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Abstract: The goal of this research was to develop a novel oxygen therapeutic made from a pectin-based
hydrogel microcapsule carrier mimicking red blood cells. The study focused on three main criteria for
developing the oxygen therapeutic to mimic red blood cells: size (5–10 µm), morphology (biconcave
shape), and functionality (encapsulation of oxygen carriers; e.g., hemoglobin (Hb)). The hydrogel
carriers were generated via the electrospraying of the pectin-based solution into an oligochitosan
crosslinking solution using an electrospinning setup. The pectin-based solution was investigated
first to develop the simplest possible formulation for electrospray. Then, Design-Expert® software
was used to optimize the production process of the hydrogel microcapsules. The optimal parameters
were obtained through the analysis of a total of 17 trials and the microcapsule with the desired
morphology and size was successfully prepared under the optimized condition. Fourier transform
infrared spectroscopy (FTIR) was used to analyze the chemistry of the microcapsules. Moreover,
the encapsulation of Hb into the microcapsule did not adversely affect the microcapsule preparation
process, and the encapsulation efficiency was high (99.99%). The produced hydrogel microcapsule
system shows great promise for creating a novel oxygen therapeutic.

Keywords: artificial red blood cells; electrospinning and electrospray; pectin; oligochitosan;
hydrogel; microcapsules

1. Introduction

In the United States, approximately 36,000 units of red blood cells (RBCs) are needed every day,
according to American Red Cross. However, less than 38 percent of the population is eligible to give
blood or platelets [1]. Donated blood undergoes costly screenings before it can be used to test for
infectious diseases, such as HIV and hepatitis B and C [2]. Factors including eligible donors, costly
testing, and limited shelf-life also impact the available supply. While blood donations will always
be necessary, an oxygen therapeutic has the potential to help alleviate a number of the complexities
associated with blood supply and demand.

Different hemoglobin (Hb)-based oxygen therapeutics have been developed, but, unfortunately,
no such product has been approved by the FDA for human use due to the toxicity of free hemoglobin,
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which can cause hypertension and cardiovascular dysfunction [3–6]. Nanoscale artificial oxygen
transporter carriers, such as nanoparticles and liposomes, have been developed, showing promise
in therapies such as wound healing and cancer treatment [7,8]. However, these carriers, even with
PEGylation (which may lead to accelerated blood clearance (ABC)), tend to have a short circulation time
compared with the 120 day circulation time of RBCs [6]. It is therefore critical to fully mimic the natural
red blood cells, including their size and shape. Red-blood-cell-shaped carriers have been developed in
recent years; for example, a polyelectrolyte microcapsule was produced using a red-blood-cell-shaped
Ca(OH)2 template [9]. However, low encapsulation efficiency (oxygen transporter molecules are
encapsulated inside the carrier, not attached to the carrier surface) remains an issue [5,9–11].

The purpose of this research is to develop a polymeric microcapsule system which mimics
red blood cells to encapsulate oxygen transporters for use as an oxygen therapeutic. In particular,
this study focuses on three criteria for the development of the microcapsule oxygen therapeutic: size,
morphology, and functionality. In our previous studies [5,12], micro-scale red-blood-cell-shaped
hydrogel capsules, using pectin and oligochitosan, were successfully developed and were shown to be
able to encapsulate macromolecules. However, it is challenging to produce microcapsules/particles
of less than 100 µm using traditional methods/equipment [13]. The PRINT® technique has been
used to fabricate red blood cell mimics but with a complex process [14]. The electrospinning setup
for nanofiber production has been explored in order to generate microcapsules less than 10 µm in
diameter through electrospray [15,16]. Electrospray offers such advantages as ease of upscaling and
cost effectiveness. Very recently, electrospray based on an electrospinning setup has been successfully
adopted to produce red-blood-cell-like microparticles [17,18]. As the electrospinning setup utilizes
viscous liquids and a high voltage [19], pectin-based solution reformulation is necessary to increase
the solution viscosity. The pectin-based solution and production process parameters were optimized
through this research. Additionally, the impact of hemoglobin encapsulation on the key criteria and
production process was explored. The result is a simplified and optimized production process of the
pectin-based hydrogel microcapsules through formulation and parameter analysis. A pectin-based
microcapsule encapsulating hemoglobin at the desired size and morphology was produced without
adversely affecting the microcapsule preparation process.

