer, i.e., the RCCC. Both D1 expression and
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activity were undetectable in RCCC tissues (Pachucki et al., 2001).
Additionally, there seems to be a loss of the normal correlation
between D1 mRNA and activity in these tissues, possibly as a result
of post-transcriptional regulation. Studies from the same group
expanded their initial findings reporting interesting results related
to alternative splicing of DIO1 (Piekielko-Witkowska et al., 2009).
They cloned and identified a total of 11 D1mRNA transcripts,
seven of which were previously unreported. Of the 11 variants, all
were expressed in the RCCC samples, even if in significantly lower
amount compared with the control groups, while only eight were
present in healthy renal tissue. These findings lead to the conclu-
sion that three new splicing variants were expressed exclusively in
the cancer cells suggesting that they could potentially be used as
unique molecular markers for kidney tumors. All the putative D1
protein encoded by these three new variants are truncated products
of 111, 115, and 14 amino acids. In the last two alternative splice
forms the premature termination codon (PTC) is located more
than 50 nucleotides upstream of the final exon–exon junction and
usually they are degraded by the nonsense-mediated mRNA decay
(NMD) mechanism. Additionally all of them would be inactive
since they lack the exon 2 region that encodes the enzyme’s active
center. These observations could explain the original finding of
undetectable D1 expression and activity in RCCC tissue.

Recently the same authors investigate microRNAs (miRNAs)
as alternative regulators of DIO1 expression and function (Bogus-
lawska et al., 2011). MicroRNAs bind to complementary sequences
of target mRNAs and behave as post-transcriptional regulators
interfering with translation or causing target degradation. Using
bioinformatic analysis they identify seven potential miRNA tar-
geting regions of the 3′ untranslated region (3′ UTR) of DIO1
mRNA, two of which (miR-224 and miR-383) were significantly
over expressed in RCCC compared with normal tissue. They also
observed that there was a significant reduction of DIO1 transcript
in the clear cell carcinoma cell line Caki-2 which was previously
transfected with miR-224 precursor. Additionally the introduc-
tion of anti-miR-224 in these cells increased DIO1 expression
by 45%. Furthermore in miR-224 and miR-383 transfected Hela
cells a decrease of the activity of a luciferase reporter containing
the 3′ UTR of DIO1 was observed. This decrease was abolished
when mutated constructs were used instead, suggesting that these
miRNAs directly bind to DIO1 3′ UTR. Finally miR-224 expres-
sion in RCCC cells was found to correlate negatively with DIO1
mRNA content and T3 concentration suggesting that miR-224
induce intracellular hypothyroidism via a loss of DIO1 function.
Taken together these results open the possibility of an important
regulatory role of microRNAs in deiodinase activity particularly
in cancer cells.

TYPE 2 DEIODINASE
D2 is highly expressed in the brain with its mRNA and activity
normally present in astrocytes and other glial cells where it partic-
ipates in the paracrine control of T3-responsive genes in neurons
(Freitas et al., 2010). However, D2 expression is much higher in
most brain tumors such as astrocytoma and glioblastoma with
the highest D2 activity in gliosarcomas and oligodendrogliomas
(Mori et al., 1993; Murakami et al., 2000; Nauman et al., 2004).
Remarkably, even neuroblastomas express D2, given that normal

neurons are not known for exhibiting D2 activity (St Germain,
1986). Still within the central nervous system, the pituitary gland
is another structure that normally expresses D2, specifically in
the TSH-producing cells, participating in the normal TSH feed-
back mechanism (Christoffolete et al., 2006). D2 mRNA levels in
105 pituitary tumors were found to be 2.6-fold increased in all
pituitary tumors with the highest expression observed in non-
functional adenoma when compared with normal pituitary tissue.
The only exceptions were the TSH and ACTH producing tumors
where D2 mRNA was actually reduced (0.1-fold; Tannahill et al.,
2002). A higher D2 activity in TSH- and PRL-producing adeno-
mas was also reported, with variable D1/D2 ratios among patients
with similar types of tumors (Baur et al., 2002).

Several neoplastic cell lines were found to exhibit high D2
expression as compared with their normal counterparts. For exam-
ple, D2 is usually expressed in placenta and is also present in JEG3,
a choriocarcinoma cell line (Canettieri et al., 2000). In these cells,
D2 has been shown to be highly responsive to cAMP treatment
that involves the binding of transcription factor CRE binding pro-
tein (CREB) to the CRE located in the hD2 promoter (Canettieri
et al., 2000). Similar levels of D2 activity were reported in normal
lung tissue as well as in lung cancers (squamous cell cancer and
adenocarcinoma; Wawrzynska et al., 2003). At the same time, D2,
which is expressed in mesothelial cells, has 40-fold higher expres-
sion in the mesothelioma cell line (MSTO-211H), with the highest
levels of D2 ever seen in cultured cells (Curcio et al., 2001). Fur-
thermore, D2 is only minimally expressed in human and rodent
skeletal muscle or in primary cultures (Grozovsky et al., 2009;
Ramadan et al., 2011), however its expression is much higher in
rhabdomyosarcoma (RMS)-13 cells (da-Silva et al., 2007).

