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Nanotechnologies have rapidly grown, and they are considered the new industrial
revolution. However, the augmented production and wide applications of engineered
nanomaterials (ENMs) and nanoparticles (NPs) inevitably lead to environmental
exposure with consequences on human and environmental health. Engineered
nanomaterial and nanoparticle (ENM/P) effects on humans and the environment are
complex and largely depend on the interplay between their peculiar properties such as
size, shape, coating, surface charge, and degree of agglomeration or aggregation and
those of the receiving media/body. These rebounds on ENM/P safety and newly
developed concepts such as the safety by design are gaining importance in the
field of sustainable nanotechnologies. This article aims to review the critical
characteristics of the ENM/Ps that need to be addressed in the safe by design
process to develop ENM/Ps with the ablility to reduce/minimize any potential
toxicological risks for living beings associated with their exposure. Specifically, we
focused on silver nanoparticles (AgNPs) due to an increasing number of nanoproducts
containing AgNPs, as well as an increasing knowledge about these nanomaterials
(NMs) and their effects. We review the ecotoxicological effects documented on
freshwater and marine species that demonstrate the importance of the relationship
between the ENM/P design and their biological outcomes in terms of environmental
safety.
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INTRODUCTION

Silver Nanoparticle Market and Application: From Production to
Release Into the Environment
Nanomaterials (NMs) were found in structures obtainedmore than one thousand years ago revealing
that they have a long history (Hochella et al., 2019). However, the continued growing interest and
development experienced nowadays is mainly due to the ability to design, synthesize, and
characterize systems in the nanoscale. In this way, nanoparticles (NPs) are especially designed
for applications in a wide range of technologies that affect the chemical, pharmaceutical, electronics,
telecommunication, medical, aerospace, automotive, and energy industries, among many others.
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Silver nanoparticles (AgNPs) are among the most widely
employed and produced. The total world production of
AgNPs was estimated to reach thousands of tons per year
(Pulit-Prociak and Banach, 2016). The companies participating
in the development of AgNPs are distributed in different
countries, and the price varies from a few hundred to
thousand $/kg (Pulit-Prociak and Banach, 2016). In addition,
the offered AgNPs possess different sizes and capping agents.
Recent advances in the synthesis, stabilization, and high-scale
production of AgNPs have intensified scientific investigation
within the nanotechnology field and are the driving force of a
new generation of commercial products (Calderón-Jiménez et al.,
2017).

Physical and chemical methods were applied to produce
AgNPs. These methods offer the possibility to obtain NPs with
well-defined size and shape. The most frequent chemical
synthesis methods involve bottom-up procedures employing
ions as building blocks to obtain AgNPs. The presence of
reducing agents allows the formation of metallic silver which
subsequently agglomerates to form AgNPs. Classically, silver
nitrate is chemically reduced with NaBH4 or citrate in aqueous
or non-aqueous solvents. The presence of capping agents
(i.e., polyvinyl alcohol, PVA) is important to stabilize and
prevent the agglomeration of the resulting NPs (Iravani et al.,
2014). Among the most widely employed physical methods are
laser ablation and evaporation–condensation. Physical methods
possess various advantages including the following: 1) uniformity
of NP size, 2) formation of high amounts, 3) do not require
chemical reagents, and 4) pure metal AgNP obtention. However,
in most cases, these methods are time and energy consuming
(Iravani et al., 2014). The synthesis procedure employed for the
AgNP production has the potential to greatly influence the global
environmental impact. Temizel-Sekeryan and Hicks evaluated
the environmental impact of six different AgNP synthesis
procedures based on a mass unit of 1 kg of AgNPs. The two
chemical methods evaluated were microwave and chemical
reduction, while the four physical methods analyzed were
flame spray pyrolysis, arc plasma, spark system, and reactive
magnetron sputtering. The estimation suggests that the
environmental impact of AgNPs is highly influenced by the
synthesis procedure, scale, and intended product application
(Temizel-Sekeryan and Hicks, 2020). Indeed, on a mass basis,
the flame spray pyrolysis physical method generates higher
environmental impact. Interestingly, another physical method,
the reactive magnetron sputtering, produces the lowest
environmental impact. Moreover, the authors conclude that
scaling up the production can significantly diminish (90%) the
environmental impact of AgNP production. Alternatively, the
number of publications in the field of “green synthesis”
experienced a sharp increase during the last decade because of
employing environment-friendly and sustainable processes
(Catalano et al., 2021). Furthermore, plant extracts would
work as both green reducing and stabilizing agents. This offers
several advantages because it is a one-pot and economic process
which leads to AgNPs with antimicrobial and antioxidant
properties (Galdopórpora et al., 2021). The latter is due to the
adsorption of molecules of the plant extract on the AgNPs.

Alternativelly, microorganisms were also employed for the
green synthesis of AgNPs. Singh et al. (2015) employed the
strain Brevibacterium frigoritolerans DC2 for the large-scale
production of AgNPs without employing harmful chemicals or
energy-consuming physical approaches. The exopolymer
secreted by Ochrobactrum rhizosphaerae has been employed
for the reduction of silver ions and stabilization of the
resulting AgNPs (Gahlawat et al., 2016).

AgNPs possess interesting physicochemical properties such as
catalytic activity (Xu et al., 2006), high thermal and electrical
conductivity (Alshehri et al., 2012; Huang et al., 2019), and
surface plasmon resonance (Smitha et al., 2008), which leads
to a variety of scientific applications and to the development of
new products.

The antimicrobial activity of silver has been known for
centuries; thus, it is not surprising that the main application of
AgNPs is related to this effect. AgNPs exert activity
predominantly through the release of silver ions followed by
increased membrane permeability, disruption of DNA
replication, and affecting proteins and enzymes (Marambio-
Jones and Hoek, 2010). Indeed, AgNPs re-emerged as an
effective alternative for the treatment of infections caused by
antibiotic-resistant bacteria and viruses (Rai et al., 2009; Huh and
Kwon, 2011; Dheyab et al., 2021). This remarkable effect was
exploited in various applications in the medicinal field including
wound dressings (Municoy et al., 2020; Antezana et al., 2021),
medical implant materials (Basova et al., 2021), and coatings on
medical devices to reduce nosocomial infection rates (Chaloupka
et al., 2010; Catalano et al., 2016).

