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1  |  INTRODUC TION

Invasive species can significantly challenge the native ecological 
system and may pose a severe threat to ecosystem services, bio-
diversity, agriculture and human health (Pimentel et al., 2005). 

Worryingly, the rate of invasions is increasing with expansion of 
global trade, transport and climate change (Hulme, 2009; Seebens 
et al., 2015), while efforts to control or prevent this fail to keep 
pace (Bradley et al., 2010). Despite their harmful impact, invasive 
species represent exceptional examples of contemporary evolution 
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Abstract
Globalization and intensified volume of trade and transport around the world are ac-
celerating the rate of biological invasions. It is therefore increasingly important to un-
derstand the processes through which invasive species colonize new habitats, often 
to the detriment of native flora. The initial steps of an invasion are particularly critical, 
as the introduced species relies on limited genetic diversity to adapt to a new environ-
ment. However, our understanding of this critical stage of the invasion is currently 
limited. We used a citizen science approach and social media to survey the distribu-
tion of invasive sunflower in Israel. We then sampled and sequenced a representative 
collection and compared it with available genomic data sets of North American wild 
sunflower, landraces and cultivars. We show that invasive wild sunflower is rapidly 
establishing throughout Israel, probably from a single, recent introduction from Texas, 
while maintaining high genetic diversity through ongoing gene flow. Since its intro-
duction, invasive sunflower has spread quickly to most regions, and differentiation 
was detected despite extensive gene flow between clusters. Our findings suggest 
that rapid spread followed by continuous gene flow between diverging populations 
can serve as an efficient mechanism for maintaining sufficient genetic diversity at the 
early stages of invasion, promoting rapid adaptation and establishment in the new 
territory.
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and rapid adaptation, being able to establish themselves and flour-
ish in new environments where conditions may be significantly dif-
ferent from their original habitat (Bock et al., 2015; Colautti & Lau, 
2015). Moreover, successful invasive species are able to overcome 
the genetic barriers that are associated with dispersion bottlenecks 
and expansion load, and maintain high genetic and/or phenotypic 
diversity (Dlugosch & Parker, 2008). To explain these remarkable 
features, several mechanisms of diversity maintenance have been 
suggested, including admixture before or after invasion, repeated 
independent introductions, the size of the invading population, and 
continuous gene flow through bridgehead populations (Bock et al., 
2015). Indeed, hybridization, introgression and local adaptation were 
shown to play a key role in boosting adaptation through accommo-
dation of beneficial genetic variation (Hodgins et al., 2018; Todesco 
et al., 2020). For example, a recent study on teosinte invasion and 
establishment as a noxious weed in Europe highlighted the role of 
introgression of a herbicide resistance gene from maize in promoting 
adaptation to agricultural ecosystems within few decades (Le Corre 
et al., 2020). Other examples of rapid local adaptation have provided 
a more general understanding on how the interplay between demo-
graphic and adaptive processes lead to the establishment of an in-
vasive species quickly across continents (van Boheemen et al., 2017; 
Colautti & Lau, 2015).

The process of invasion is well framed and can roughly be di-
vided into three phases: introduction, initial establishment and ex-
pansion of the invading species in the new habitat. The early stages 
of invasion are critical for the chances of successful establishment 
(Bock et al., 2015). Massive or repeated introductions of invasive 
populations that harbour large standing genetic variation will allow a 
quicker transition to the establishment and expansion phases. Thus, 
deciphering the early stages of the invasion process is critical to un-
derstanding the fate of the invasion, and can guide the development 
of management and control practices (Hulme, 2006). Nevertheless, 
most studies of invasive species focus on ancient introductions, par-
tially because monitoring the early stages of invasion and divergence 
from the source population remains challenging. Another challenge 
of studying an alien species is the limited information available on 
its distribution in the invaded region, especially for recently intro-
duced species that are not included in the local flora documentation. 
Failure to properly represent the distribution of the target species 
may result in biased inferences on the level of genetic variation and 
divergence (Hübner & Kantar, 2021).

Common sunflower (Helianthus annuus L.) is an annual species 
native to North America that occurs across a wide ecogeographical 
range, from temperate climates in Canada to arid climates in north-
ern Mexico (Kantar et al., 2015). Wild sunflower can also evolve into 
a weedy form in locations proximate to cultivated fields (Kane & 
Rieseberg, 2008), and crop– wild introgressions have been reported 
for breeding purposes, too (Hübner et al., 2019). The lack of cross-
ing barriers between the cultivated sunflower and the weedy form 
were reported even outside the distribution range of wild sunflower, 
and promoted adaptation to the agricultural environment, including 
herbicide resistance (Ellstrand et al., 2013; Massinga et al., 2003; 

Presotto et al., 2012). In some cases, weedy sunflower has devel-
oped into a noxious weed that poses a threat to agriculture in differ-
ent regions around the world (Muller et al., 2011). There is therefore 
an urgent need to study the evolution of invasive sunflower outside 
of its native range, with important implications for agriculture, con-
servation and evolutionary biology.

The Mediterranean region, and particularly the Levant, has been 
a recipient area for biological invasions due to its location as a bridg-
ing land between three continents, and to intense human movement 
and activity over several millennia. Commerce and trade have in-
creased dramatically the pace of invasion globally and specifically 
in Israel, which relies heavily on import of agricultural commodities 
(Rubin & Matzrafi, 2015). The first record of invasive wild sunflower 
in Israel dates to the 1970s, when limited spread was reported 
mainly in the northwest (Dafni & Heller, 1980). Previous attempts to 
identify the origin of invasive sunflower in Israel suggested a crop– 
wild ancestry (Lai et al., 2012) in accordance with other reports for 
weedy sunflower in Europe (Muller et al., 2011).

In this study, we explore the process of establishment and spread 
of invasive wild sunflower in Israel. To address this, we survey the 
distribution range of the invasive populations using a citizen science 
approach, which allowed us to explore a wide geographical range 
efficiently and a to directly communicate with citizens to promote 
awareness of invasive species. Next, we used genomic data to iden-
tify the population of origin in North America, and trace the route of 
its spread across the invaded region in Israel. We further address the 
contribution of crop– wild interactions and the demographic factors 
that facilitate the accumulation and maintenance of genetic diversity 
through rapid spread.

2  |  MATERIAL S AND METHODS

2.1  |  Tracing and sampling invasive sunflower 
populations

To locate wild sunflower populations that represent the species 
current distribution across Israel, we took a citizen science ap-
proach. To reach out as broadly as possible, while targeting an 
audience with high engagement, we used the social media plat-
form Facebook to communicate the project goals, guidelines and 
general information including photos to help to correctly identify 
wild sunflower plants. In addition, a WhatsApp group was cre-
ated to further expand the outreach of the project and to record 
geographical coordinates of detected invasive populations and 
photos for validation (Figure S1). These platforms were selected 
because of their high popularity in Israel, specifically among 25– 
50 year- olds, who were anticipated to be the most committed and 
contributing group. Both platforms were managed in Hebrew to 
encourage direct and friendly communication with a broad local 
audience. Reported observations were validated by experts with 
available photos shared by participants, and recorded coordinates 
were used to draw geographical and environmental data for each 
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detected population. To select sites for sampling, a grid was pro-
jected on top of recorded coordinates and representing sites were 
selected at each 10- km2 grid cell (Figure S2). This approach was 
previously shown to be effective for sampling in Israel due to the 
high correlation between geographical coordinates and environ-
mental variables (Hübner et al., 2009) and was chosen to guarantee 
proper sampling without restriction to specific locations. Many of 
the recorded coordinates were located in private areas, urbanized 
or isolated locations with fewer than 10 different plants, and inac-
cessible spots, and thus were excluded from the survey. Following 
these steps, 22 sampling locations that represent the distribution 
range and environmental spectrum where invasive sunflower oc-
curs in Israel were chosen for sampling (Figure S3, Table S1). At 
each location, mature seeds were collected from each of 10 plants 
and stored at 4°C.

