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Abstract
Since the first reported case in December of 2019, the coronavirus disease 2019 (COVID-19) has became an inter-
national public health emergency. So far, there are more than 228,206,384 confirmed cases including 4,687,066
deaths. Kidney with high expression of angiotensin-converting enzyme 2 (ACE2) is one of the extrapulmonary
target organs affected in patients with COVID-19. Acute kidney injury (AKI) is one of the independent risk factors for
the death of COVID-19 patients. The imbalance between ACE2-Ang(1-7)-MasR and ACE-Ang II-AT1R axis in the
kidney may contribute to COVID-19-associated AKI. Although series of research have shown the inconsistent effects
of multiple common RAS inhibitors on ACE2 expression and enzyme activity, most of the retrospective cohort
studies indicated the safety and protective effects of ACEI/ARB in COVID-19 patients. This review article highlights
the current knowledge on the possible involvement of intrarenal RAS in COVID-19-associated AKI with a primary
focus on the opposing effects of ACE2-Ang(1-7)-MasR and ACE-Ang II-AT1R signaling in the kidney. Human re-
combinant soluble ACE2 or ACE2 variants with preserved ACE2-enzymatic activity may be the best options to
improve COVID-19-associated AKI.
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Introduction
Since December 2019, the coronavirus disease 2019 (COVID-19) has
been known as an acute infectious disease of the respiratory tract
and recognized as an international and widespread public health
emergency (https://covid19.who.int). COVID-19 is caused by a
recently identified coronavirus, severe acute respiratory syndrome
coronavirus (SARS-CoV)-2. Similar to SARS-CoV, SARS-CoV-2 can
bind to angiotensin-converting enzyme 2 (ACE2) via its spike pro-
tein controlling infection and cell entry [1,2]. The binding of SARS-
CoV-2 and ACE2 may result in the down-regulation of membrane-
bound ACE2 level, thereby contributing to the diffusion of alveolar
injury, acute respiratory failure, and multi-organ dysfunction, in-
cluding acute kidney injury (AKI) [3]. However, it is still a hy-
pothesis that lacks direct evidence, and further studies are needed to
clarify it. On the other hand, ACE2 has received substantial atten-
tion in recent years as an essential component of the non-classic
renin-angiotensin system (RAS) that regulates internal balance with
an opposite function to that of angiotensin-converting enzyme

(ACE) [4]. ACE inhibitor (ACEI) and angiotensin receptor blocker
(ARB) can influence ACE2 expression/activity in multiple tissues,
indicating that these drugs may affect COVID-19 prognosis or out-
come [5–7]. However, the data published so far on RAS inhibitors′
effects on the clinical outcomes of COVID-19 patients are still in-
consistent.
RAS has been known for nearly 120 years. Tigerstedt and Berg-

man first reported a pressor substance in the crude saline extracts of
the kidney and named it renin in 1898 [8]. The activation of classic
and systemic RAS requires multiple steps including two cleavage
processes with multi-organ interaction. First, angiotensinogen
(AGT) is mainly produced by the liver and cleaved into angiotensin
(Ang) I by renin, which is released from the juxtaglomerular ap-
paratus and collecting ducts in the kidney. Second, Ang I is cleaved
by ACE and become activated Ang II. Third, the Ang II binds to Ang
II type 1 receptor (AT1R) to induce multiple effects, including va-
soconstriction, hypertension, and vascular remodeling. In addition
to classic RAS defined as the ACE-Ang II-AT1R axis, the ACE2-Ang
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(1-7)-Mas receptor (MasR) cascade is known as a non-classic RAS
[4]. Ang(1-7) is generated through the following pathways: the
proteolysis of Ang II by ACE2, or Ang I, is converted to non-acti-
vated Ang(1-9) by ACE2 and then converted to Ang(1-7) by ACE.
These Ang(1-7) peptides bind to the MasR to exhibit cardiovascular
protective effects, opposing the ACE-Ang II-AT1R axis. The Yin and
Yang of ACE-Ang II-AT1R and ACE2-Ang(1-7)-MasR pathways
(Figure 1) interact with each other, contributing to the maintenance
of blood pressure and internal environment [4,9,10].
In addition to the above well-established systemic RAS, strong