In parallel, the production of antimicrobial textiles with
AgNPs has experienced a great deal of attention (Dastjerdi
and Montazer, 2010; Zille et al., 2014). The textile industry
took advantage of this growing interest and produced several
products which contained AgNPs (i.e., reusable face masks, socks,
and uniforms). The resulting textiles possess antimicrobial and
antiviral activity; thus, the textile industry has become a very

FIGURE 1 | Percentage of products containing AgNPs by categories
(source: year 2021, The Nanodatabase, https://nanodb.dk/en/). The
Nanodatabase is developed by the DTU Environment, the Danish Ecological
Council and Danish Consumer Council.
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active industry, especially during the coronavirus pandemic.
Indeed, silver represents ca. 15% of the products listed in the
inventory for products that contain NMs. In this sense, the
category with the highest number of products with AgNPs is
health and fitness (ca. 75%) followed by home and garden (10%)
(Figure 1) (The Nanodatabase, 2021).

Sim et al. (2018) analyzed the expanding applications of silver
in medicine, healthcare, and other daily life activities, with a focus
on the patents registered. The analysis of patents describing
antimicrobial silver applications revealed a six-fold growth in
the period 2007–2017, while the most interesting applications
described were personal care, domestic, and agricultural and
industrial products.

The augmented production and wide range of application of
AgNPs inevitably lead to environmental exposure with
consequences on human and environmental health.
Undoubtedly, the analysis of the fate and effects of AgNPs is
of paramount importance since they will eventually enter the
waste stream and make their way to a wastewater treatment plant
and then into the natural environment. They can reach the
environment during usage or disposal of AgNPs or consumer
products that contain AgNPs. Actually, different methods are
under evaluation for nanowaste management with the aim to
diminish their potential release into the environment (Jane
Cypriyana et al., 2021).

However, the analysis of septic tank sludge spiked with AgNPs
suggests that the effluent and sludge are sources of both AgNPs
and Ag+ ions to natural waters (Bolaños-Benítez et al., 2020).

Thus, human and environmental safety issues must be addressed
due to the increasing exposure possibilities. Recently, AgNP
inhalation produced harmful effects and disruption of the
alveolar–capillary barrier integrity with increased epithelial
permeability along with cell and plasma protein leakage into the
alveolar space, which suggests an impaired lung function (Garcés
et al., 2021). Indeed, Potter et al. (2019) analyzed AgNP consumer
products after contact with human synthetic stomach fluid followed
by exposure to wastewater sludge. The rates of conversion ofmetallic
silver to silver sulfide were dependent on the particle size and
capping agents. The authors concluded that the transformation of
the AgNPs may be somewhat unpredictable in the environment
because it is affected by several factors.Moreover, AgNPs release Ag+

ions upon dissolution in aqueous media. The dissolution trends of
AgNPs in consumer products and ENMs with citrate,
polyvinylpyrrolidone (PVP), and polyethyleneimine (PEI)
coatings further confirm that differences would be attributed to
capping agents, particle size, and total AgNP surface area (Radwan
et al., 2019). Furthermore, Ag+ release from AgNPs decreased 28%
when humic acids were present in the media, highlighting that
organic matter has an important impact on NP stability (Ale et al.,
2021b).

ENVIRONMENTAL BEHAVIOR OF SILVER
NANOPARTICLES

The environmental behavior of AgNPs depends on NP physical
properties, NP environmental transformations, and the influence

of environmental conditions (Figure 2). In natural aquatic
systems, all these fluctuating factors act simultaneously, which
means that the transport, behaviour, and fate of AgNPs are
complex and difficult to predict. Despite this, understanding
these transformation processes is vital for the assessment of
the environmental risks of AgNPs (Zhang et al., 2018). It is
also important to mention that the behaviour and
transformations of AgNPs have been previously reviewed by
other authors (Fabrega et al., 2011; Zhang et al., 2016, Zhang
et al., 2018; Shevlin et al., 2018; Jorge de Souza et al., 2019; Xu
et al., 2020)

Effects of NP Physical Properties
AgNPs can reach the aquatic environment by various routes and
exceed ecotoxicity thresholds for aquatic species (Syafiuddin
et al., 2017). The average concentration of AgNPs in treated
urban waste waters has been estimated in the range between µg
and ng per litre (Li et al., 2016), and more recent findings
demonstrated a high removal efficiency by wastewater
treatment between 85 and 97% on a case-by-case analysis
(Cervantes-Avilés et al., 2019; Nabi et al., 2021). AgNPs of the
smallest size (<200 nm) are more likely to escape the wastewater
treatment, thus ending up into effluents and even somehow
further reducing their dimension down to 50 nm (Cervantes-
Avilés et al., 2019; Nabi et al., 2021).

Ecotoxicity of AgNPs has been associated with the smallest
sizes (below 20 nm); therefore, the aquatic ecological risks are also
dictated by the size of AgNPs released and/or transformed in the
final receiving water bodies (Nel et al., 2006; Fabrega et al., 2011;
Ivask et al., 2014).

Particle size is also an important factor that affects the kinetics
of AgNP dissolution, with a smaller size having higher specific
surface areas and more surface-active sites for Ag+ production
than larger AgNPs (Levard et al., 2012; Behra et al., 2013; Zhang
et al., 2016, Zhang et al., 2018). Studies of AgNP dissolution

FIGURE 2 | Factors influencing the environmental behavior of AgNPs.
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showed that particle size or surface coating can affect its long-
term stability in freshwater environments (Zhang et al., 2016).
For instance, Dobias and Bernier-Latmani evaluated the AgNP
dissolution of different sizes (5, 10, and 50 nm) and capping
agents such as polyvinylpyrrolidone (PVP), tannic acid (Tan),
and citrate (Cit) exposed to river and lake water for up to
4 months (Dobias and Bernier-Latmani, 2013). The results
showed that small AgNPs (5 nm, PVP and Tan) are dissolved
rapidly and almost completely, while larger AgNPs (50 nm) have
the potential to persist for an extended period of time. In addition,
the authors observed that PVP- and Tan-AgNPs were more
prone to Ag+ release than Cit-AgNPs.