2.2  |  DNA extraction and genotyping 
by sequencing

Seeds from all the collected plants were germinated, and genomic 
DNA was extracted from the young leaves of a single seedling for 
each mother plant. Leaves were collected directly into liquid nitro-
gen and ground. Prewarmed CTAB buffer (100 mm Tris- HCl pH 8.0, 
20 mm EDTA pH 8.0, 1.4 m NaCl, 2% w/v CTAB, 0.5% w/v NaHSO3; 
Sarokin & Carlson, 1984) was added and the samples were incu-
bated at 65°C for 60 min. After a short cool- down, cold phenol/
chloroform/IAA (indole acetic acid) (25:24:1) mixture was added and 
the samples were vigorously vortexed and centrifuged for 5 min at 
20,000 g at 4°C. The upper phase was transferred into a new tube, 
and chloroform/IAA (24:1) mixture was added. Samples were again 
vigorously vortexed and centrifuged for 5 min at 20,000 g at 4°C. 
Next, the upper phase was transferred again into a new tube and 
treated with 5 µl RNase A (10 mg ml– 1, abm- G117) for 30 min at 
37°C. Once again chloroform/IAA (24:1) was added, vortexed, cen-
trifuged and the upper phase was transferred to a new tube, fol-
lowed by NaCl/isopropanol precipitation for 30 min at −20°C and 
two ice- cold 70% ethanol washes. Finally, samples were eluted in 
50 µl low TE buffer (10 mm Tris- HCl pH 8.0 and 0.1 mm EDTA pH 8.0). 
Among samples, 22 did not germinate or yield enough high- quality 
DNA for library preparation and a total of 178 samples proceeded to 
the library preparation step.

For genotyping- by- sequencing (GBS) library preparation, 
200 ng of genomic DNA was digested with two restriction en-
zymes (PstI, NEB- R3140; and MspI, NEB- R0106) for 5 h at 37°C 
(Poland et al., 2012). Each sample was ligated with a unique bar-
coded adapter and a common adapter for 2 hr at 22°C, and was 
cleaned and concentrated using 1.6× volumes of SPRI beads 
(Fisher Scientific; #09- 981– 123), prepared following Rohland and 
Reich (2012). Next, each sample was amplified using 2× KAPA HiFi 
HotStart ReadyMix (KAPABIOSYSTEMS; KK2600) with primers 
that produced complete Illumina adapters, and quantified using 
the Qubit dsDNA BR Assay Kit (Thermo; Q32850). From each 

of the 178 libraries, 100 ng was pooled and concentrated, and 
quantified using the Qubit dsDNA BR Assay Kit. Pooled librar-
ies were loaded on 1.5% agarose gels and DNA fragments in the 
range 400– 600 bp were cut and extracted using Wizard SV Gel 
and PCR Clean- Up System (Promega; A9281) and quantified with 
the Qubit dsDNA BR Assay Kit. We used duplex- specific nuclease 
(DSN) normalization (Shagina et al., 2010) to reduce the portion of 
repetitive sequences in the samples, and re- amplified the pooled- 
depleted library. Fragment size was analysed using the Agilent 
High Sensitivity D1000 ScreenTape (Agilent; 5067– 5584).

The pooled library was first sequenced on a MiSeq system 
(Illumina) using the V2 Nano kit, to validate and confirm normal-
ization between samples, and then on four lanes of the Illumina 
NextSeq550 to generate 2× 150- bp reads in high- output mode.

2.3  |  Variant calling and genotyping procedure

Raw sequence data were trimmed and demultiplexed using the 
“process_radtag” command in stacks (Rochette & Catchen, 2017) 
with two mismatches allowed in the adapter sequence (Table S2). 
Demultiplexed reads from each sample were aligned to the XRQv1 
reference genome (Badouin et al., 2017) using bwa mem with de-
fault parameters (Li, 2013). Alignment files were processed and 
used to call variants across all invasive accessions in one batch 
using the HaplotypeCaller algorithm in gatk4 (Poplin et al., 2017) 
with “heterozygosity” and “heterozygosity- stdev” parameters set 
to 0.01 and 0.1, respectively, to account for the high level of het-
erozygosity expected in wild sunflower (Todesco et al., 2020). Raw 
variants were filtered for a minimum minor allele frequency of 5%, 
maximum of 30% missing data, minimum variant quality of 30, 
minimum genotype quality of 30 and minimum depth of 5 reads. 
Individuals with more than 70% missing data were excluded from 
downstream analysis.

To compare the invasive populations to domesticated germ-
plasm (sunflower association mapping [SAM] population) and wild 
Helianthus annuus populations sampled in North America, the data 
set generated by Todesco et al. (2020) was obtained and filtered 
to include all H. annuus samples (wild and domesticated) and vari-
ants with VQSR tranches higher than 90. After each data set was 
filtered separately (see parameters above), the two vcf files were 
merged by coordinates using the vcf- merge command in vcftools 
(Danecek et al., 2011). Variants that were completely absent in at 
least one of the groups (invasive, domesticated or North American 
wild) were excluded from the merged data set and additional fil-
tering for a maximum of 30% missing data across all samples was 
applied.

2.4  |  Population genomics and statistical analyses

Population stratification analysis for the invasive sunflower sam-
ples was conducted with snmf and principal components analysis 
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(PCA) as implemented in the LEA package in R (Frichot & François, 
2015). For snmf, different K values were tested between 2 and 10, 
with 10 replicates for each K followed by a cross entropy test that 
was performed across all K values to identify the best number of 
clusters. In the PCA, the Tracy– Widom test was performed to 
identify the number of eigenvectors that best represent the data 
set as an indication for the population structure among invasive 
sunflower samples. For validation, the program fast- structure 
(Raj et al., 2014) was used, followed by a “chooseK” analysis of K 
values of 2– 10 to identify the number of clusters among invasive 
populations.

To identify the source of the invasive populations in Israel, a 
PCA was conducted with smartpca as implemented in the eigen-
soft package (Patterson et al., 2006) using the genetic data from 
the wild and domesticated samples obtained from Todesco et al. 
(2020). Invasive samples were projected on top of the generated 
PC space to avoid the bias introduced by the excess of missing 
data among invasive samples that were genotyped using GBS. 
To further reduce the stretching effect of projection, the shrink 
mode was activated in the analysis. This procedure allowed us 
to reduce the bias of using different data sets in a PCA. In addi-
tion, a neighbour- joining (NJ) network was constructed with spit-
strees4 (Huson, 1998) using all single nucleotide polymorphisms 
(SNPs) that passed the filtering procedure. As a complementary 
approach, a supervised machine learning method implemented 
in the package Locator (Battey et al., 2020) was used to predict 
the geographical source of the invasive populations based on ge-
nomic data. All wild samples obtained from Todesco et al. (2020) 
for which geographical coordinates are available (n = 614) were 
included in the analysis. Invasive samples were considered of un-
known location and their geographical origin was predicted by the 
model. The analysis was replicated 10 times by bootstrapping over 
SNPs and results were summarized across all replicates.

To further study the differentiation and relatedness among 
invasive samples at each sampling location, global FST and the f3- 
statistic were calculated using the admixtools package (https://
github.com/uqrma ie1/admix tools) and a graph was constructed 
using the ggraph package in R (https://cran.r- proje ct.org/web/
packa ges/ggraph). Relatedness was calculated for each pair of 
samples using the level of identity by state calculated with snprel-
ate (Zheng et al., 2012). Signs of introgression from domesticated 
sunflower into invasive populations were examined using the f3- 
statistic as implemented in admixtools. Population genetics statis-
tics including Tajima's D, nucleotide diversity (�), heterozygosity 
and Tajima's � were calculated globally for each chromosome in 
each population, and in 1- Mbp windows using the popGenome 
package in R (Pfeifer et al., 2014) and vcftools.