evidence suggests a local RAS in the local organs/tissues, including
the brain, heart, vessels, adipose, and kidney [11]. Multiple RAS
components, including ACE, ACE2, renin, AGT, AT1R, and MasR,
have been found in the renal tubules [12,13]. Aberrant activation of
intrarenal RAS has been recognized as a critical mechanism for the
pathogenesis of hypertension and renal disease [12,13]. It is well-
known that ACE2-Ang(1-7)-MasR axis functions as an endogenous
counterregulatory arm to the ACE-Ang II-AT1R axis in the critically
ill [14]. This article focuses on recent progress on the possible in-
volvement of intrarenal RAS, ACE-Ang II-AT1R, and ACE2-Ang(1-
7)-MasR axis, in COVID-19-related AKI.

COVID-19 and Acute Kidney Injury
In addition to acute lung injury and respiratory failure, the kidney

may be an essential target organ for SARS-CoV-2 infection and in-
vasion because ACE2 exceptionally presents in proximal tubular
epithelial cells of kidneys [15,16]. Several clinical studies indicated
that AKI was an uncommon complication in COVID-19 patients
[17–19]. Some other reports have shown that AKI worsens prog-
nosis [20] and carries high in-hospital mortality [19] in patients with
COVID-19. AKI is common among patients hospitalized with
COVID-19 [21,22] and can be a severe complication of COVID-19
[23]. Indeed, the incidence of AKI was about 3%–15% in regular
patients infected with COVID-19, 14.5%–50% in patients with se-
vere COVID-19 infection in the Intensive Care Unit, and even
higher in patients with chronic kidney disease, which is related to
severe infection and higher fatality rate in COVID-19 patients
[18,22,24–29]. More importantly, increasing evidence has shown
that AKI is one of the independent risk factors for the death of
critically ill COVID-19 patients [27,30]. COVID-19 patients with
AKI exhibited proteinuria and hematuria, diffuse acute proximal
tubular injury with cytoplasmic vacuoles, severe collapsing focal
glomerulopathy, glomerular ischemia, and endothelial cell injury
[29,31–40]. Although an earlier study by Wang et al. [41] showed
COVID-19-related AKI was likely to be related to multi-organ failure
but not the kidney tropism of SARS-CoV-2, Braun et al. [42] recently
reported that SARS-CoV-2 renal tropism is associated with disease
severity and development of AKI. The variation in these reports

Figure 1. The schematic diagram of the ACE-Ang II-AT1R axis and ACE2-Ang(1-7)-MasR axis acting in a Yin–Yang relationship (A) In health, RAS is
in balance, and no disease develops. (B) With perturbations from kidney diseases, there is a shift towards the ACE/Ang II pathway and away from
the ACE2/Ang(1-7) pathway. (C) SARS-CoV-2 infection stimulates a shift towards the ACE/Ang II pathway to propagate acute kidney injury in
COVID-19 patients. (D) In patients with kidney diseases, ACEI and ARB block the ACE/Ang II pathway and shift the RAS towards the ACE2/Ang(1-7)
pathway. (E) In patients with kidney diseases, hrsACE2 and Ang(1-7) block the ACE/Ang II pathway and shift the RAS towards the ACE2/Ang(1-7)
pathway. (F) In patients with COVID-19, ACEI and ARBs’ therapy or hrsACE2 and Ang(1-7) are expected to block the ACE/Ang II pathway and shift
the RAS towards the ACE2/Ang(1-7) pathway to mitigate kidney injury. RAS, renin-angiotensin system; AGT, angiotensinogen; Ang I, angiotensin
I; ACE, angiotensin-converting enzyme; Ang II, angiotensin II; ACE2, angiotensin-converting enzyme 2; AT1R, Ang II type 1 receptor; MasR, Mas
receptor; ACEI, ACE inhibitor; ARB, angiotensin receptor blocker; SARS-CoV, severe acute respiratory syndrome coronavirus; hrsACE2, human
recombinant soluble ACE2. Figure was adapted from South et al. [9] and Sparks et al. [10].
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might be related to multiple factors, including the number of cases,
patient age, and the severity of the infection. Of note, SARS-CoV-2
RNA was detectable in urine sediments from COVID-19 patients
[17] and the signal of SARS-CoV nucleoprotein immunostaining was
localized to renal tubules of COVID-19 patients [36]. Thus, SARS-
CoV-2 may directly infect the human kidney.
Current knowledge suggests several potential mechanisms are