Several attempts have been made in the understanding of the
dissolution drivers of AgNPs such as, for instance, by
functionalization of the particle surface which resulted in a
highly variable degree of particle dissolution and low
ecotoxicity (Gondikas et al., 2012; Levard et al., 2013; Schiavo
et al., 2017; Wu et al., 2017; Pem et al., 2019).

Environmental NP Transformations and
Influence of Environment Conditions
Once released into aquatic environments, AgNPs are subject to
several physical, chemical, and biological transformation
processes, such as dissolution to Ag+, adsorption to
macromolecules or cells, and aggregation or agglomeration.
These transformations, in turn, are dependent on intrinsic NP
properties (e.g., size, capping, and surface charge) and the
environmental conditions of the surrounding medium into
which they were released (e.g., temperature, pH, ionic
strength, the availability of ligands, and light) (Vale et al.,
2016; Rearick et al., 2018).

The interplay of either bare AgNPs and/or Ag-based nano-
enabled products (NEPs) with physico-chemical and biological
variables of the receiving water bodies (e.g. pH, temperature, and
natural organic matter) will dictate the key transformation
processes which NPs undergo such as, for instance, homo/
heteroaggregation, agglomeration, ions dissolution, and
complexation, which will affect exposure concentration
scenarios, bioavailability, and ecotoxicity (Baalousha et al.,
2018; Corsi et al., 2020; Corsi et al., 2021). This is true for the
majority of ENM/Ps, and in the case of silver, dissolution is still
considered a main driver of aquatic ecotoxicity of AgNPs (Petosa
et al., 2010; Dong et al., 2017).

The dissolution process is also affected by specific intrinsic
properties of the particle itself (e.g., surface coating) and the
physico-chemical characteristics of the receiving water media, for
instance, osmolarity and natural organic matter (NOM)
(McLaughlin and Bonzongo, 2012; Asadi Dokht Lish et al.,
2019; Prosposito et al., 2019). Although the dissolution of
silver ions (Ag+) in water has been reported to increase with
ionic strength, the abundance of chloride species (Cl−) favours
also the Ag complexation and precipitation, thus making it less
bioavailable for exposed aquatic species (Li et al., 2020).

Odzak et al. (2015) examined the dissolution of AgNPs over a
period of 9 days in different types of natural waters as wastewaters
from treatment plants (WWTP) and four lakes. The results of this

study indicated that AgNP dissolution was favoured at low ionic
strength and low pH.

Under simulated freshwater environmental conditions,
Walters et al., reported higher dissolution rates of AgNPs with
increased temperature. Similarly, a sudden flood event also
promoted Ag release (Walters et al., 2013). Thus, this study
showed that AgNP dissolution is induced by changes in
temperature and hydrological level, which might present a
greater risk for aquatic organisms.

On the other hand, Zou et al. studied the roles of NOM and
dissolved oxygen on AgNP dissolution in natural freshwaters
(Zou et al., 2017). In the presence of oxic conditions, a higher
degree of dissolution of AgNPs was observed in comparison to
anoxic conditions. This could be explained by the fact that
dissolution requires the presence of oxidant oxygen. So, if an
insufficient supply of oxygen is present, only a very limited AgNP
dissolution could occur. Interestingly, in the same study, a notable
decrease in the concentration of Ag+ was observed after the
addition of NOM. This decrease in AgNP dissolution could be
explained by several mechanisms, such as the surface adsorption
of NOM to block AgNP oxidation sites and/or a reversible
reaction of released Ag+ to Ag0 with humic/fulvic acids as
reductants (Liu and Hurt, 2010). Besides NOM, AgNPs or
released Ag ions can react strongly with other ligands (e.g.,
sulphide and chloride), which will affect their transport and
bioavailability in the environment. In freshwaters, sulfidation
and chlorination seem to be the most relevant processes
through which AgNPs will be transformed into Ag2S and
AgCl, decreasing the dissolved bioavailable Ag+ ions (Levard
et al., 2012; Behra et al., 2013). Then, because of their low water
solubility, the precipitation of Ag2S and AgCl is expected.
However, these transformations will depend on some
environmental conditions. For example, sulfidation occurs
almost exclusively under anaerobic conditions such as those
found in wastewater treatment plants (Kaegi et al., 2011; Kent
et al., 2014).

As a counterpart, NOM has been demonstrated to slow down
the dissolution process via the formation of clusters and bridging
effects (Wang et al., 2014; Gunsolus et al., 2015). Being prevalent
in river and brackish waters, NOM is considered the main driver
in limiting AgNP dissolution, while the high ionic strength and
algal exudates have a leading role in salt waters.

The adsorption of biomolecules has been shown to either
improve NP colloidal stability by acting as an electrostatic barrier
which limits agglomeration and aggregation processes or
destabilizes dispersed suspensions by forming bridges and
saturating surface charges (Surette and Nason, 2016, Surette
and Nason, 2019). AgNPs can adsorb different
macromolecules present in natural waters (e.g., NOM,
extracellular polymeric substances, EPS, and proteins), forming
an environmental corona known as eco-corona, an external layer
acquired by the NPs once released in natural media which affect
how they interact with biological systems (Corsi et al., 2020, and
reference within; Barbero et al., 2021). Eco-corona dictates
nanoparticle biological interactions (nano-bio-interactions)
which are played by proteins, carbohydrates, and metabolites
including nucleic acids that are readily adsorbed on the surface of
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NPs once in contact with biological entities and their milieu
(Chetwynd and Lynch, 2020, and reference within; Wheeler et al.,
2021). Formerly described as protein corona originating from the
adsorption of a protein layer upon contact with human blood, it
represents the outmost contact point between the NP and the
biological membrane more recently deeper investigated in having
a role in NP uptake, disposition, and ultimate nano(eco)toxicity
(Lynch et al., 2007, Lynch et al., 2014; Grunér et al., 2016). Both
biotechnology and nanotoxicology have already incorporated
different aspects of the biomolecular coronas, while in
nanoecotoxicology, few attempts have been made by
systematic characterization of their composition upon contact
with natural water media and biological fluids (Canesi et al., 2017;
Grassi et al., 2019, 2020; Nasser et al., 2020; Wheeler et al., 2021,
and reference within).