Environmental data for each invasive population was obtained 
from the WorldClim database (Fick & Hijmans, 2017) based on re-
corded coordinates and included annual mean temperature (BIO1), 
maximum temperature in warmest month (BIO5), temperature an-
nual range (BIO7), annual precipitation (BIO12), and precipitation 
seasonality (BIO15).

3  |  RESULTS

3.1  |  Tracing invasive sunflower populations

Common sunflower is native to North America and does not occur 
naturally in the Levant. Therefore, no official records are available 
for the distribution of wild sunflower in Israel. To detect “natural” 
populations of wild sunflower, we took a citizen science approach 
using social media platforms (Facebook and WhatsApp). People re-
sponded positively in both platforms and participants shared pho-
tos, comments and coordinates of wild sunflower populations from 
across the country. Interestingly, several reports on intentional 
seed transfer between regions due to a misidentification of wild 
sunflower as an ornamental plant indicated that people are actively 
spreading the species. After approximately one month of activity, 
national news channels reported about the project on traditional 
media (TV and newspapers), which significantly increased the activ-
ity and interest on the social media platforms (Figure 1a). After circa 
100 days of activity, the project reached over 20,000 participants on 
Facebook, and a similar activity was achieved on the WhatsApp plat-
form (Figure 1a). According to the profile of participants on Facebook 
(https://www.faceb ook.com/busin ess/insig hts/) the main age group 
was 25– 55 years (information from WhatsApp was unavailable), and 
higher participation was noticed among women (Figure 1b). A total 
of 156 locations were reported and cross- validated with photos and 
information shared by participants. Eventually, 22 locations were 
chosen for sampling, of which two sites (Ramla and Natanya, centre 
region) were later excluded because herbicide treatments were ap-
plied by local authorities before the populations could be sampled. 
Thus, a total of 20 sites were sampled and seeds from 10 different 
individual plants were collected (Figure 1c,d).

3.2  |  The origin of invasive sunflower populations

From these 20 populations, 178 individuals, each germinated from 
seeds deriving from a different mother plant, were genotyped using a 
GBS protocol (Poland et al., 2012) modified for sunflower. Sequence 
data were processed and analysed, yielding a total of 3,850,685 vari-
ants across all individuals. The data set was extensively filtered for 
low- quality SNPs and five accessions with an excess of missing data 
were removed, leaving a total of 28,540 SNPs genotyped across 173 
individuals. Next, the variants called in the invasive population were 
merged with an available SNP data set generated for wild sunflower 
populations from North America, landraces and cultivated varieties 
comprising the SAM population (Todesco et al., 2020). Following 
merging, a total of 20,169 SNPs genotyped across 1,200 individuals 
were kept for downstream analysis.

To explore the source of invasive sunflower in Israel, a PCA was 
conducted for the North American wild populations in addition to 
landraces and cultivars from the SAM population (Figure 2a). The in-
vasive populations were projected on the PC space and were broadly 
clustered with the wild North American populations with tendency 

https://github.com/uqrmaie1/admixtools
https://github.com/uqrmaie1/admixtools
https://cran.r-project.org/web/packages/ggraph
https://cran.r-project.org/web/packages/ggraph
https://www.facebook.com/business/insights/
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towards populations collected in southwest USA (Figure 2b). Due 
to the projection procedure, the invasive samples were scattered 
across the PC space despite the lower diversity captured in this pop-
ulation compared with the North American populations (see below). 
To further explore the similarity between the invasive samples and 
remaining populations, an NJ network was conducted with the same 
data set and further supported the PCA results, indicating that the 
invasive populations are monophyletic with a major single source 
in Texas (Figure 2c). To validate these results, a population differ-
entiation test was conducted based on pair- wise FST between each 
wild North American population and the entire invasive population 
to maintain comparable sample sizes (Figure S4). Lowest FST scores 
with the invasive population were obtained for Texas (FST =0.010) 
followed by populations from Kansas (FST =0.016) and New Mexico 
(FST =0.018), suggesting that the source population is in southwest 

USA. To refine the identification of the geographical source of the 
invasive populations, a machine learning analysis was applied using 
the genetic data from North American and invasive populations in 
addition to the geographical coordinates available for the North 
American populations. The analysis was replicated 10 times with 
good fit of the training runs (R2 = .99), and pointed to Texas as the 
source for the invasive sunflower populations (Figure 2d).

To further track the entrance point and spread of wild sunflower 
in Israel, the f3- statistic was calculated between the Texan popula-
tion and each sampling site using the population from Utah as an 
outgroup. Conceptually, both f3 and FST can measure the differenti-
ation between populations, but f3 is less prone to bias caused by dif-
ferences in sample size. Low differentiation was observed between 
the Texan population and all invasive sampling sites as expected 
for the short time since the invasion (first records in the 1970s). 

F I G U R E  1  Tracing and sampling invasive sunflower populations. (a) Participation and engagement rate in the citizen survey of wild 
sunflower populations. Activity on the Facebook platform is shown across the duration of the project. Red and blue vertical lines mark 
the project coverage on the television channel and digital news website, respectively. (b) Distribution of participants' profile by age and 
gender. (c) Locations of all invasive sunflower records obtained from the survey based on coordinates provided by participants. Selected 
sampling sites are indicated with darker colour and the site name; a scale bar is indicated at the top left. (d) Photos of wild sunflower at two 
representative sampling sites
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However, differences between sampling sites were observed and 
indicated that the closest populations (highest f3 scores) to the 
Texan origin are Umm el Faheem (UF; f3 = 0.162), Ma'ayan Zvi (MZ; 
f3 = 0.158) and Nahal Harod (NH; f3 = 0.159). These sites are located 
in northwest Israel, close to the Haifa harbour where most imported 
grains and other agricultural products are unloaded and distributed 
(Figures 1c and 2e).

3.3  |  Tracking the dispersion and establishment of 
invasive populations

To further investigate the process of invasion and establishment, 
population dynamics were explored among sampling sites across 
Israel. To test for population stratification among invasive popu-
lations, a PCA was conducted followed by a Tracy– Widom test to 
identify the number of clusters represented in the data (Figure 3a; 
Figure S5). No significant signal of clear differentiation was identified 
analytically based on the Tracy– Widom test, although a deviation 
to three clusters in accordance with the geographical distribution 
was observed in a plot generated for the first two PCs, splitting the 
sampling sites in northwest, east and southwest Israel. To further 
examine the observed population structure, snmf and fast- structure 
analyses were performed with K values ranging from 2 to 10 followed 

by cross- entropy (snmf) and “chooseK” (fast- structure) tests to iden-
tify the number of clusters that best represent the data. Similar to 
the Tracy– Widom test, no signal of clear stratification was obtained, 
indicating that divergence among sampling sites is too low to allow 
identification of the population structure analytically. Nevertheless, 
visualizing the snmf and fast- structure results for different K values 
denoted interesting population dynamics in accordance with the 
PCA results (Figure 3b; Figures S6 and S7). At K = 2, individuals sam-
pled in the southern region clustered separately from the remaining 
sampling sites and assignment of accessions was consistent with the 
identified cluster. At K = 3, accessions sampled in the north were 
further split in two, and at K = 4 accessions from most sampling sites 
were assigned to more than one cluster (Figures S6 and S7). These 
observations suggest that the southern sites are more genetically 
uniform and diverged from the remaining sites, while the split be-
tween the northern and eastern sampling sites is less pronounced 
and may indicate either a more recent split or higher rate of ongoing 
gene flow. The low level of divergence between invasive sunflower 
populations suggests that the process of differentiation is young; 
however, the presence of distinct clusters points to ongoing estab-
lishment at different geographical regions, with increasing level of 
genetic divergence (Figure 3c). To quantify the level of differentia-
tion between clusters, a pair- wise FST was conducted after balancing 
sample size (nnorth =29, nsouth =24, neast =28) in the eastern cluster 