responsible for AKI in COVID-19 patients. On the one hand, several
indefinite kidney injury factors may be the unspecific pathogenesis
for AKI development in COVID-19 patients [31]. On the other hand,
the cell-entry receptors of SARS-CoV-2, including ACE2 and trans-
membrane protease, serine 2 (TMPRSS2) [43], are co-expressed in
proximal tubular epithelial cells [44] and lung type II pneumocytes
[45]. Along this line, the direct entry of SARS-CoV-2 into cells in the
kidney may directly cause AKI [29,31,46]. However, other studies
have indicated no evidence to support the direct SARS-CoV-2 in-
fection in the kidney in COVID-19 patients, suggesting that natural
infection by SARS-CoV-2 is unlikely to cause AKI [33,35]. Second,
cytokine storm syndrome [47,48] and heightened adaptive immune
responses [29,31,35] may contribute to COVID-19-related AKI.
Third, an imbalance between ACE2-Ang(1-7)-MasR and ACE-Ang
II-AT1R axis might contribute to COVID-19-related AKI. To support
this notion, the binding of SARS-CoV-2 and ACE2 diminishes
membrane-bound ACE2 abundance and promotes an Ang II accu-
mulation to activate ACE-Ang II-AT1R signaling but block ACE2-
Ang(1-7)-MasR axis, resulting in inflammation and fibrosis [31,49].

Fundamental Role of Endothelial Dysfunction in
COVID-19
Endothelial dysfunction has been known as a common denominator
of some diseases that increase the risk for severe COVID-19, in-
cluding hypertension, diabetes, thrombosis, and kidney failure
[50,51]. Indeed, increasing evidence suggests the relations between
endothelial cells and SARS-CoV-2 infections, including the expres-
sion of the cell-entry receptors of SARS-CoV-2 in the vascular en-
dothelial cells (ECs), the prevalence of endotheliitis in patients with
COVID-19, and the evidence of EC infection with SARS-CoV-2 in
patients with fatal COVID-19 [52–57]. Of note, ACE2 is essential for
EC infection with SARS-CoV-2, as evidenced by the observation that
SARS-CoV-2 was incapable of directly infecting primary human
endothelial cells lacking ACE2 receptors. In contrast, ACE2 over-
expression in these cells resulted in high viral titers and in-
flammatory responses during SARS-CoV-2 infection [58].
Importantly, endothelial injury and dysfunction may be both a
cause and/or a consequence of severe COVID-19 that is directly
caused by SARS-CoV-2 infection and indirectly as a result of the
profound systemic inflammatory cytokine storm, thus may con-
tribute to end-organ damage and thrombotic events in patients with
severe COVID-19 [50,59–61]. Indeed, anticoagulants [62] and fi-
brinolytic drugs [63], targeting ECs, have been used and improved
the outcomes of COVID-19 patients. Thus, preventing and im-
proving endothelial dysfunction may be a good direction for COVID-
19 therapy.