Xu et al. reviewed the role of eco-coronas in determining the
effects of ENP and concluded that, in most cases, NOM and EPS
coronas were able to alleviate the bioavailability and biological
effects on aquatic organisms (Xu et al., 2020). This is in line with
another literature review that evidenced that the presence of
NOM reduced ENM/P ecotoxicity in 80% of the analysed studies
(Arvidsson et al., 2020). In particular, ecotoxicity values (EC50,
LC50, and IC50) obtained in the experiments with NOM (at an
environmentally realistic concentration range of 0.1–10 mgL-1)
tended to be 1 to 10 times higher than those without NOM. On
the other hand, the increase of EPS in algal cultures
(Chlamydomonas reinhardtii and Chlorella vulgaris) mediated
the inactivation of AgNPs and Ag+ ions (Stevenson et al., 2013;
Zheng et al., 2019). The mitigation of AgNP toxic effects can be
attributed to the fact that the formation of a corona could greatly
affect the NP characteristics (size), induce aggregation, and result
in precipitation. However, the interactions of macromolecules
with AgNPs and Ag+ ions are still poorly understood, and further
studies are needed to elucidate the dynamics of corona formation
as well as the mechanisms of stabilization and aggregation of
these particles in the aquatic environments.

Particle aggregation determines the sedimentation rate and the
mobility of ENM/Ps in the environment. The aggregation and
sedimentation of AgNPs can be reduced by the formation of an
NOM coating that provides electric and steric stabilization
(Cumberland and Lead, 2009; Grillo et al., 2015). However,
the aggregative behaviour of AgNPs might be influenced by
both the concentration and chemical composition of NOM
(Millour et al., 2021). On the other hand, other environmental
factors, such as ionic strength and ions (e.g., Cl−, SO4

2, Ca2+), can
favour the formation of the aggregates. Typically, in a freshwater
environment, AgNPs remain stable even under low ionic strength
(Bathi et al., 2021). However, the increase of ionic strength (for
instance, from crystalline rock areas to carbonate rock areas or/
and estuarine and marine waters) can significantly raise the
aggregation of AgNPs (Behra et al., 2013; Zhang et al., 2016).
Some studies reported that as ionic strength increased, AgNPs
were more unstable andmore aggregates were formed (Chambers
et al., 2014; Yue et al., 2015). In another study, the addition of
sodium and calcium at low ionic strengths (relevant to freshwater
and estuarine systems) increased the aggregation of Cit-AgNPs
(Cumberland and Lead, 2009).

In this sense, although the increased NP size due to
agglomeration is generally related to lower toxicity (Tortella
et al., 2020), the degree of particle agglomeration in the three
exposure media positively correlated with the toxicity of Cit-
AgNPs on gill cell viability (Yue et al., 2015). One explanation
might be that agglomeration and deposition could enhance the
interaction of AgNPs with gill cells attached to the bottom of wells
in the in vitro exposure system. However, it is also important to
mention that the exposure medium which better reflected the
freshwater environment (low ionic strength) supported cell
survival and stabilized the AgNPs for at least 24 h.

The mode of action (MoA) of AgNPs towards biota and, in
particular, on single-cell organisms is still uncertain based on low
repeatability and reproducibility of ecotoxicity data on
microorganisms, algae, and cell lines. The dissolution of silver
ions by AgNPs has been recognized as one MoA, thus causing
similar biological effects as those of bulk Ag; however, recent
findings revealed that nanoscale Ag can penetrate the cell
membrane and generate oxidative stress by the release of free
radicals even under limited dissolution (Batchelor-McAuley et al.,
2014; Völker et al., 2015; Malysheva et al., 2016; Kędziora et al.,
2018; Kleiven et al., 2019). Therefore, ecotoxicity either mediated
by Ag ion dissolution or by AgNPs must be taken into
consideration and investigated on a case-by-case analysis
based on specific properties of the AgNPs tested. As detailed
above, similarly for all ENM/Ps, AgNPs will undergo significant
transformations when released into the natural environment and
finally acquire new properties driven by the initial feature of the
NP and those of the receiving water media (e.g., freshwater vs
brackish or saline), for instance, NOM ionic strength,
temperature, and pH (Corsi et al., 2020). Therefore, MoA of
AgNPs towards aquatic biota leading to ecotoxicity is, thus, still
far from being fully understood (Lead et al., 2018). The current
gap between predicted environmental concentrations (PECs ≤
μg L−1) and effect concentrations (range mgL−1-µgL−1) for
aquatic species is expected to be significantly reduced in the
near future due a recent increase of AgNP use in textiles and
sanitizing products, with the latter being a consequence of the
COVID-19 worldwide pandemic (Hamouda et al., 2021; Valdez-
Salas et al., 2021).

Nano-ecotoxicology has made several progresses in the last
years by identifying those factors able to cause changes in ENM/
Ps and NP peculiar properties when released in the aquatic
environment (Maurer-Jones et al., 2013; Lazareva and Keller,
2014; Corsi et al., 2021). Preliminary findings have unraveled
various exposure scenarios according to the peculiar properties of
the receiving water media (freshwater, brackish, or saline) which
has now become a requirement for ecological risk assessment and
for conducting standardized protocols for ecotoxicity testing
(OECD, 2020a). Furthermore, up to now, nano-ecotoxicity
studies have been performed using pristine ENM/Ps rather
than commercial formulations as NEPs, with the latter being
mostly likely to end up into water bodies across their lifecycle
(Mitrano et al., 2015; Pourzahedi et al., 2017; Salieri et al., 2018;
Potter et al., 2019). In particular, NEPs in liquid formulations
could more easily dissolve NPs in water and reach aquatic
organisms (Vílchez et al., 2016; Nowack and Mitrano, 2018).
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The ecotoxicity of AgNPs in freshwater andmarine species has
been reviewed and commented based on NP properties (size,
shape, and surface coatings), and their behavior in water media
and ultimate reported biological outcomes including dissolution
when observed and the bioaccumulation of silver ions and
adsorption on the body surface have been reported.
Ecotoxicity related to Ag ENM/NP dissolution or to a specific
effect has been reported and discussed. Figures 3A,B show a
schematic representation of the distribution of taxa investigated
in ecotoxicity studies in (A) freshwater and (B) marine species
and related documented effects.