F I G U R E  2  Identifying the source of invasive wild sunflower populations in Israel. (a) Principal component analysis coloured by type (wild, 
domesticated, invasive), and by country (b). (c) Neighbour- joining network of invasive, domesticated and wild North American populations. 
(d) Prediction of the geographical source of the invasive population using a machine learning approach. Coloured points on the map 
correspond to North American wild populations from different states (indicated in the key). The blue contour lines indicate the predicted 
source of invasive populations where the density of lines corresponds to the number of samples assigned to geographical position. (e) Graph 
calculated from the f3- statistic between the Texan population and each invasive sunflower sampling site; thicker lines correspond to higher 
f3 values
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by excluding populations with low assignment (<80%). Overall, the 
FST scores supported the low differentiation among clusters with 
higher divergence between the southern and northern clusters 
(FST =0.06) than between each of them and the eastern cluster 
(FST:north- east =0.04; FST:south- east =0.05). To further evaluate the level 
of differentiation between sampling sites, a pair- wise FST was con-
ducted. Overall, low differentiation (FST <0.15) was observed among 
sampling sites, yet higher values were obtained with increased geo-
graphical distance between sampling sites (rMantel = .29, p = .01), sup-
porting the results of the PCA and snmf (Figure 3d). To further test 
for correlation between population divergence and ecogeographi-
cal parameters, the pair- wise FST matrix was down- scaled to one 
vector using a multidimensional scaling (Figure S8). Significant cor-
relations for population divergence were observed with longitude 
(r = −.52, p = .01) and precipitation (r = −.57, p = .009), although 
significant correlation was also observed among these two ecogeo-
graphical parameters (r = .67, p = .001). These results imply that the 
main factor contributing to population divergence is demographic 
and that the effect of environmental differences between regions 
is lower. Interestingly, signs of gene flow between geographically 
distant populations were also noted, including cases of accessions 
that were assigned to a different cluster than the remaining indi-
viduals from the same sampling site (Figure 3a– c). To further test 
for potential gene flow and seed transfer between sampling sites, 
a pair- wise relatedness matrix was constructed by calculating the 

level of identity- by- state (IBS) across all individuals. Expectedly, high 
genetic similarity was observed among individuals from the same 
sampling site; however, extensive gene flow was also noted between 
sampling sites from the same cluster and, in some cases, even be-
tween clusters. The strongest cross- cluster gene flow was observed 
between Be'er Tuvia (BT) and Givat HaShlosha (GHS) which are geo-
graphically close (62 km), but also between BT and Givat Avni (GA) 
which are more distant (164 km). Other signs of misassignment or 
gene flow between geographically distant sampling sites were ob-
served for Hulata (HUL) in the Upper Galilee and Jerusalem (JRS) 
in the centre, Drom Ha'rama (DHR) in the Golan Heights and Kfar 
Yehoshua (KY) near the coast, among others (Figure 3e). These signs 
of gene flow or misassignments are expected due to the intensive 
transport across Israel but also due to intentional transfer of seeds 
between regions, which was indeed reported by participants in the 
survey. Another potential source of gene flow is from domesticated 
sunflower, which is sparsely cultivated in fields close to some of the 
sampling locations. To test for potential gene flow from cultivated 
sunflower into wild populations, the f3 test was conducted between 
domesticated accessions (represented as the entire SAM population) 
and each sampling site, where all possible rotations among invasive 
populations were examined. A negative f3, which indicates admix-
ture, was detected, albeit barely, only in the Givat HaShlosha (GHS) 
sampling site (f3 = −0.003, Z = −2.02). Nevertheless, based on the 
GBS data alone, we cannot exclude that admixture between GHS 

F I G U R E  3  Population stratification among invasive wild sunflower in Israel. (a) Principal component analysis of invasive individuals 
coloured by sampling site. (b) Assignment of individuals and sampling sites to clusters at K = 3 based on the snmf analysis. (c) Frequency of 
assignment to each cluster by sampling location. (d) Pair- wise FST between invasive sunflower sampling sites, where red and blue colours 
correspond to high and low FST values, respectively. (e) Relatedness among invasive individuals calculated from identity by state. Outer 
colours correspond to clusters and inner links correspond to the level of relatedness, with thicker links representing higher levels of 
relatedness
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and other sampling sites may have spread some domesticated al-
leles also to other parts of the country, nor that introgressions were 
masked by repeated backcrosses in the wild.

3.4  |  Maintenance of genetic diversity in invasive 
populations

A critical limitation for the establishment of an invasive population is 
the available genetic variation, which allows to efficiently respond to 
selection and avoid the genetic load of introduction to a new habitat. 
A lack of standing genetic variation or failure to retain it will risk 
the survival and establishment of the invading species. To quantify 
the extent of genetic diversity in the invasive population (n = 173) 
and compare it with the North American wild populations, a subset 
of ~20,000 variants were randomly sampled from each of the three 
largest North American populations in the data set: Texas (n = 140), 
Utah (n = 100) and California (n = 110). Population genetics statistics 
were calculated for each group and indicated that, overall, the diver-
sity (�W) in the invasive population is significantly lower (F = 31.1, 
p < .0001) than in any other North American population, which is 
expected due to the recent invasion and the associated genetic bot-
tleneck. Differences in the observed nucleotide diversity further 
supported this observation (F = 87.9, p < .0001); however, it was 
noted that the invasive population holds up to 70% of the diversity 
in the source population in Texas, indicating that the genetic bottle-
neck was not severe. A neutrality test statistic (Tajima's D) calculated 
for each population was significantly different between populations 
(F = 130, p < .0001) and suggested a recovery of genetic variation 
after a recent population contraction, as indicated by lower values 
in the invasive population compared with the native North American 
populations (Figure 4a,b; Figure S9).

Next, we quantified the genetic diversity among the three identi-
fied clusters of invasive sunflower in Israel. To reduce the statistical 
bias caused by the larger sample size in the “Eastern” cluster, a sub-
set of three sampling sites with highest assignment scores based on 
the snmf analysis was selected (“IL,” “JRS,” “NH”) as representatives 
(Figure 3b). A Tajima's D test conducted for the three clusters desig-
nated a significantly higher score in the “Southern” and “Northern” 
clusters compared with the “Eastern” cluster (F = 50.5, p < .0001) 
indicating a stronger population contraction in the former clusters or 
a faster population expansion in the latter. Observed heterozygos-
ity was significantly higher in the “Eastern” cluster while nucleotide 
diversity remained similar (Figure 4d; Figure S10). Interestingly, the 
“Northern” and “Southern” clusters harboured contrasting genetic 
variation, which is also reflected in the higher FST values between 
these two clusters compared to those between either of them and 
the “Eastern” cluster (F = 23.6, p < .0001). High rates of gene flow 
between each of the “Northern” and “Southern” clusters with the 
“Eastern” cluster is consistent with the higher levels of heterozy-
gosity observed in the latter. Thus, the “Eastern” cluster serves as a 
bridge for gene flow between the “Northern” and “Southern” clus-
ters and as a hub for maintenance of high standing genetic variation.

To test whether genetic differentiation between populations is 
uniformly distributed along the genome, a genome scan for FST score 
was calculated in windows of 1 Mbp. Differentiation between the 
“Northern” and “Southern” clusters was observed in 144 windows 
of high differentiation (FST >0.25) compared with 81 windows ob-
served between the “Southern” and “Eastern” clusters, and 45 win-
dows between the “Northern” and “Eastern” clusters (Figure 4e). 
Next, a genome scan for Tajima's D statistic was conducted to 
identify genomic regions that deviate from neutrality and may in-
dicate footprints of selection. Signals of selective sweeps in the 
“Eastern” population with overlaps between elevated FST and neg-
ative Tajima's D, were identified on chromosomes 10 and 14 (Tables 
S3– S5). In the “Southern” cluster, similar signals were observed on 
chromosomes 1, 4, 5, 8, 11 and 15, and in the “Northern” cluster no 
population- specific signal was detected (Figure 4f). Finer resolution 
of genotyping will be required to further explore genomic regions 
subject to soft selective sweeps, and identify candidate genes with 
high confidence.