Imbalance Between ACE2-Ang(1-7)-MasR and
ACE-Ang II-AT1R Axis Contributes to Kidney Injury
Pathogenic actions of intrarenal ACE-Ang II-AT1R axis
on kidney injury
Increasing evidence has shown an essential role of the intrarenal

ACE-Ang II-AT1R axis in renal disease progression. An unsuitable
activation of intrarenal ACE-Ang II-AT1R signaling has been ob-
served in various animal models of renal diseases, such as diabetic
nephropathy [64,65], glomerulonephritis [66], hypertensive ne-
phropathy [67], 5/6 nephrectomy [68], renal ischemia/reperfusion
[69], and polycystic kidney disease [70]. RAS inhibitors, including
AGT oligonucleotide [71], direct renin inhibitor aliskiren [71,72],
ACEIs [73,74], and ARBs [75–77], protect against kidney injury and
inhibit disease progression. In contrast, the intrarenal hemody-
namic effect of ACEIs leads to time-dependent changes of circulat-
ing Ang II levels, and thereby the compromised renal function in the
presence of a reduction in renal perfusion [78]. Circulating Ang II
levels are acutely lowered by ACEI treatment, whereas its long-term
treatment raises that back to the baseline levels [79]. These results
indicate the dual effects of ACEIs on renal functions depending on
the setting they are administered. Overall, the concept of the pa-
thogenic actions of intrarenal ACE-Ang II-AT1R signaling in kidney
injury has been well established.

Protective actions of intrarenal ACE2-Ang(1-7)-MasR
axis on kidney injury
In contrast to the above discussed intrarenal ACE-Ang II-AT1R
axis, the intrarenal ACE2-Ang(1-7)-MasR axis has been down-
regulated in multiple animal models of renal diseases, such as
diabetic nephropathy [80–82], renal ischemia/reperfusion injury
[69], subtotal nephrectomy [83], and experimental Alport syn-
drome [84], implying the potential protective function of in-
trarenal ACE2-Ang(1-7)-MasR signaling in response to
experimental kidney injury. To date, a variety of studies have in-
vestigated the function of the ACE2-Ang(1-7)-MasR axis on ex-
perimental kidney injury employing both pharmacological and
genetic approaches. Deletion of the Ace2 gene or pharmacologic
inhibition of ACE2 worsens renal injury accompanied by increased
renal ACE expression and intrarenal Ang II level in multiple dis-
ease models [81,85–92]. In contrast, ACE2 overexpression or hu-
man recombinant soluble ACE2 (hrsACE2) protein infusion
ameliorates diabetic kidney injury [74,93], Ang II-induced tubu-
lointerstitial fibrosis [87], experimental Alport syndrome [94], and
atherosclerotic renal injury [92,95], accompanied by diminished
intrarenal Ang II level and augmented intrarenal Ang(1-7) level.
Similarly, in a severe COVID-19 patient, intravenous delivery of
hrsACE2 markedly reduced plasma Ang II level. However, it in-
creased Ang(1-7) and Ang(1-9), resulting in a marked reduction in
the inflammatory cytokines IL-6 and IL-8, with a significant clin-
ical improvement of the treated patient [96].
Regarding the effect of Ang(1-7) on kidney injury, Shao et al. [97]

reported that chronic exogenous Ang(1-7) administration through
vein injection did not improve streptozotocin-induced diabetic rat
renal injury but accelerated diabetic nephropathy progression. They
found that Ang(1-7) injection increased ACE and AT1R expression
but dramatically reduced AT2R, ACE2, and MasR expression in the
kidney of diabetic rats [97]. However, several other studies have
shown the renoprotective effects of Ang(1-7) in high-fat diet-fed
mice [98], experimental Alport syndrome [99], and unilateral ur-
eteral obstruction rats [100], in which renal AT1R expression was
suppressed and renal ACE2 expression was enhanced. The reason
for the discrepancy is unclear, but it could be associated with the
distinctions in different experimental models. Therefore, these re-
sults consistently suggest the protective actions of intrarenal ACE2-
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Ang(1-7)-MasR signaling on kidney injury, opening a promising
avenue for the therapeutic potential of this non-classical RAS for
renal disease.