AQUATIC ECOTOXICITY OF SILVER
NANOPARTICLES

Freshwater Environment
Phytoplankton
Nowadays, understanding the pathways and mechanisms of
AgNP toxicity on phytoplankton has become essential.
Microalgae are the primary producers of food webs, and any
damage to their function may impact at higher trophic levels and/
or the whole ecosystem. The NP internationalization and toxicity
of algae have been addressed in several recent reviews (Chen et al.,
2019; Wang et al., 2019; Nguyen et al., 2020; Mahana et al., 2021).

Despite the extensive research, the toxic mechanism of AgNPs in
freshwater algae is still a matter of debate.

Several studies support the hypothesis that AgNPs are not
internalized by algae but absorb onto the cell surface and suggest
that only Ag ions can penetrate the cells (Piccapietra et al., 2012;
Leclerc and Wilkinson, 2014; Li et al., 2015; Ribeiro et al., 2015;
Yue et al., 2017). In Chlamydomonas reinhardtii, analyses from
darkfield microscopy coupled with hyperspectral imagery
indicated that only Ag+ were crossing the algal membrane and
that the presence of silver inside the cells was more likely due to
Ag+ reduction than to AgNPs internalization (Leclerc and
Wilkinson, 2014). Moreover, in a cell wall-free mutant of C.
reinhardtii, no AgNP uptake was detected, indicating that not
only the cell wall of algae but also the cell membrane constitutes a
barrier for particle internalization (Piccapietra et al., 2012).
Similarly, other studies concluded that AgNPs are not
internalized by Euglena gracilis (a green alga having no cell
wall) but adsorb onto the algae cell surface (Yue et al., 2017)
and to the pellicle (Li et al., 2015). Furthermore, some authors
have also observed that the interaction between freshwater algae
and AgNPs led to the formation of large aggregates (Oukarroum
et al., 2012; Zouzelka et al., 2016), making it difficult to
distinguish whether AgNPs are located outside or inside of
cells using optical microscopy. By using the Coherent Anti-
stokes Raman Scattering (CARS) microscope, large aggregates

FIGURE 3 | Distribution of taxa investigated and the main toxic effects of silver nanoparticles on (A) freshwater and (B)marine organisms. The literature used refers
to research articles cited in the text (freshwater: 116 articles; marine: 54 articles).
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of AgNPs on the external surface of Raphidocelis subcapitatawere
observed, with no evidence of NP internalization into the algal
cells (Ribeiro et al., 2015). Thus, the authors highlighted that
AgNP toxicity might be mediated by Ag+ internalization or/and
through a physical effect induced by NP agglomerate. For
instance, depending on their size, agglomerates may interfere
with the algae growth and photosynthesis and/or lead to faster
sedimentation of cells (Ribeiro et al., 2015).

On the contrary, a limited number of studies suggested that
AgNPs can be taken in and accumulated inside the algal cells,
where they exert their toxic effects (Miao et al., 2010; Kalman
et al., 2015; Wang et al., 2016). In an experiment, the freshwater
alga Ochromonas danica was exposed to AgNPs, and glutathione
(GSH) was also added to eliminate the indirect effect of Ag+

(Miao et al., 2010). The results demonstrated that the presence of
GSH remarkably reduced free Ag+ concentration in the media,
reaching levels even lower than the non-observed effect
concentration of Ag+ itself. However, the toxic effect was still
exerted indicating that AgNPs could enter algal cells. On the
other hand, transmission electron microscopy (TEM) images
revealed AgNPs localised in starch granules within the
chloroplast of Chlorella vulgaris (Kalman et al., 2015). This
finding demonstrated the intracellular uptake and suggested
that granules may act as a storage site for NPs in this alga
(Kalman et al., 2015). By using a combination of high-
resolution imaging and in situ detection spectroscopic
techniques, Wang et al. (2016) identified the existence of Ag
particles with a diameter of 10–20 nm inside C. reinhardtii cells.
These observations suggested that AgNPs would enter the
periplasmic space after cellular internalization into the alga.

Although AgNP internalization is still controversial, some
possible NP uptake pathways have been hypothesized, such as
endocytosis, across porous cell walls (in the case of NPs less than
20 nm in size), through ion channels and undetermined carriers
(Oukarroum et al., 2012; Behra et al., 2013; Yue et al., 2017; Zheng
et al., 2019; Nguyen et al., 2020, among others).

Whatever the interaction between AgNPs and algae cells
(direct particle–cell surface attachment, internalization
through the cell membrane, release of Ag+ through
dissolution, or some combination of these), scientific
literature has evidenced that AgNPs exert toxicity on
freshwater microalgae. Overall, the exposure to AgNPs
inhibited microalgal growth (Miao et al., 2010; Burchardt
et al., 2012; Becaro et al., 2015; Kleiven et al., 2019; Romero
et al., 2020; Qu et al., 2021), reduced algae cell density (Sendra
et al., 2017; Khoshnamvand et al., 2020), decreased the
photosynthetic activity and the chlorophyll content
(Navarro et al., 2008; Oukarroum et al., 2012; Książyk et al.,
2015; Nguyen et al., 2018), caused changes in fatty acid profile
(Behzadi Tayemeh et al., 2020), affected the morphology of
algae cells (Li et al., 2015; Romero et al., 2020), increased
reactive oxygen species (ROS) intracellular content and
generated oxidative stress (Oukarroum et al., 2012; Qian
et al., 2016; Sendra et al., 2017; Nguyen et al., 2018),
damaged membrane integrity, and also, reduced cell
viability (Oukarroum et al., 2012; Taylor et al., 2016; Sendra
et al., 2017; Nguyen et al., 2018). Moreover, recent studies have

intended to shed some light on these toxic mechanisms, based
on metabolomics and proteomics analyses (Zhang et al.,
2020b; Qu et al., 2021).