The expression of D2 mRNA and the presence of D2 activity
were detected in human osteoblast-like osteosarcoma (SaOS-2)
cell line but this time in lower amount compared with the normal
human osteoblast (NHOst) cells (Gouveia et al., 2005). Interest-
ingly, TSH was able to increase equally D2 mRNA expression
and activity in both cell lines via a TSH receptor-cAMP medi-
ated pathway suggesting that transcriptional regulation of D2 may
play an important role in the homeostasis of human osteoblasts
(Morimura et al., 2005).

D2 is also expressed in normal human thyroid tissue but its
expression changes in thyroid adenomas and cancer. D2 mRNA
and activity was found to be significantly increased in hyper-
functioning thyroid adenoma compared with the normal tissue
(Murakami et al., 2001). In follicular carcinoma, D2 has increased
activity as well. In three patients with large or widely metastatic
follicular thyroid carcinoma, there was a persistent increment of
the ratio of serum T3 to T4 in the absence of autonomous pro-
duction of T3 by the tumor. D2 activity was analyzed in one of
these patient and was found to be eightfold up-regulated com-
pared with the normal tissue. Resection of the tumor normalized
the serum T3 to T4 ratio (Kim et al., 2003). Similarly in anaplastic
thyroid cancer D2 activity was found to be higher than normal
thyroid tissue (de Souza Meyer et al., 2005). In contrast D2 mRNA
and activity are decreased in papillary thyroid cancer compared
with the normal thyroid cells (Arnaldi et al., 2005; de Souza Meyer
et al., 2005). In one study they observed poor correlation between
the low D2 mRNA level and the enzymatic activity in papillary
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thyroid cancer but a statistically significant correlation between
D2, Pax-8, and Titf1/Nkx-2 mRNA expression suggesting a poten-
tial role in the impairment of deiodinase expression (Ambroziak
et al., 2005). D2 is also highly expressed in human medullary thy-
roid carcinoma (MTC), with activity that was comparable to those
found in surrounding normal follicular tissue (Meyer et al., 2008).

TYPE 3 DEIODINASE
Type 3 iodothyronine deiodinase (D3), the main physiological
inactivation mechanism of thyroid hormone, is widely expressed
during embryonic life. However, after birth D3 expression subsides
in most tissues while remaining present in the human placenta,
endometrium, skin, and brain of healthy adults (Bates et al., 1999;
Huang, 2005). Interestingly, D3 activity can be reactivated in many
tissues in disease states by signals such as hypoxia or ischemia, as
well as in tumoral tissues (Huang and Bianco, 2008). For example,
D3 activity was evaluated in different brain tumors and compared
with normal tissue and found to be increased in all the eight cases
of gliosarcoma and in 9 out of 10 cases of glioblastoma multiforme.
Additionally the concentration of T3 and T4 were significantly
lower in glioma than in the non-tumoral brain tissue samples,
indicating that D3 expression was decreasing thyroid hormone
signaling locally. On the contrary, the activity of D3 was found to
be decreased in all cases of astrocytoma regardless of their grade
(Nauman et al., 2004).

D3 expression was also evaluated in 105 pituitary tumors and
10 normal pituitaries. In the tumors, there was significant increase
in D3 mRNA compared with the normal tissue, especially in the
tumors producing TSH (13-fold), ACTH (sevenfold), GH (six-
fold), and the non-functional ones (sevenfold). However, despite
the increase in D3 mRNA, D3 enzymatic activity was increased
in only three non-functional tumors of the 16 analyzed in total
(Tannahill et al., 2002).

D3 expression was evaluated as well in several neoplastic cell
lines. D3 mRNA was detected in endometrium carcinoma (ECC-
1), mamma carcinoma (MCF-7), and neuroblastoma (SH-SY5Y),
but not in the hepatocarcinoma (HepG2), choriocarcinoma, or
astrocytoma cell line. Phorbol ester 12-O-tetradecanoylphorbol-
13-acetate, a tumor promoter, increased D3 activity twofold to
ninefold in ECC-1, MCF-7, and SH-SY5Y cells. In turn, estra-
diol increased D3 activity threefold only in ECC-1, suggesting its
potential role in regulating D3 expression in endometrium dur-
ing pregnancy. Incubation with retinoids increased D3 activity
twofold to threefold in ECC-1 and MCF-7 cells but decreased D3
activity in SH-SY5Y cells. Finally, they also observed in all the cell
lines a loss of D3 response to known physiologic stimuli such as
T3, possibly due to the underling neoplastic process (Kester et al.,
2006).