2. Materials and Methods

2.1. Materials

Low methoxy (LM) pectin (20.4% esterification) was purchased from WillPowder (Miami Beach, FL,
USA). Pharmaceutical grade oligochitosan (95% deacetylation) of 2 kD molecular weight was obtained
from Zhejiang Golden-Shell Pharmaceutical Co. Ltd. (Yuhuan, Zhejiang, China). All other chemicals
were purchased from Sigma-Aldrich (St. Louis, MO, USA) and used without additional purification.

2.2. Preparation of Hydrogel Microcapsules

Hydrogel microspheres were prepared through electrospray by using an electrospinning setup
(Linari Engineering, Valpiana, Italy). A 6–10% (w/v) pectin solution was sprayed into a 5% (w/v)
oligochitosan solution (gelation solution) for approximately 10–15 min. The hydrogel microspheres were
formed by the formation of pectin-oligochitosan electrolyte complexes. To obtain hemoglobin-loaded
hydrogel microcapsules, hemoglobin powder was dissolved in a small volume of deionized (DI) water
and then mixed with the pectin solution gently before electrospray [5]. The mixture was then sprayed
into the oligochitosan solution to form loaded hydrogel capsules.

2.3. Optimization of Hydrogel Microcapsule Preparation Process

Firstly, different concentrations of pectin were tested to determine the concentration to be used for
the rest of the study. Moreover, preliminary testing was performed to select the parameters used for
study as well as the working ranges for them (Table 1). Then, Design-Expert® (Version 11; Stat-Ease
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Inc., Minneapolis, MN, USA) software was utilized to optimize the hydrogel microsphere preparation
process. A Box–Behnken design (BBD) model was used. A total of 17 trials were run based on the
design. Lastly, size and morphology were the responses for optimization. For the assessment of
morphology, both size distribution and shape were considered and evaluated on a scale of 1–10. During
optimization, the target size was between 5 and 10 µm with a morphology maximum rating of 10.

Table 1. Parameter optimization values. This table describes the optimized electrospray parameters
determined using the Design-Expert® software.

Parameter Range Optimized Value

Voltage (kV) 20–25 25
Flow Rate 1 5–15 15
Height (cm) 10–18 13

1 The units of the flow rates shown are specific to the pump used.

2.4. Determination of Hemoglobin Encapsulation Efficiency

To determine the encapsulation efficiency, Hb-loaded microcapsules were prepared under the
optimal condition. The encapsulation efficiency (EE) of hemoglobin within the capsules was determined
by the difference between the initial amount of hemoglobin present and the unencapsulated hemoglobin
in the supernatant:

EE =
initial− unencapsulated

initial
× 100% (1)

A standard curve was generated, and hemoglobin concentrations were measured by using a
UV–vis spectrophotometry (Evolution 60S; Thermo Fischer Scientific, Waltham, MA, USA) at 410 nm [5].

2.5. Characterization of the Hydrogel Microcapsules

Hydrogel microcapsules were dried in an oven and then Fourier transform infrared spectroscopy
(FTIR; MIRacle 10, IR-Tracer 100; Shimadzu, Kyoto, Japan) was used to study the chemistry of
the microcapsules.