However, the biological effects mainly depend on intrinsic
ENM/P characteristics, such as size, shape, surface coating, and
electrical properties. For example, the toxicity of AgNPs decreases
with increasing primary particle size. After a 72 h growth
inhibition assay, the EC50 values (concentration at which a
50% inhibition of the growth rate is observed) of five different
sized AgNPs (from 10 to 80 nm) for Pseudokirchneriella
subcapitata confirmed that rule (Table 1) (Ivask et al., 2014).
The results obtained by Zouzelka et al. (2016) showed that AgNPs
exhibited substantial toxicity towards Chlorococcales and
filamentous algae, which mostly correlated with their particle
size. Thus, the highest toxicity was also found for the smallest
particles (5 nm) in comparison to larger ones (37–100 nm).

Concerning the shape of the ENM/Ps, the 72 h EC50 of silver
nanospheres for Raphidocelis subcapitata (= P. subcapitata) was
about 3.5-fold lower than the corresponding values of silver
nanowires (AgNWs) (Table 1) (Sohn et al., 2015). In parallel,
the authors reported a greater amount of Ag+ released from the
nanosphere surface in comparison with AgNWs, which explained
the greater toxicity displayed by nanospheres. Thus, the greater
toxicity seemed to be related to the amount of Ag+ released rather
than the ENM’s shape. In another recent study, Nam and An
(2019) compared the effects of nanospheres (40 nm diameter),
AgNWs (21,000 nm length × 42 nm diameter), and Ag
nanoplates (AgPL, 57 nm diameter) on growth and
photosynthetic performance of the green alga Chlorococcum
infusionum. The results showed toxicity in the order AgPL >
AgNW > Ag nanospheres.

Another factor influencing ENM/P toxicity is surface coating.
Kalman et al. (2015) investigated the toxicity of silver nitrate
(AgNO3) and AgNPs coated with PVP, polyethylene glycol
(PEG), and Cit to C. vulgaris. The highest growth rate
inhibition after 72 h was found for dissolved silver (IC50 of
5.3 mgL−1), followed by PVP and Cit-coated AgNP treatments,
which exhibited similar toxicity, whereas PEG-AgNPs displayed
the lowest inhibitory effects to the algae (Table 1). On the other
hand, Navarro et al. (2015) assessed the effects of AgNO3 and
nine differently coated AgNPs on the photosynthesis of C.
reinhardtii. Although all AgNPs were differentially toxic to the
photosynthetic yield of algae (for example, dexpanthenol-, PEG-,
and PVP-coated NPs were strongly toxic, while Cit, chitosan, or
carbonate were less toxic), the authors demonstrated the
predominant toxicity role of Ag+. Thus, it was suggested that
coatings may be modulating Ag+ release and, consequently,
nanoparticle toxicity.

Likewise, surface charge mediates uptake and internalization
processes and, thus, strongly affects AgNP toxicity. Zhang et al.
(2020b) revealed the effects of surface charge on the
bioaccumulation dynamics of AgNPs in C. vulgaris. The
results showed that positive AgNPs had almost 20 times
greater uptake rate than negative ones. This could be
explained by the electrostatic attraction between the negatively
charged alga cell membrane and the positive AgNPs. On the
contrary, negative AgNPs have a low affinity for the anionic cell
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membrane, which would reduce the adsorption or internalization
of NPs by algal cells. Additionally, Zhang et al. (2020a) analysed
the toxic mechanisms of AgNPs with different surface electrical

charges in C. vulgaris using a proteomics approach. The positively
charged AgNPs interfered with pathways related to protein
synthesis and DNA genetic information transmission.

TABLE 1 | Comparison among EC50 and LC50 values calculated for AgNPs in freshwater and marine taxa.

Taxa Freshwater Marine

Species EC50/LC50 References Species EC50/LC50 References

Phytoplankton Pseudokirchneriella
subcapitata =
Raphidocelis
subcapitata

0.18–1.14 mgL−1 Ivask et al. (2014), Sohn
et al. (2015)

Talassiosira sp. 107.21 ± 7.43 µgL−1 Pham (2019)
0.74 mgL−1

(spheres)
2.573 mgL−1

(AgNW)
Chlorella vulgaris 9.2 mgL−1 (Cit) Kalman et al. (2015) Phaedactylum

tricornutum
143–184 µgL-1 Sendra et al. (2017)

9.3 mgL−1 (PVP)
49.3 mgL−1 (PEG)

Microcrustaceans Daphnia magna 1->200 μgL1 Allen et al. (2010), Li
et al. (2010), Poynton
et al. (2012), Ivask et al.
(2014), Mackevica et al.
(2015), Conine et al.
(2017)

Artemia salina 5.5 × 100 µgL−1 (PVP) Arulvasu et al. (2014),
Becaro et al. (2015),
Gambardella et al.
(2015), An et al.
(2019), Asadi Dokht
Lish et al. (2019)

1.8 µgL1 (Cit) 10.70 ± 1.3 mgL−1 (spheres)
10.6 µgL1 (PVP) 0.43 ± 0.04 mgL−1 (AgNW)

LC50 (24 h) 9.96 (6.64–14.94)
mgL−1

LC50 (48 h) 3.79 (2.28–6.29)
mgL−1

EC50 (24 h) 3.56 (1.99e6.35)
mgL−1

21.35 ± 5.67 mgL−1 (Cit)
42.44 ± 11.30 mgL−1(Cit)

Daphnia dentifera 34–292 µgL1 Conine et al. (2017) — — —

Bivalves and
snails

Physa acuta 2.18 µgL−1

(without sediment)
Bernot and
Brandenburg, (2013)

Mytilus
galloprovincialis

2.05 mg L−1 (PVP/PEI)
(hemocytes), 4.74–9.5/
4.39–8.69 mgL−1 (Mal-20,
40,100) (hemocytes/gills),
19.13–22.79/
18.22–20.45 mgL−1 (spheres
20–80) (hemocytes/gills)

Katsumiti et al. (2015),
Duroudier et al.
(2019b)10 µgL−1 (with

sediment)