Inconsistent effects of common RAS inhibitors
on renal ACE2 expression/activity
Although the structure of ACE2 shares 40% homology and 61%
similarity with that of ACE, ACE2 only acts as a homologous en-
zyme but not an isoenzyme for ACE, and the specificity of a sub-
strate and the enzyme activity of ACE2 are entirely different from
that of ACE [101]. Until now, the published data about the effect of
RAS inhibitors on plasma ACE2 activity and Ang(1-7) level in non-
COVID patients are still controversial [49], and multiple common
RAS inhibitors exhibit conflicting effects on renal ACE2 expression/
activity in different experimental models (Table 1). These incon-
sistent effects of RAS inhibitors on renal ACE2 may be associated
with the distinctions in various experimental models and the spe-
cificity of the drugs. What is more, Ang II (400 ng/kg/min) and Ang
II combined with losartan had no effect on renal ACE2 expression/
activity in mice, which is not associated with the alteration of blood
pressure [111]. Consistently, renal ACE2 expression in humans is
not associated with hypertension and RAS inhibitors but positively
correlated with the biochemical index of kidney function [106],
indicating a renoprotective action of ACE2 in the absence of
COVID-19.

Modulation of Renin-Angiotensin System
in COVID-19 Patients
The data published so far on plasma RAS activity and ACE2 activity
in patients with COVID-19 is controversial. Although it has been
reported that there is no difference in the serum concentrations of
ACE2, Ang II, and aldosterone between COVID-19 and regular pa-
tients [112,113], several other studies have reported the regulation
of plasma RAS by COVID-19. Firstly, an in vitro study by Lu and Sun
[114] has shown that SARS-CoV-2 trimeric spike protein enhances
ACE2 proteolytic activity. Secondly, SARS-CoV infection sig-
nificantly increased the transcription level of the Ace2 gene in hu-
man bronchial epithelial cells [115]. Lastly, dramatic rises in the
serum concentrations of Ang II, Ang(1-7), ACE2, and serum ACE2
activity were observed in severe COVID-19 patients [116–118].
High-affinity binding of SARS-CoV-2 spike protein increased ACE2-
enzymatic activity [114]. Thus the enhanced serum ACE2 activity in
these patients may be secondary to SARS-CoV-2 infection and re-
flect a compensatory pathophysiological mechanism that counter-
balances an excess in Ang II.
What’s more, it has been reported that interferons or viruses only

induce the expression of a truncated ACE2 isoform (△ACE2) but
not the full-length ACE2 [45,119]. The△ACE2 does not have ACE2-
enzymatic activity and the ability to bind with the SARS-CoV-2
[119]. Thus, there is still no evidence for the upregulation of the
natural ACE2 expression. On the other hand, a recent clinical study

Table 1. Effects of RAS inhibitors on ACE2 expression/activity in the kidney

RAS inhibitor/
Gene deletion

Target Experimental models/patients
Renal ACE2
expression / activity

Ref.

Agt ASO AGT C57BL/6J mice (unknown age) ACE2 expression ↔ [102]

Aliskiren Renin Streptozotocin-induced diabetic nephropathy rats ACE2 expression ↓ [103]

Captopril ACE Old C57BLKS/J mice (12–14 weeks) Total ACE2 expression ↔
Membrane ACE2 expression ↓
Cytosolic ACE2 expression ↑

[104]

Enalapril ACE C57BL/6J mice (unknown age) ACE2 expression ↔ [102]

Ramipril ACE Subtotal nephrectomy rats ACE2 activity ↑ [83]

Ramipril ACE Healthy young C57BL/6N mice (7–8 weeks) ACE2 expression ↔ [105]

Ramipril ACE Aged C57BL/6N mice with diabetes (28 weeks) ACE2 expression ↔ [105]

Perindopril ACE Spontaneously hypertensive rat ACE2 expression ↔ [106]

Losartan AT1R C57BL/6J mice (unknown age) ACE2 expression ↔ [102]

Losartan AT1R Spontaneously hypertensive rat ACE2 expression ↔ [106]

Telmisartan AT1R Old C57BLKS/J mice (12–14 weeks) Total ACE2 expression ↔
Membrane ACE2 expression ↓
Cytosolic ACE2 expression ↑