4  |  DISCUSSION

Biological invasions are becoming more frequent, mainly due to in-
tensified anthropogenic activity (Bradley et al., 2010; Hulme, 2009; 
Seebens et al., 2015) and can cause substantial damage in the in-
vaded territory (Pimentel et al., 2005). Despite their harmful poten-
tial, public awareness remains low, and authorities frequently fail 
to prevent biological invasions or control their rates (Hulme, 2006). 
Elucidating the process of invasion, from introduction to establish-
ment, can assist in developing a more efficient protocol to reduce 
invasions or their effects on local habitats. Here we explore the dis-
tribution range of invasive wild sunflower in Israel using a citizen 
science approach and genomic data to infer the demographic course 
of spread and establishment.

Invasive species that were recently introduced are usually ab-
sent in formal records of the distribution of local flora, and therefore 
targeting populations across the distribution range may be prone to 
bias. To address this, we took a citizen science approach, which al-
lowed us to expand the search to a broader range while reducing 
sampling bias (Hübner & Kantar, 2021). In addition, the citizen en-
gagement also increased awareness to the threat posed by invasive 
species, which is an important aspect in prevention and control of 
spread. Similar surveys can be expanded to serve other purposes, 
including conservation of crop wild relatives, preservation of endan-
gered species and monitoring climate adaptation (Ryan et al., 2018; 
Silvertown, 2009). Our main conclusions from the survey conducted 
in this study are: (i) defining the target audience is essential for the 
choice of outreach strategy, (ii) identifying a platform that is popular 
among the target audience is important to promote communication 
and engagement, and (iii) communicating the project continuously 
using local language and clear information can increase the interest 
and engagement of people in the project. The last point is particu-
larly important in international efforts aiming to survey regions that 
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cross countries and cultures. From our experience, addressing peo-
ple in their local language and sharing scientific information encour-
aged participation, interest and engagement.

First reports of invasive wild sunflower populations in Israel 
date to the 1970s (Dafni & Heller, 1980). Since then, this species has 
spread, based on the citizen survey, across the entire Mediterranean 
climate region in Israel (Figure 1). In accordance with the first re-
ports, the demographic inferences conducted here indicated that 
invasion started in the northwest close to the port of Haifa and 
from there spread to other parts of the country (Figures 2 and 3). 
Genomic comparisons between the invasive population in Israel and 
native North American wild sunflower populations indicated that its 
origin is in the southwest USA, from where it was presumably in-
troduced with imported agricultural products. Previous studies on 
other invasive species in Israel suggested southwest USA as a source 
of the invading population (Abu- Nassar & Matzrafi, 2021; Yair et al., 
2017). Southwest USA, and specifically Texas, is located on the same 
latitude as Israel (31°N) and shares some of the climatic conditions, 
although both regions are characterized by a wide spectrum of envi-
ronmental conditions. The similarity between regions supports the 

benefit of niche conservatism and abiotic pre- adaptation require-
ment for a successful invasion (Bock et al., 2015; Petitpierre et al., 
2012). Therefore, authorities should increase precautions to avoid 
similar introductions from this region in the future.

Following its introduction, wild sunflower has spread rapidly 
throughout the country (except in the desert region) with mild demo-
graphic footprints of divergence, although indications of deviation 
into three clusters were detected (Figure 3a– c). Reduced genetic di-
vergence among invasive populations is expected due to the recent 
introduction and spread; however, additional factors that could limit 
the rate of divergence were detected including seed transfer and 
hybridization. Continuous seed transfer across the invaded geo-
graphical range can increase the rate of spread and reduce diver-
gence. Agriculture and other commercial activities were previously 
reported as major drivers of biological invasion and spread (Hulme, 
2009), also across Israel (Matzrafi et al., 2021). The observed distri-
bution of invasive populations along roads and in proximity to agri-
cultural centres suggest that these factors contributed substantially 
to the spread of wild sunflower (Figures 1 and 3). Interestingly, the 
attractiveness of sunflower also contributed to its spread by people 

F I G U R E  4  Population genomic statistics. (a) Comparison between the invasive population and three representative North American 
populations using Tajima's D, and (b) nucleotide diversity. (c) Comparison between the three identified invasive clusters using Tajima's 
D and (d) observed heterozygosity. Red dashed horizontal lines represent the average score across all populations. (e) Genome scans of 
differentiation between invasive cluster FST values and (f) Tajima's D in each cluster using 1- Mbp windows

(a) (b) (e)

(f)
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mistakenly identifying it as an ornamental plant. Another key factor 
in reducing divergence is the extensive gene flow detected between 
each of the “Northern” and “Southern” clusters with the “Eastern” 
cluster, which serves as a bridge for gene flow between regions. 
Intraspecific hybridization can potentially accelerate adaptation 
by (i) increasing the available genetic variation for selection, (ii) in-
creasing the chances for heterotic effects and transgressive phe-
notypes, and (iii) reducing the effect of genetic load by expanding 
the genetic variation and masking of deleterious alleles (Bock et al., 
2015; Dlugosch et al., 2015; Rius & Darling, 2014; Todesco et al., 
2016). The high heterozygosity observed in the “Eastern” population 
supports the role of this region in maintaining high genetic diversity 
across all regions.

The role of wild– crop interactions in promoting invasion and 
weediness was also examined. Previous studies found evidence for 
gene flow from cultivated fields into a counterpart invading species, 
and indicated that weedy traits, including herbicide resistance, have 
contributed to establishment of the invading species around culti-
vated fields (Lai et al., 2012; Le Corre et al., 2020; Presotto et al., 
2017). In Israel, sunflower is grown for confectionary purposes and 
only a few varieties that are characterized by a very large achene 
are cultivated. In the past, sunflower was grown across all regions 
but today the crop is declining due to broomrape infestation. Few 
invasive individuals collected in Israel were previously investigated, 
but only moderate support for crop– wild interactions was detected 
based on an EST (expressed sequence tage) data set (Lai et al., 2012). 
Here, we used genomic data and f3- statistics to detect interactions 
with higher confidence. No widespread crop– wild interactions 
were detected, similarly to previous reports for invasive sunflower 
in Argentina, where no introgressions between cultivated and wild 
(invasive) Helianthus annnuus were detected (Mondon et al., 2018). 
Here, crop– wild introgression was detected only in one sampling 
site (GHS), although we cannot exclude that introgressions from 
cultivated sunflower have enhanced adaptation in the invasive pop-
ulations and that repeated backcrosses in the wild impede their de-
tection with GBS data.

Invasive species have a remarkable ability to efficiently maintain 
and exploit genetic diversity. Standing genetic variation is viewed 
as the main driver of rapid adaptation (Barrett & Schluter, 2008), 
although other mechanisms of diversity maintenance should be fur-
ther explored (Bock et al., 2015). Recent studies have investigated 
the source of genetic variation in invasive species and emphasized 
the importance of precolonization admixture and multiple introduc-
tions followed by hybridization at the invaded territory (Barker et al., 
2019; van Boheemen et al., 2017). Here we provide an intriguing 
example for genetic diversity maintenance in an invasive popula-
tion through a process of rapid spread followed by extensive gene 
flow. This mechanism preserves high heterozygosity in the “Eastern” 
cluster, which serves as a bridge for gene flow across the distribu-
tion range. Single introduction of an invasive species may be more 
sensitive than multiple introductions to the impact of inbreed-
ing depression and expansion load. The potential environmental 
similarity between the source region (Texas) and Israel may have 

compensated, at least partially, for this negative impact. Moreover, 
several mechanisms were previously suggested as a means to over-
come potential genetic bottlenecks including large founding popula-
tion size and diversity, conversion of dominance to additive genetic 
variation (Bryant & Meffert, 1988; Whitlock et al., 1993) and fitness- 
dependent recombination, which can increase the rate of adaptation 
specifically under stressful conditions and in populations with high 
inbreeding (Roze & Lenormand, 2005; Rybnikov et al., 2021). Thus, 
rapid adaptation in invasive species may be promoted also by demo-
graphic processes.