High levels of D3 activity have been reported in vascular
benign tumors like infantile hemangiomas and hepatic heman-
gioendothelioma (Huang et al., 2000; Ruppe et al., 2005). In
many cases the D3 activity level is so high that may result in
thyroid function abnormalities due to the accelerated rate of
thyroid hormone degradation. This results in subclinical hypothy-
roidism and even in clinically relevant hypothyroidism (Murakami
et al., 2001). The first patient with consumptive hypothyroidism
described was a 3-month-old infant with hepatic hemangiomas

and severe hypothyroidism refractory to the standard dose of thy-
roid hormones replacement (Huang et al., 2000). Such patients
may improve with T3 replacement treatment (Peters et al., 2010)
or by the surgical removal of the tumor as suggested by a case
of a patient with consumptive hypothyroidism and liver heman-
gioendothelioma cured by liver transplantation (Balazs et al.,
2007).

Recently, a cluster of 23 up-regulated miRNAs was identified
in mice liver tumors and encoded within the Dlk1-Gtl2 imprinted
locus on chromosome 12qF1. This region maps to the human
DLK1-DIO3 region on chromosome 14q32.2. The expression of
DLK1-DIO3 miRNA was examined in 97 patients with hepato-
cellular carcinoma (HCC) associated with hepatitis B infection.
Eighteen of such patients exhibited a strong overexpression of
miRNAs which was not observed in other previously tested can-
cers such as breast, lung, kidney, stomach, or colon. Furthermore,
the increased expression of the DLK1-DIO3 miRNA was found
to be correlated with some HCC stem cell markers, with a high
level of serum α-fetoprotein and a poor survival rate suggest-
ing that DLK1-DIO3 miRNA may be used as a marker for those
subtypes of HCC associated with poor prognosis (Luk et al.,
2011).

WHAT IS THE RESULT OF DEIODINASE-MEDIATED CHANGES
IN THYROID HORMONE SIGNALING IN CANCER?
Given that in some settings (e.g., BCC) thyroid hormone reduces
cell proliferation (Dentice et al., 2007), could a deiodinase dys-
regulation in tumor cells affect thyroid hormone signaling and
thus interfere with tumor progression? This question stems from
the modern paradigm that thyroid hormone signaling can be
regulated relatively independent of plasma thyroid hormone
levels, in a time- and tissue-specific fashion by the deiodi-
nases (Gereben et al., 2008). In fact, in the developing chicken
growth plate, loss of D2 activity via Shh-induced D2 ubiquiti-
nation has been linked to parathyroid hormone-related peptide
(PTHrP) expression and chondrocyte proliferation (Dentice et al.,
2005).

These studies prompted investigators to look into other set-
tings in which the Shh signaling pathway is active, such as the
BCC, the most common human malignancy characterized by a
constitutively active Shh pathway (Dentice et al., 2007). In these
cells, Shh increases D3 expression via a Gli-2-mediated transcrip-
tional mechanism, which reduces intracellular T3 concentrations.
This effect synergizes with the Shh-stimulated ubiquitin inactiva-
tion of D2, which further decreases the intracellular levels of T3.
The decrease in thyroid hormone signaling results in an increase in
cyclin D1, increasing cell proliferation. Subsequently, a specific D3
shRNAi construct (iD3) was transfected into BCC cells and thymi-
dine uptake experiments showed that D3 depletion significantly
reduced cyclin D1 levels and therefore proliferation. Furthermore,
a rescue experiment by reintroducing a functional human D3
gene in D3-depleted cells resulted once again in increased cyclin
D1 levels and cell proliferation, confirming that D3 plays a key
role in cell cycle in these cells. Interestingly, a fivefold reduction
in the growth of BCC in nude mice was observed if nude mice
receiving BCC xenografts in which D3 expression was knocked
down (Dentice et al., 2007). At this writing, it is unclear that such
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a mechanism would operate in other tumors that also express
deiodinases.

At the same time, an increase in thyroid hormone signaling
accelerates the metabolic rate and the oxidation of energy sub-
strates such as glucose and fatty acids in most cells types (Bianco
et al., 2005). Cancer cells are known to have accelerated metab-
olism and increased glycolysis (Koppenol et al., 2011). Thus, it
is conceivable that, by affecting thyroid hormone signaling, deio-
dinases could interfere with the metabolism of cancerous cells.
If confirmed, this could also constitute a potential therapeu-
tic strategy for certain types of cancers that depend on a high
metabolic rate.

CONCLUSION
Deiodinases are enzymes that can up- or down-regulate thyroid
hormone signaling on a cell-specific basis, independently of cir-
culating thyroid hormone levels. Several types of cancers and
cancerous cell lines express high (low) levels of deiodinases that
could contribute to the loss in control of cell division and conse-
quently tumor development; this could also potentially affect their
metabolic rate and selection of oxidative substrates. Understand-
ing the mechanisms underlying the dysregulation in deiodinase
expression in tumor cells as well as the downstream impact of
changes in thyroid hormone signaling could potentially lead to
the development of new antineoplastic approaches.
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