[104]

Telmisartan AT1R Healthy young C57BL/6N mice (7–8 weeks) ACE2 expression ↔ [105]

Telmisartan AT1R Aged C57BL/6N mice with diabetes (28 weeks) ACE2 expression ↔ [105]

Valsartan AT1R TG(mRen2)27 (Ren2) transgenic rats ACE2 expression ↑ [107]

ACE.4 ACE Mice with ACE kidney ablation ACE2 expression/activity ↓ [104]

ACE8/8 ACE Mice with ACE kidney ablation ACE2 expression ↓
ACE2 activity ↔ [104]

ACEI/ARB ACE/AT1R Patients with diabetic kidney disease ACE2 expression ↔ [16,108]

ACEI/ARB ACE/AT1R Hypertensive patients ACE2 expression ↔ [106]

RAS, renin-angiotensin system; AGT, angiotensinogen; ASO, antisense oligonucleotides; ACE, angiotensin converting enzyme; ACE2, angiotensin converting enzyme 2;
AT1R, Ang II type 1 receptor; ACEI, ACE inhibitor; ARB, angiotensin receptor blocker; ↑, Up-regulation; ↓, Down-regulation; ↔, Unaffected. ACE.4 mice have the somatic
ACE promoter replaced by the kidney androgen-regulated protein promoter, the levels of kidney ACE are less than 1% of normal and no ACE is detected in other organs
[109]. ACE8/8 mouse is a model lacking ACE in the kidney or vascular endothelium, but with 100-fold normal cardiac ACE levels [110].
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by Kutz et al. [120] showed that the serum levels of RAS peptides,
including Ang I, Ang II, Ang(1-5), and Ang(1-7), as well as plasma
renin activity in COVID-19 patients, were significantly decreased
compared with non-COVID-19 patients. Yet, there is no difference in
plasma ACE and ACE2 activity between the two groups [120]. The
reasons for the discrepancy are unclear but could be related to the
severity of the virus infection and the differences in detection
methods. Notably, plasma Ang II/Ang I ratio was significantly
suppressed in COVID-19 patients with ACEI treatment, which may
contribute to increased plasma ACE2 activity [113].
Interestingly, both plasma renin and aldosterone concentrations

[24] and the level of renal ACE2 [16,36] were found to be enhanced
in COVID-19 patients with AKI compared to patients with no AKI.
The enhanced plasma renin and aldosterone concentrations were
strongly associated with AKI in COVID-19 patients [24], indicating a
potential impact of RAS inhibitors on COVID-19 outcomes. Si-
multaneously, the enhanced renal ACE2 expression may establish a
vicious circle of viral infection via the SARS-CoV-2/ACE2 complex
endocytosis and trigger a compensatory response against AKI by
activating the intrarenal ACE2-Ang(1-7)-MasR signaling. Thus, the
enhanced ACE2 may play as a double-edged sword in the setting of
COVID-19 disease. However, the level of classic RAS in the kidney
in COVID-19 patients with AKI is still unknown. Based on the pa-
thogenic actions of the classic RAS on kidney injury, we speculate
that the classic RAS in the kidney is also activated and contributes to
the progression of COVID-19-related AKI.

The Use of Soluble ACE2 in COVID-19
Either TMPRSS2-enhanced endocytosis of the SARS-CoV-2/ACE2
complex or ADAM17-induced ACE2 cell surface shedding [121]
caused the downregulation of membrane-bound ACE2 level. It may
be closely related to multi-organ dysfunction, including severe
acute lung injury and AKI [3]. ACE2 is a functional receptor for
SARS-CoV-2 infection [47], implying that competing for the binding
of SARS-CoV-2 and membrane ACE2 to inhibit SARS-CoV-2 infec-
tions, especially the use of soluble ACE2 as a decoy for SARS-CoV-2,
might be a potential strategy for the therapy of patients with COVID-
19 [122]. In support of this notion, a series of hACE2 variants [123–
126] and ACE2-derived peptides [127] were reported to successively
neutralize SARS-CoV-2, thus blocking its infection potently. What’s
more, hrsACE2 was reported to successfully inhibit SARS-CoV-2
infection [128] and treat a severe COVID-19 patient [96]. hrsACE2
treatment did not interfere with the generation of neutralizing an-