3. Results and Discussion

3.1. Formulation of Hydrogel Microcapsules

In our previous studies [5,12], red-blood-cell-shaped microcapsules with diameters >300 µm,
were successfully developed using a 3–4% (w/v) pectin solution through a vibration-based setup
(minimum diameter of microcapsule/microbead which can be produced: 50 µm). Furthermore,
a novel pectin-based nanofiber system was developed using an electrospinning setup. To reduce
the microcapsule size, an electrospinning setup was chosen considering its capability to produce
micro/nano-scale objects. Electrospinning, in general, involves a higher viscosity polymer solution
and voltage compared with electrospray [19]. Both electrospray and electrospinning are based on
similar principles. The major difference is the breaking of the jet, formed from the Taylor cone, into
droplets during electrospray [19]. A pectin/PEO (viscosity enhancer)/glycerol (fluid modifier) mixture
was tested and was able to produce red-blood-cell-shaped microcapsules less than 10 µm in size
(data not shown). However, considering eventual industrial production and commercialization, a
simple formulation is desired. To eliminate the viscosity enhancer and fluid modifier, 6–10% (w/v)
pectin solutions were tested for their electrospray ability. When concentrations were lower than 7%,
no biconcave-shaped microcapsules could be formed. On the other hand, the solution could not be
sprayed when the concentration was higher than 9%. As a result, 8% was selected for formulating the
hydrogel microcapsules.
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3.2. Hydrogel Microcapsule Preparation Process Optimization

Based on the preliminary studies, voltage, flow rate, and height (from needle tip to the gelation
solution (i.e., oligochitosan) surface) were found to have significant influences on the microcapsule
preparation process and were chosen as the parameters for process optimization. As shown in Figure 1,
the microcapsule morphology varied greatly when changing the process parameters. Table 1 describes
the ranges of parameters explored to optimize the electrospray process and the Design-Expert®

software was used to apply a Box–Behnken model to outline the 17 trials to be tested. Quadratic
models were utilized to represent the data with the complete quadratic model shown in Equation
(2). The software was then used to analyze the resulting diameter and morphology of at least 200
microcapsules per trial. The desired responses were a diameter of less than 10 µm and a maximum
morphology rating of 10. The quadratic model basis for the 17 trials from the Design-Expert® software
is shown below:

Y = β0 +
∑k

i = 1
(βiXi) +

∑k

i = 1
(βiX2

i ) +
∑k−1

i = 1

∑k

j>i
βi jXiX j, (2)

Y is the value of the response variable, β0 is the intercept coefficient, the first βi items are the linear
coefficients, the second βi items are the quadratic coefficients, and βij items are the coefficients of the
interaction terms.
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Figure 1. Representative images of microcapsules prepared during the optimization process.
(A) Undesired shape and non-uniform size distribution; (B) Desired shape but large size; (C) Desired
size but undesired shape; (D) Desired shape and size.

During the optimization process, the software returned the following equations based on the trial
data input:

Y1 = −73.8429 +3.3299A + 3.8211B + 3.4461C− 0.04478AB + 0.0199AC
− 0.1418BC − 0.1132A2

− 0.0299B2
− 0.0201C2 (3)

Y2 = 19.2689 + 1.6188A− 2.8900B− 0.4850C − 0.1125AB− 0.0438AC
+ 7.0613E− 17 BC + 0.0516A2 + 0.1120 B2 + 0.0580C2 (4)

where Y1 and Y2 are size and morphology respectively, A, B, and C are the independent variables:
height (cm), voltage (kV), and flow rate setting. Both models (Equations (3) and (4)) fit the model well,
as the lack of fit is not significant with a p-value of 0.9913 and 0.1961, respectively.
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As shown in Figure 1, images of microcapsules produced during the optimization experimentation
were taken using an optical microscope (EVOS XL; Thermo Fisher Scientific, Waltham, MA, USA).