Benthic-grazers — — — Paracentrotus
lividus

3 mgL−1 (embryos) Šiller et al., 2013,
Gambardella et al.
(2015)

0.55 mgL−1 (sperm motility)

Fish Danio rerio 1.22 mgL−1

(Cit-20)
Abramenko et al.
(2018), Caceres-Velez
et al. (2018), Caceres-
Velez et al. (2019), Liu
et al. (2019)

— — —

2.14 mgL−1

(Cit-100)
1.34 mgL−1

(PVP-20)
2.57 mgL−1

(PVP-100)
0.0169 mgL−1

(AgPL)
0.0415 mgL−1

(spheres)
1.19 mgL−1

(embryos
without HA)
3.56 mgL−1

(embryos with HA)
25.0 mgL−1 (adults
without HA)
40.56 mgL−1

(adults with HA)

Oryzias latipes 1.8 mgL−1

(spheres)
Abramenko et al. (2018) — — —

4.18 mgL−1

(AgNW)
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Meanwhile, the negative AgNPs particularly affected oxidative
stress phosphorylation pathways and those related to amino acid
synthesis.

The toxic effects of ENM/Ps can also be influenced by certain
environmental conditions (e.g., pH, ionic strength and dissolved
organic matter). Among them, the dissolved organic matter
(DOM) has been demonstrated to mitigate the toxicity of
biologically synthesized AgNPs to C. vulgaris (Khoshnamvand
et al., 2020). Specifically, AgNPs decreased the biomass and
chlorophyll-a content in a dose-dependent manner, enhanced
algal aggregation, and decreased cell size, especially at higher
concentrations. However, the presence of DOM in the media
prevented cellular aggregation and size reduction of algal cells.

Another possible mechanism that may mitigate AgNP toxicity
is the production of EPS from algal cells. After EPS was extracted
from C. vulgaris, a remarkable increase of total accumulated Ag
content for both AgNP and dissolved ion (from AgNO3)
treatments was observed, with this effect being even greater on
NPs than Ag+ (Zheng et al., 2019). These findings indicated that
EPS displayed barrier effects on AgNPs.

Microcrustaceans
Based on the literature review of the toxic effects of AgNPs in
freshwater microcrustaceans, we found that the majority of the
studies have been performed with the cladoceran Daphnia
magna, a common and standardized species for acute and
chronic ecotoxicity testing (Baun et al., 2008; Gutierrez et al.,
2021). This is due to its easy availability, rapid reproduction, short
lifespan, and sensitivity. Thus, information about other
cladoceran species is scarce, and the interspecific variation of
sensitivity in microcrustaceans has rarely been investigated
(Völker et al., 2013; Sakamoto et al., 2015; Cui et al., 2017).

The daphnids are an important link between the primary
producers (algae) and secondary consumers (fish). Daphnids can
filter relatively large volumes of water and consume algae,
bacteria, and organic and inorganic particles. Based on this,
the AgNP uptake may occur through different routes,
including surrounding media and diet. Zhao and Wang (2010)
demonstrated that radiolabelled AgNPs were more efficiently
assimilated by D. magna upon dietary exposure, when
compared to waterborne exposure. This finding highlights the
importance of AgNP transport along the food chain. However,
assuming that a combination of both waterborne and dietary
exposures is what most likely occurs in natural environments,
Ribeiro et al. (2017) compared the potential of D. magna to
accumulate Ag from AgNPs through different exposure routes
(water, diet, and combined water+diet). The authors found that
simultaneous waterborne and dietary exposures to AgNPs
induced greater Ag concentrations in D. magna, with water
uptake being the major contributor.

Asghari et al. (2012) observed the accumulation and
adsorption of AgNPs in the gut, under the carapace, on the
external body surface and in the appendages of D. magna. In
general, the accumulation of ENM/Ps occurs when the
elimination rates are lower than the uptake rates (Turan et al.,
2019). In this sense, Borase et al. (2019) found that AgNPs
accumulated in the gut of Moina macropopa as the formed

nanoaggregates make its excretion difficult, thereby resulting
in an increased metal body burden. Thus, AgNP uptake and
accumulation may pose a risk to higher trophic levels in the food
web and may be a reason for triggering toxic effects on
microcrustaceans themselves (Turan et al., 2019).

The acute toxicity (Lethal Concentrations50, LC50) of AgNPs
to microcrustaceans is extremely variable ranging from a few
micrograms per litre (as reported by Allen et al. (2010) and Li
et al. (2010) to values 100-fold higher (Mackevica et al., 2015;
Conine et al., 2017) (Table 1). The differences among LC50 values
are related to particle characteristics (such as size, capping agents,
and surface chemistry), experimental conditions (i.e., test media
composition, exposure time, and with or without food), and test
species (age and uptake strategy).

With regard to sublethal effects, several endpoints have been
evaluated in freshwater microcrustaceans. Some studies have
demonstrated that AgNPs can induce genotoxicity. Specifically,
an increase in DNA strand breaks (Park and Choi, 2010) and
distinct gene expression profiles have been reported in D. magna
exposed to nanospheres and AgNWs (Poynton et al., 2012;
Scanlan et al., 2013; Hou et al., 2017). Although transcriptome
analysis revealed some molecular mechanisms of ion binding and
several altered metabolic pathways, further studies are necessary
to elucidate the molecular mechanisms underlying AgNP toxicity
in different microcrustacean species. In addition, at a biochemical
level, enzymes associated with neurotransmission, oxidative
stress, and metabolism were affected by AgNPs in D. magna
andM. macrocopa (Ulm et al., 2015; Borase et al., 2019; Galhano
et al., 2020).

In addittion, AgNPs disturb normal behaviour in
microcrustaceans. Asghari et al. (2012) observed erratic
swimming in the early stages of D. magna, whereas in the late
stages and high AgNP concentrations, they often migrated to the
water surface or the bottom. A similar trend for changing
allocation time was also reported by Galhano et al. (2020),
who observed that animals exposed to AgNPs spent more
time at the bottom and in the middle than at the top. These
behavioural changes might be related to the adsorption of AgNPs
to the animal body, to an inhibitory effect of the
neurotransmission enzyme AChE, or to immobilization effects
(at high concentrations), among other mechanisms.