tibodies but caused the disappearance of the virus rapidly from the
serum, decreased inflammatory cytokine levels, and blocked the
systemic spread of the virus from the lung to other organs [96]. As
an extension of this observation, Tada et al. [129] developed an
improved soluble ACE2 by fusing Fc domain 3 of the im-
munoglobulin heavy chain to the ACE2 ectodomain with an H345A
mutation. This ACE2 microbody lost the enzyme activity but ex-
hibited a 10-time higher potency to inhibit virus infection and re-
plication than soluble ACE2 [129]. Recently, Larue et al. [127]
designed a panel of ACE2-derived peptides based on the binding of
ACE2 and SARS-CoV-2 and observed efficient inhibition on virus
replication and SARS-CoV spike protein-mediated virus infection.
Therefore, drugs including but not limited to soluble ACE2 variants,
ACE2 analogs/peptides, and ACE2 inhibitors may be the options in
the acute management of COVID-19 by competing for binding to
SARS-CoV-2 on the cell surface, but enzymatically active ACE2
variants may be the best options for improving outcomes of COVID-
19 patients, since they may serve dual functions of competitive
binding to SARS-CoV-2 and activation of the ACE2-Ang(1-7)-MasR
signaling [130]. However, it still lacks direct evidence from the
large-scale clinical trials. Further studies, especially large-scale
clinical trials, are needed to evaluate the therapeutic value of the
above proteins/peptides on the therapy of COVID-19.
However, several other receptors (Table 2) have already been

reported for SARS-CoV-2 infections in the cell surface. In particular,
TMPRSS2 inhibitor camostat mesylate significantly inhibited SARS-
CoV-2 entry [43], suggesting that the infection of SARS-CoV-2 not
only relies on ACE2 but also needs TMPRSS2. This result is in line
with the findings reported by Heurich et al. [121] that TMPRSS2 is
essential for direct membrane fusion of SARS-CoV by processing the
cleavage of SARS-CoV spike protein. However, TMPRSS2 competes
with ADAM17 for the cleavage of ACE2, but only the cleavage of
ACE2 by TMPRSS2 augmented ACE2-bound viral endocytosis de-
pends on Cathepsin L [121]. Therefore, ACE2 may not be the central
factor for SARS-CoV-2 infections. Other proteins that mediate en-
docytosis may also contribute to SARS-CoV-2 virus entry, but ACE2
is important for SARS-CoV-2 infections, since hrsACE2 has been
reported to successfully inhibit SARS-CoV-2 infection of organoids
and Vero cells [44,128]. It is well-known that the incidence and
severity of SARS-CoV-2 infection may be related to the ACE2 [139],
but the incidence of serious infections is relatively higher in patients
with multiple underlying diseases including diabetes, hypertension,
and cardiovascular disease [26,140].

Table 2. Receptors/proteins for SARS-CoV-2 infection

Target Full name Ref.

ACE2 Angiotensin-converting enzyme 2 [43]

AGTR2 Angiotensin II receptor type 2 [131]

CTSL Cathepsin L [43]

CD147 Basigin or EMMPRIN [132,133]

CD209L CLEC4M and L-SIGN [134]

CD209 DC-SIGN [134]

KIM-1/TIM-1 Kidney injury molecule-1/T cell immunoglobulin mucin domain 1 [135]

NRP1 Neuropilin-1 [136]

OR Olfactory receptor [137]

RAGER The receptor for advanced glycation end products [138]