Figure 2 shows the surface response curves generated by Design-Expert® indicating the effects of
two-factor interaction on capsule diameter and morphology. It was found that height (A) (p = 0.0328)
produced a significant impact on microsphere size after model reduction by removing insignificant
terms one at a time. The size of the droplet determines the size of the microcapsule. Under the
same voltage, the electric field force decreases as the height increases [20,21]. However, the voltage
had little effect on the microcapsule size, which might be due to the relatively narrow range of the
voltage studied [22]. The significant terms found to impact the morphology are: B (p = 0.0095),
AB (p = 0.0914) and C2 (p = 0.0361). These findings indicated that the morphology of microcapsules
produced during electrospray shares a linear relationship with voltage and a quadratic relationship
with the flow rate. During electrospray, droplet formation is driven mainly by the interplay between
surface tension, gravity, and electric field force. As the voltage increases, the microcapsule morphology
improves. This could be explained by the formation of a stable jet leading to monodisperse droplets
when electrostatic force rather than gravitational force dominates the pulling force against surface
tension [20]. At the same time, increasing the flow rate leads to a more stable jet but larger droplets [13,23].
Moreover, both height and voltage affect the electric field strength, which explains the significant
influence of the interaction term AB on microcapsule morphology [21].

Pharmaceutics 2019, 11, x FOR PEER REVIEW 5 of 8 

 

Figure 2 shows the surface response curves generated by Design-Expert® indicating the effects 
of two-factor interaction on capsule diameter and morphology. It was found that height (A) (p = 
0.0328) produced a significant impact on microsphere size after model reduction by removing 
insignificant terms one at a time. The size of the droplet determines the size of the microcapsule. 
Under the same voltage, the electric field force decreases as the height increases [20,21]. However, 
the voltage had little effect on the microcapsule size, which might be due to the relatively narrow 
range of the voltage studied [22]. The significant terms found to impact the morphology are: B (p = 
0.0095), AB (p = 0.0914) and C2 (p = 0.0361). These findings indicated that the morphology of 
microcapsules produced during electrospray shares a linear relationship with voltage and a quadratic 
relationship with the flow rate. During electrospray, droplet formation is driven mainly by the 
interplay between surface tension, gravity, and electric field force. As the voltage increases, the 
microcapsule morphology improves. This could be explained by the formation of a stable jet leading 
to monodisperse droplets when electrostatic force rather than gravitational force dominates the 
pulling force against surface tension [20]. At the same time, increasing the flow rate leads to a more 
stable jet but larger droplets [13,23]. Moreover, both height and voltage affect the electric field 
strength, which explains the significant influence of the interaction term AB on microcapsule 
morphology [21].  

Considering both responses, to achieve the highest morphology rating as well as a diameter of 
5-10 μm, the optimized parameters were determined to be a height of 13 cm, a voltage of 25 kV, and 
flow rate setting of 15 (2.1 mL/hr) as shown in Table 1. All further experimentation was conducted 
using the optimal parameters, thereby improving the process.  

 

Figure 2. Response surface plots that show the effect of variables on the size (upper panel) and 
morphology (lower panel) before model reduction. The points which encompass the coordinates are 
displayed. Dark red dots: design points above predicted value; and pink dots: design points below 
predicted value. 

3.3. Hemoglobin Encapsulation Efficiency 

The encapsulation of Hb within the microcapsules was also investigated. It was confirmed that 
the hemoglobin could be successfully encapsulated within these capsules through a passive loading 
process with a very high encapsulation efficiency of 99.99 ± 0.06%. Hb-loaded microcapsules 
(Microencapsulated Hb) are shown in Figure 3. It can be noticed that the microcapsules show a 
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displayed. Dark red dots: design points above predicted value; and pink dots: design points below
predicted value.

Considering both responses, to achieve the highest morphology rating as well as a diameter
of 5–10 µm, the optimized parameters were determined to be a height of 13 cm, a voltage of 25 kV,
and flow rate setting of 15 (2.1 mL/hr) as shown in Table 1. All further experimentation was conducted
using the optimal parameters, thereby improving the process.