The rate of biological invasions is increasing with expansion of 
globalization and accelerated climate change. Prevention efforts 
and regulation should target commodities imports especially from 
regions detected as source of invasive species, and in increasing 
public awareness to the risk of biological invasions. Wild sunflower 
has been introduced from the southwest USA and has spread rapidly 
throughout Israel, and thus eradication at early stages of the inva-
sion may have been the most effective means to avoid its establish-
ment in the Levant.

ACKNOWLEDG EMENTS
We thank Amit Wallach for her assistance with sampling the invasive 
populations and Shlomi Aharon for his assistance with the GIS tasks. 
This study was supported by the Israeli Ministry of Agriculture, grant 
no. 21- 01- 0034 (S.H., H.E.), and a Galilee Research Institute (MIGAL) 
internal funding grant (S.H.).

AUTHOR CONTRIBUTIONS
S.H. planned and designed the research, D.S. performed the citizen 
survey and sampled invasive populations, T.M. and M.T. performed 
library preparation and sequencing, S.H. conducted the analyses and 
wrote the first draft, and M.T., D.S., M.M., H.E. and T.M. provided 
comments and edited the manuscript. All authors read and approved 
the final manuscript.

DATA AVAIL ABILIT Y S TATEMENT
Sequence data are available at the National Center for Biotechnology 
Information (NCBI) Sequence Read Archive under Bioproject 
PRJNA748828. Seeds from invasive populations are available upon 
request. Benefits generated: benefits from this research accrue 
from the sharing of our data and results on public databases as de-
scribed above.

ORCID
Sariel Hübner  https://orcid.org/0000-0003-3660-4634 

R E FE R E N C E S
Abu- Nassar, J., & Matzrafi, M. (2021). Effect of herbicides on the manage-

ment of the invasive weed solanum rostratum dunal (Solanaceae). 
Plants, 10(2), 1– 9. https://doi.org/10.3390/plant s1002 0284

Badouin, H., Gouzy, J., Grassa, C. J., Murat, F., Staton, S. E., Cottret, 
L., Lelandais- Brière, C., Owens, G. L., Carrère, S., Mayjonade, B., 
Legrand, L., Gill, N., Kane, N. C., Bowers, J. E., Hübner, S., Bellec, A., 
Bérard, A., Bergès, H., Blanchet, N., … Langlade, N. B. (2017). The 

https://orcid.org/0000-0003-3660-4634
https://orcid.org/0000-0003-3660-4634
https://doi.org/10.3390/plants10020284


    |  2071HÜBNER Et al.

sunflower genome provides insights into oil metabolism, flowering 
and Asterid evolution. Nature, 546(7656), 148– 152.

Barker, B. S., Cocio, J. E., Anderson, S. R., Braasch, J. E., Cang, F. A., 
Gillette, H. D., & Dlugosch, K. M. (2019). Potential limits to the 
benefits of admixture during biological invasion. Molecular Ecology, 
28(1), 100– 113. https://doi.org/10.1111/mec.14958

Barrett, R. D. H., & Schluter, D. (2008). Adaptation from standing genetic 
variation. Trends in Ecology and Evolution, 23(1), 38– 44. https://doi.
org/10.1016/j.tree.2007.09.008

Battey, C. J., Ralph, P. L., & Kern, A. D. (2020). Predicting geographic 
location from genetic variation with deep neural networks. Elife, 9, 
1– 22. https://doi.org/10.7554/eLife.54507

Bock, D. G., Caseys, C., Cousens, R. D., Hahn, M. A., Heredia, S. M., 
Hübner, S., Turner, K. G., Whitney, K. D., & Rieseberg, L. H. (2015). 
What we still don’t know about invasion genetics. Molecular Ecology, 
24(9), 2277– 2297. https://doi.org/10.1111/mec.13032

Bradley, B. A., Blumenthal, D. M., Wilcove, D. S., & Ziska, L. H. (2010). 
Predicting plant invasions in an era of global change. Trends in 
Ecology and Evolution, 25(5), 310– 318. https://doi.org/10.1016/j.
tree.2009.12.003

Bryant, E. H., & Meffert, L. M. (1988). Effect of an experimental bottle-
neck on morphological integration in the housefly. Evolution, 42(4), 
698. https://doi.org/10.1111/j.1558- 5646.1988.tb024 88.x

Colautti, R. I., & Lau, J. A. (2015). Contemporary evolution during in-
vasion: Evidence for differentiation, natural selection, and local 
adaptation. Molecular Ecology, 24(9), 1999– 2017. https://doi.
org/10.1111/mec.13162

Dafni, A., & Heller, D. (1980). The threat posed by alien weeds in Isreal. 
Weed Research, 20, 277– 283.

Danecek, P., Auton, A., Abecasis, G., Albers, C. A., Banks, E., DePristo, M. 
A., Handsaker, R. E., Lunter, G., Marth, G. T., Sherry, S. T., McVean, 
G., & Durbin, R. (2011). The variant call format and VCFtools. 
Bioinformatics, 27(15), 2156– 2158. https://doi.org/10.1093/bioin 
forma tics/btr330

Dlugosch, K. M., Anderson, S. R., Braasch, J., Cang, F. A., & Gillette, H. 
D. (2015). The devil is in the details: Genetic variation in introduced 
populations and its contributions to invasion. Molecular Ecology, 
24(9), 2095– 2111. https://doi.org/10.1111/mec.13183

Dlugosch, K. M., & Parker, I. M. (2008). Invading populations of an 
ornamental shrub show rapid life history evolution despite ge-
netic bottlenecks. Ecology Letters, 11(7), 701– 709. https://doi.
org/10.1111/j.1461- 0248.2008.01181.x

Ellstrand, N. C., Meirmans, P., Rong, J., Bartsch, D., Ghosh, A., de Jong, 
T. J., Haccou, P., Lu, B.- R., Snow, A. A., Neal Stewart, C., Strasburg, 
J. L., van Tienderen, P. H., Vrieling, K., & Hooftman, D. (2013). 
Introgression of crop alleles into wild or weedy populations. Annual 
Review of Ecology, Evolution, and Systematics, 44, 325– 345. https://
doi.org/10.1146/annur ev- ecols ys- 11051 2- 135840

Fick, S. E., & Hijmans, R. J. (2017). WorldClim 2: new 1- km spatial reso-
lution climate surfaces for global land areas. International Journal of 
Climatology, 37(12), 4302– 4315. https://doi.org/10.1002/joc.5086

Frichot, E., & François, O. (2015). LEA: An R package for landscape and 
ecological association studies. Methods in Ecology and Evolution, 
6(8), 925– 929. https://doi.org/10.1111/2041- 210X.12382

Hodgins, K. A., Bock, D. G., & Rieseberg, L. H. (2018). Trait evolution in 
invasive species. Annual Plant Reviews Online, 1, 459– 496.

Hübner, S., Bercovich, N., Todesco, M., Mandel, J. R., Odenheimer, J., 
Ziegler, E., & Rieseberg, L. H. (2019). Hybridization altered gene 
content and disease resistance. Nature Plants, 5, 54– 62.