TMPRSS2 Transmembrane protease serine 2 [43]
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Do RAS Inhibitors Directly Correlate with COVID-19?
Although several studies have shown the inconsistent effects of
different RAS inhibitors on ACE2 expression/activity, it is unclear
whether ACEIs/ARBs exhibit a harmful or beneficial effect on SARS-
CoV-2 infection and COVID-19 outcomes in patients, which may
depend on the severity of the cases and the type of complications.
The data published so far on the impact of ACEI/ARB on clinical
features of patients with COVID-19 is complicated. Many reports by
meta-analysis have shown a protective effect and the safety of
ACEI/ARB in COVID-19 patients [5,6,141–143]. Along this line,
several retrospective cohort studies have obtained a similar con-
clusion on the effect of ACEI/ARB in COVID-19 patients [144–149].
The beneficial effect may be attributed to the suppressed Ang II/Ang
I ratio in the plasma and increased plasma ACE2 activity in COVID-
19 patients [113]; this needs to be clarified in future studies. How-
ever, a retrospective cohort study in Korea by Lee et al. [150]
challenged that the use of RAS blockers was associated with a
higher risk of SARS-CoV-2 infection in patients with hypertension.
Similarly, Chan et al. [151] showed that ARB augmented the risk of
SARS-CoV-2 infection in younger subjects without apparent effects
on COVID-19 outcomes [151]. These reports implied that RAS in-
hibitors might aggravate COVID-19 by facilitating SARS-CoV-2 en-
try. The possible mechanism may involve the suppressed ACE2
endocytosis and ubiquitin-mediated degradation during AT1R in-
hibition [152]. Other reports also challenged that ARB/ACEI did not
affect the risk of contracting COVID-19 [153,154]. What's more,
chronic (long-term) treatment with ACEI/ARB increased the risk of
AKI in severe COVID-19 patients, as reflected by the increased urea
nitrogen [155]. Thus, the application of RAS inhibitors should be
recommended with a comprehensive analysis of the underlying
diseases in COVID-19 patients.

Conclusions
Kidney with high expression of ACE2 is one of the extrapulmonary
target organs affected in patients with COVID-19, and COVID-19-
related AKI is one of the independent risk factors for the death of
COVID-19 patients. ACE2 is recognized as one of the pivotal factors
for SARS-CoV-2 infections and an essential component of the ACE2-
Ang(1-7)-MasR axis that might exhibit a protective effect on COVID-
19-induced AKI. Imbalanced intrarenal RAS may contribute to
COVID-19-associated AKI, derived from the theoretical derivation of
intrarenal RAS. Further studies with multidisciplinary collaboration
are needed to investigate the exact molecular mechanism of COVID-
19-associated AKI. Although series of research have shown the in-
consistent effects of multiple common RAS inhibitors on ACE2 ex-
pression and enzyme activity, most of the retrospective cohort
studies indicated the safety and protective effects of ACEI/ARB in
COVID-19 patients. Evidence-based RAS inhibitors cannot be arbi-
trarily discontinued in the current ambiguous situation, but the un-
derlying diseases in COVID-19 patients should be carefully
considered. Until now, there is no specific drug for COVID-19 treat-
ment. Drugs such as hrsACE2 and ACE2 variants with preserved
ACE2-enzymatic activity not only compete for the binding of SARS-
CoV-2 and membrane ACE2 to inhibit SARS-CoV-2 infection but also
activate the ACE2-Ang(1-7)-MasR signaling to protect against tissue/
organ injury; these may be the best options for improving outcomes
of COVID-19 patients associated with AKI. For instance, an en-
zymatically active ACE2 variant fused with a 5-kD a albumin-binding
domain (ABD) and bridged via a dimerization motif hinge-like 4-

cysteine dodecapeptide (ACE2 1-618-DDC-ABD) exhibited prolonged
duration of plasma ACE2-enzymatic activity and 20- to 30-fold higher
binding affinity to SARS-CoV-2 and protected against lethal disease
caused by SARS-CoV-2 infection in transgenic k18-hACE2mice [156].
Overall, ACE2 1-618-DDC-ABD may be a clinically applicable ther-
apeutic candidate for COVID-19, and future clinical studies are nee-
ded to evaluate its therapeutic value in patients with COVID-19.
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