3.3. Hemoglobin Encapsulation Efficiency

The encapsulation of Hb within the microcapsules was also investigated. It was confirmed
that the hemoglobin could be successfully encapsulated within these capsules through a passive
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loading process with a very high encapsulation efficiency of 99.99 ± 0.06%. Hb-loaded microcapsules
(Microencapsulated Hb) are shown in Figure 3. It can be noticed that the microcapsules show a
biconcave shape with uniform size distribution. The encapsulation did not negatively impact the
hydrogel microcapsule formation.
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FTIR spectroscopy was also used to confirm the successful encapsulation of hemoglobin within
the microcapsules. As shown in Figure 4, the presence of Hb is clearly evidenced by the significant
changes that occur in the Amide I and Amide II regions around 1530–1650 cm−1. In particular, the peak
around 1710 cm−1 becomes more pronounced due to the C=O stretching vibration of Hb [5,24]. This is
also supported by the appearance of the strong peaks in the 1050–900 cm−1 region, which are typical
for Hb [25].

Pharmaceutics 2019, 11, x FOR PEER REVIEW 6 of 8 

 

biconcave shape with uniform size distribution. The encapsulation did not negatively impact the 
hydrogel microcapsule formation.  

FTIR spectroscopy was also used to confirm the successful encapsulation of hemoglobin within 
the microcapsules. As shown in Figure 4, the presence of Hb is clearly evidenced by the significant 
changes that occur in the Amide I and Amide II regions around 1530–1650 cm−1. In particular, the 
peak around 1710 cm−1 becomes more pronounced due to the C=O stretching vibration of Hb [5,24]. 
This is also supported by the appearance of the strong peaks in the 1050–900 cm−1 region, which are 
typical for Hb [25].  

 

Figure 3. Image of hemoglobin (Hb)-loaded microcapsules (indicated by white arrows) prepared 
under the optimized condition. 

 

Figure 4. Fourier transform infrared (FTIR) spectra of hydrogel microcapsules and Hb-loaded 
microcapsules (microencapsulated Hb). 

4. Conclusions 

An 8% pectin solution, without a viscosity-modifier, was chosen as the formulation for the 
hydrogel microcapsule production. This formulation enables a simple and quick preparation, which 
is essential during future industrial-scale production. Furthermore, the removal of the viscosity-
modifying chemicals allows for concentration of the sample via centrifugation, which was previously 
impossible. The optimized condition was determined by using the Design-Expert® software to 
produce microcapsules that are 5–10 μm in diameter and maintain a biconcave shape with a 
morphology resembling that of a natural red blood cell. Passive loading of hemoglobin into the 
microcapsules, confirmed by FTIR analysis, resulted in a high encapsulation efficiency of 99.99 ± 
0.06%.  

Future work includes stability testing of the hydrogel microcapsule carrier as well as oxygen 
transport property. Alternatives to hemoglobin such as a synthetic gas carrier will also be explored. 

Figure 4. Fourier transform infrared (FTIR) spectra of hydrogel microcapsules and Hb-loaded
microcapsules (microencapsulated Hb).

4. Conclusions

An 8% pectin solution, without a viscosity-modifier, was chosen as the formulation for the
hydrogel microcapsule production. This formulation enables a simple and quick preparation,
which is essential during future industrial-scale production. Furthermore, the removal of the
viscosity-modifying chemicals allows for concentration of the sample via centrifugation, which
was previously impossible. The optimized condition was determined by using the Design-Expert®

software to produce microcapsules that are 5–10 µm in diameter and maintain a biconcave shape with
a morphology resembling that of a natural red blood cell. Passive loading of hemoglobin into the
microcapsules, confirmed by FTIR analysis, resulted in a high encapsulation efficiency of 99.99 ± 0.06%.
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Future work includes stability testing of the hydrogel microcapsule carrier as well as oxygen
transport property. Alternatives to hemoglobin such as a synthetic gas carrier will also be explored.

5. Patent

Polymeric red-blood-cell-like particles (Inventors: Wujie Zhang, Rebecca Schroeder, Sydney
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