Hübner, S., Höffken, M., Oren, E., Haseneyer, G., Stein, N., Graner, A., 
Schmid, K., & Fridman, E. (2009). Strong correlation of wild barley 
(Hordeum spontaneum) population structure with temperature and 
precipitation variation. Molecular Ecology, 18(7), 1523– 1536.

Hübner, S., & Kantar, M. B. (2021). Tapping diversity from the wild: From 
sampling to implementation. Frontiers in Plant Science, 12, 1– 14. 
https://doi.org/10.3389/fpls.2021.626565

Hulme, P. E. (2006). Beyond control: Wider implications for the manage-
ment of biological invasions. Journal of Applied Ecology, 43(5), 835– 
847. https://doi.org/10.1111/j.1365- 2664.2006.01227.x

Hulme, P. E. (2009). Trade, transport and trouble: Managing invasive spe-
cies pathways in an era of globalization. Journal of Applied Ecology, 
46(1), 10– 18. https://doi.org/10.1111/j.1365- 2664.2008.01600.x

Huson, D. H. (1998). SplitsTree: Analyzing and visualizing evolutionary 
data. Bioinformatics, 14(1), 68– 73. https://doi.org/10.1093/bioin 
forma tics/14.1.68

Kane, N. C., & Rieseberg, L. H. (2008). Genetics and evolution of weedy 
Helianthus annuus populations: Adaptation of an agricultural weed. 
Molecular Ecology, 17(1), 384– 394.

Kantar, M. B., Sosa, C. C., Khoury, C. K., Castañeda- Álvarez, N. P., 
Achicanoy, H. A., Bernau, V., Kane, N. C., Marek, L., Seiler, G., & 
Rieseberg, L. H. (2015). Ecogeography and utility to plant breed-
ing of the crop wild relatives of sunflower (Helianthus annuus 
L.). Frontiers in Plant Science, 6, 1– 11. https://doi.org/10.3389/
fpls.2015.00841

Lai, Z., Kane, N. C., Kozik, A., Hodgins, K. A., Dlugosch, K. M., Barker, M. 
S., Matvienko, M., Yu, Q., Turner, K. G., Pearl, S. A., Bell, G. D. M., 
Zou, Y. I., Grassa, C., Guggisberg, A., Adams, K. L., Anderson, J. V., 
Horvath, D. P., Kesseli, R. V., Burke, J. M., … Rieseberg, L. H. (2012). 
Genomics of compositae weeds: EST libraries, microarrays, and ev-
idence of introgression. American Journal of Botany, 99(2), 209– 218. 
https://doi.org/10.3732/ajb.1100313

Le Corre, V., Siol, M., Vigouroux, Y., Tenaillon, M. I., & Délye, C. (2020). 
Adaptive introgression from maize has facilitated the establishment 
of teosinte as a noxious weed in Europe. Proceedings of the National 
Academy of Sciences of the United States of America, 117(41), 25618– 
25627. https://doi.org/10.1073/pnas.20066 33117

Li, H. (2013). Aligning sequence reads, clone sequences and assembly contigs 
with BWA- MEM. arXiv:1303.3997.

Massinga, R. A., Al- Khatib, K., St. Amand, P., & Miller, J. F. (2003). Gene 
flow from imidazolinone- resistant domesticated sunflower to wild 
relatives. Weed Science, 51(6), 854– 862. https://doi.org/10.1614/
WS- 03- 032R

Matzrafi, M., Raz, H., Rubin, B., Yaacoby, T., & Eizenberg, H. (2021). 
Distribution and biology of the invasive weed Parthenium hys-
terophorus L. in Israel. Frontiers in Agronomy, 3, 1– 12. https://doi.
org/10.3389/fagro.2021.639991

Mondon, A., Owens, G. L., Poverene, M., Cantamutto, M., & Rieseberg, 
L. H. (2018). Gene flow in Argentinian sunflowers as revealed by 
genotyping- by- sequencing data. Evolutionary Applications, 11(2), 
193– 204. https://doi.org/10.1111/eva.12527

Muller, M. H., Latreille, M., & Tollon, C. (2011). The origin and evolu-
tion of a recent agricultural weed: Population genetic diversity of 
weedy populations of sunflower (Helianthus annuus L.) in Spain and 
France. Evolutionary Applications, 4(3), 499– 514.

Patterson, N., Price, A. L., & Reich, D. (2006). Population structure and 
eigenanalysis. PLoS Genetics, 2(12), e190. https://doi.org/10.1371/
journ al.pgen.0020190

Petitpierre, B., Kueffer, C., Broennimann, O., Randin, C., Daehler, C., & 
Guisan, A. (2012). Climatic niche shifts are rare among terrestrial 
plant invaders. Science, 335, 1344– 1348. https://doi.org/10.1126/
scien ce.1215933

Pfeifer, B., Wittelsbürger, U., Ramos- Onsins, S. E., & Lercher, M. J. (2014). 
PopGenome: An efficient swiss army knife for population genomic 
analyses in R. Molecular Biology and Evolution, 31(7), 1929– 1936. 
https://doi.org/10.1093/molbe v/msu136

Pimentel, D., Zuniga, R., & Morrison, D. (2005). Update on the environ-
mental and economic costs associated with alien- invasive species 
in the United States. Ecological Economics, 52, 273– 288. https://doi.
org/10.1016/j.ecole con.2004.10.002

Poland, J. A., Brown, P. J., Sorrells, M. E., & Jannink, J. L. (2012). 
Development of high- density genetic maps for barley and 
wheat using a novel two- enzyme genotyping- by- sequencing 

https://doi.org/10.1111/mec.14958
https://doi.org/10.1016/j.tree.2007.09.008
https://doi.org/10.1016/j.tree.2007.09.008
https://doi.org/10.7554/eLife.54507
https://doi.org/10.1111/mec.13032
https://doi.org/10.1016/j.tree.2009.12.003
https://doi.org/10.1016/j.tree.2009.12.003
https://doi.org/10.1111/j.1558-5646.1988.tb02488.x
https://doi.org/10.1111/mec.13162
https://doi.org/10.1111/mec.13162
https://doi.org/10.1093/bioinformatics/btr330
https://doi.org/10.1093/bioinformatics/btr330
https://doi.org/10.1111/mec.13183
https://doi.org/10.1111/j.1461-0248.2008.01181.x
https://doi.org/10.1111/j.1461-0248.2008.01181.x
https://doi.org/10.1146/annurev-ecolsys-110512-135840
https://doi.org/10.1146/annurev-ecolsys-110512-135840
https://doi.org/10.1002/joc.5086
https://doi.org/10.1111/2041-210X.12382
https://doi.org/10.3389/fpls.2021.626565
https://doi.org/10.1111/j.1365-2664.2006.01227.x
https://doi.org/10.1111/j.1365-2664.2008.01600.x
https://doi.org/10.1093/bioinformatics/14.1.68
https://doi.org/10.1093/bioinformatics/14.1.68
https://doi.org/10.3389/fpls.2015.00841
https://doi.org/10.3389/fpls.2015.00841
https://doi.org/10.3732/ajb.1100313
https://doi.org/10.1073/pnas.2006633117
https://doi.org/10.1614/WS-03-032R
https://doi.org/10.1614/WS-03-032R
https://doi.org/10.3389/fagro.2021.639991
https://doi.org/10.3389/fagro.2021.639991
https://doi.org/10.1111/eva.12527
https://doi.org/10.1371/journal.pgen.0020190
https://doi.org/10.1371/journal.pgen.0020190
https://doi.org/10.1126/science.1215933
https://doi.org/10.1126/science.1215933
https://doi.org/10.1093/molbev/msu136
https://doi.org/10.1016/j.ecolecon.2004.10.002
https://doi.org/10.1016/j.ecolecon.2004.10.002


2072  |    HÜBNER Et al.

approach. PLoS One, 7(2), e32253. https://doi.org/10.1371/journ 
al.pone.0032253

Poplin, R., Ruano- Rubio, V., DePristo, M. A., Fennell, T. J., Carneiro, M. O., 
Van der Auwera, G. A., Kling, D. E., Gauthier, L. D., Levy- Moonshine, 
A., Roazen, D., & Shakir, K. (2017). Scaling accurate genetic variant 
discovery to tens of thousands of samples. BioRxiv, 201178.

Presotto, A., Hernández, F., Díaz, M., Fernández- Moroni, I., Pandolfo, 
C., Basualdo, J., Cuppari, S., Cantamutto, M., & Poverene, M. 
(2017). Crop- wild sunflower hybridization can mediate weedi-
ness throughout growth- stress tolerance trade- offs. Agriculture, 
Ecosystems and Environment, 249, 12– 21. https://doi.org/10.1016/j.
agee.2017.08.003

Presotto, A., Ureta, M. S., Cantamutto, M., & Poverene, M. (2012). Effects 
of gene flow from IMI resistant sunflower crop to wild Helianthus 
annuus populations. Agriculture, Ecosystems and Environment, 
146(1), 153– 161. https://doi.org/10.1016/j.agee.2011.10.023

Raj, A., Stephens, M., & Pritchard, J. K. (2014). fastSTRUCTURE: 
Variational inference of population structure in large SNP data sets. 
Genetics, 197, 573– 589.

Rius, M., & Darling, J. A. (2014). How important is intraspecific genetic 
admixture to the success of colonising populations? Trends in 
Ecology and Evolution, 29(4), 233– 242. https://doi.org/10.1016/j.
tree.2014.02.003

Rochette, N. C., & Catchen, J. M. (2017). Deriving genotypes from RAD- 
seq short- read data using Stacks. Nature Protocols, 12(12), 2640– 
2659. https://doi.org/10.1038/nprot.2017.123

Rohland, N., & Reich, D. (2012). Cost- effective, high- throughput DNA se-
quencing libraries for multiplexed target capture. Genome Research, 
22(5), 939– 946. https://doi.org/10.1101/gr.128124.111

Roze, D., & Lenormand, T. (2005). Self- fertilization and the evolution of 
recombination. Genetics, 170(2), 841– 857. https://doi.org/10.1534/
genet ics.104.036384

Rubin, B., & Matzrafi, M. (2015). Weed management in Israel- challenges 
and approaches. In Weed science in the Asian- Pacific region (253– 
270). Indian Society of Weed Science.

Ryan, S. F., Adamson, N. L., Aktipis, A., Andersen, L. K., Austin, R., Barnes, 
L., & Dunn, R. R. (2018). The role of citizen science in addressing 
grand challenges in food and agriculture research. Proceedings of 
the Royal Society B: Biological Sciences, 285(1891), 20181977.

Rybnikov, S., Weissman, D. B., Hübner, S., & Korol, A. B. (2021). Fitness 
dependence preserves selection for recombination across diverse 
mixed mating systems. Journal of Theoretical Biology, 528, 110849.

Sarokin, L., & Carlson, M. (1984). Nucleic acids research nucleic acids 
research. Methods, 12(21), 8235– 8251.

Seebens, H., Essl, F., Dawson, W., Fuentes, N., Moser, D., Pergl, J., Pyšek, 
P., van Kleunen, M., Weber, E., Winter, M., & Blasius, B. (2015). 
Global trade will accelerate plant invasions in emerging economies 
under climate change. Global Change Biology, 21(11), 4128– 4140. 
https://doi.org/10.1111/gcb.13021

Shagina, I., Bogdanova, E., Mamedov, I. Z., Lebedev, Y., Lukyanov, 
S., & Shagin, D. (2010). Normalization of genomic DNA using 

duplex- specific nuclease. BioTechniques, 48(6), 455– 459. https://
doi.org/10.2144/00011 3422

Silvertown, J. (2009). A new dawn for citizen science. Trends in Ecology and 
Evolution, 9, 467– 471. https://doi.org/10.1016/j.tree.2009.03.017

Todesco, M., Owens, G. L., Bercovich, N., Légaré, J.- S., Soudi, S., Burge, 
D. O., Huang, K., Ostevik, K. L., Drummond, E. B. M., Imerovski, 
I., Lande, K., Pascual- Robles, M. A., Nanavati, M., Jahani, M., 
Cheung, W., Staton, S. E., Muños, S., Nielsen, R., Donovan, L. A., … 
Rieseberg, L. H. (2020). Massive haplotypes underlie ecotypic dif-
ferentiation in sunflowers. Nature, 584(7822), 602– 607. https://doi.
org/10.1038/s4158 6- 020- 2467- 6

Todesco, M., Pascual, M. A., Owens, G. L., Ostevik, K. L., Moyers, B. T., 
Hübner, S., Heredia, S. M., Hahn, M. A., Caseys, C., Bock, D. G., & 
Rieseberg, L. H. (2016). Hybridization and extinction. Evolutionary 
Applications, 9(7), 892– 908. https://doi.org/10.1111/eva.12367

van Boheemen, L. A., Lombaert, E., Nurkowski, K. A., Gauffre, B., 
Rieseberg, L. H., & Hodgins, K. A. (2017). Multiple introductions, 
admixture and bridgehead invasion characterize the introduction 
history of Ambrosia artemisiifolia in Europe and Australia. Molecular 
Ecology, 26(20), 5421– 5434.

Whitlock, M. C., Phillips, P. C., & Wade, M. J. (1993). Gene interaction af-
fects the additive genetic variance in subdivided populations with 
migration and extinction. Evolution, 47(6), 1758– 1769. https://doi.
org/10.1111/j.1558- 5646.1993.tb012 67.x

Yair, Y., Sibony, M., & Rubin, B. (2017). Four Ambrosia species in Israel: 
Invasive, naturalized and casual alien plants. Israel Journal of Plant 
Sciences, 64(1– 2), 93– 98.

Zheng, X., Levine, D., Shen, J., Gogarten, S. M., Laurie, C., & Weir, B. S. 
(2012). A high- performance computing toolset for relatedness and 
principal component analysis of SNP data. Bioinformatics, 28(24), 
3326– 3328. https://doi.org/10.1093/bioin forma tics/bts606

SUPPORTING INFORMATION
Additional supporting information may be found in the online 
version of the article at the publisher’s website.

How to cite this article: Hübner, S., Sisou, D., Mandel, T., 
Todesco, M., Matzrafi, M., & Eizenberg, H. (2022). Wild 
sunflower goes viral: Citizen science and comparative 
genomics allow tracking the origin and establishment of 
invasive sunflower in the Levant. Molecular Ecology, 31, 
2061– 2072. https://doi.org/10.1111/mec.16380

https://doi.org/10.1371/journal.pone.0032253
https://doi.org/10.1371/journal.pone.0032253
https://doi.org/10.1016/j.agee.2017.08.003
https://doi.org/10.1016/j.agee.2017.08.003
https://doi.org/10.1016/j.agee.2011.10.023
https://doi.org/10.1016/j.tree.2014.02.003
https://doi.org/10.1016/j.tree.2014.02.003
https://doi.org/10.1038/nprot.2017.123
https://doi.org/10.1101/gr.128124.111
https://doi.org/10.1534/genetics.104.036384
https://doi.org/10.1534/genetics.104.036384
https://doi.org/10.1111/gcb.13021
https://doi.org/10.2144/000113422
https://doi.org/10.2144/000113422
https://doi.org/10.1016/j.tree.2009.03.017
https://doi.org/10.1038/s41586-020-2467-6
https://doi.org/10.1038/s41586-020-2467-6
https://doi.org/10.1111/eva.12367
https://doi.org/10.1111/j.1558-5646.1993.tb01267.x
https://doi.org/10.1111/j.1558-5646.1993.tb01267.x
https://doi.org/10.1093/bioinformatics/bts606
https://doi.org/10.1111/mec.16380