Other ways by which ENM/Ps exhibit negative effects on
microcrustaceans are growth retardation and reproductive
impairments. Such endpoints are determined after chronic
(21 days) and multi-generation exposure studies. For instance,
the exposure to environmentally relevant concentrations of
AgNPs caused a reduction in the mean number of offspring in
six generations of D. magna (Hartmann et al., 2019). During
chronic toxicity testing, cladocerans (Daphnia spp.) and rotifers
(Brachionus calyciflorus) exposed to AgNPs showed significant
inhibition on the population growth rate (Zhao and Wang, 2011;
Völker et al., 2013; Martins et al., 2020). Neonates from pre-
exposed parental daphnids did not completely recover when
transferred into clean water. On the contrary, the population
growth rate of rotifers was recovered across five generations,
although a delay in the reproduction was observed, probably
indicating that the animal fitness was affected (Martins et al.,
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2020). Furthermore, Park et al. (2021) found that AgNPs not only
could lead to negative effects on the reproductive success of D.
magna over two consecutive generations but also cause several
embryonic developmental arrests and abnormalities. These
findings support the idea that effects caused by AgNMs may
persist in microcrustaceans with time with risks at the
population level.

Several studies highlighted the importance of size on AgNP
toxicity in microcrustaceans, where smaller NPs are more toxic
than the larger ones. Smaller particle size offers a greater specific
surface area which increases the rate of Ag+ release. For instance,
exposure to smaller AgNPs (20–40 nm) caused higher acute
toxicity to D. magna than their larger counterparts
(60–110 nm) (Seitz et al., 2015; Hou et al., 2017). Similarly,
the immobilisation of D. magna neonates increased with
decreasing particle size (10 > 20 > 40 > 60 > 80 nm) (Ivask
et al., 2014), and the influx rates of AgNPs into daphnids were
also size dependent (20 > 50 > 100 nm) (Zhao and Wang, 2012).
In the same way, Scanlan et al. (2013) reported that short-length
AgNWs were more toxic than long-length AgNWs against D.
magna. On the contrary, Cui et al. (2017) found that AgNWs of
20 μm were more toxic than those of 10 μm in D. galeata and
D. magna.

The shape is another characteristic that may affect
nanotoxicity in microcrustaceans. For example, a study by
Sohn et al. (2015) reported that spherical AgNPs (diameter
5–25 nm) were more toxic (immobilization) than AgNWs
(length 10 ± 5 μm) to neonate D. magna. This is probably
due to the higher amount of Ag ions released from the surface
of AgNPs compared with AgNWs. Additionally, the authors
observed abnormal swimming, AgNM ingestion, brood
chamber pigmentation, and small bubbles under the
carapace of the exposed D. magna. Later on, another study
compared the toxicity of multidimensional AgNMs (Ag
nanospheres, AgPLs, and AgNWs) in D. magna and
Dapnhia galeata (Cui et al., 2017). The authors confirmed
the toxicity in the following order: AgPLs > Ag nanospheres >
AgNWs. Although the same pattern was observed in both
species, D. galeata resulted in more sensitivity to all tested
NMs compared to D. magna, evidencing that the sensitivity of
each species must be considered.

Another important physicochemical property of AgNPs that
affects their toxicity includes surface coating. Poynton et al.
(2012) found that Cit-AgNPs were more toxic to adult D.
magna (LC50-24 h) than the PVP-AgNPs (Table 1), even
though the size of the coated particles was similar, and they
exhibited comparable dissolution rates of approximately 10%.
However, the hydrodynamic diameter of the PVP-AgNPs was
over twice the size of the Cit-AgNPs; therefore, the higher toxicity
of the Cit-AgNPs may be related to the greater surface area of
those particles. Similar results were obtained by Hou et al., who
correlated LC50 data with molecular mechanisms of differentially
expressed genes. According to the authors, the lower toxicity
exerted by PVP coated might be due to its good stability, which
was confirmed by zeta potential values, a lower particle
dissolution rate, and no obvious changes in cluster or
aggregate formation.

Some studies have shown that the presence of dissolved
organic matter (DOM) with humic and fulvic acids affects the
stability and dissolution of AgNPs, with the consequent impact
on its bioavailability and toxicity. For instance, the toxicity of
AgNPs to Ceriodaphnia dubia and D. magna decreased in the
presence of river humic acid or lake fulvic acid, respectively (Gao
et al., 2012; Jung et al., 2018). Most of the toxicological studies
mentioned above have been carried out using standard exposure
media with limiting reliability of real exposure scenarios and
consequent AgNP environmental transformations. However,
some recent studies have addressed this issue by using natural
exposure media. For example, Conine et al. (2017) assessed the
toxicity of AgNPs to Daphnia dentifera in natural waters from six
lakes. The authors found that LC50 values were extremely variable
among all lakes (Table 1). Seasonality (in terms of animal life
cycles) and variability in water and particulate chemistry (carbon:
nitrogen ratio) were the primary variables with the greatest
influence on survival rates. To a lesser degree, other variables
in both the dissolved and particulate forms were also able to alter
toxicity, including DOC, total dissolved phosphorus, and
particulate carbon:phosphorus ratios. These results
demonstrate the importance of understanding how multiple
variables function together at an ecosystem scale.

On the other hand, some studies compared the impact of
pristine medium (American Society for Testing and Materials,
ASTM) and wastewater-borne exposed AgNPs on Daphnia and
found that environmentally relevant concentrations of
wastewater-borne AgNPs provoked a reduction of toxicity to
D. magna (Hartmann et al., 2019; Galhano et al., 2020). This
could be explained by chemical transformations of AgNPs
(sulfidation and/or complexation with other ligands) during
the lab-scale WWTP processing.

Bivalves and Snails
Molluscs play a crucial role in ecosystem functioning (e.g.,
nutrient and energy cycling through the food web), and they
have several characteristics that make them valuable test
organisms (ubiquity, sedentary life habit, availability, etc.)
(Justice and Bernot, 2014). However, studies evaluating the
effects of ENM/Ps in freshwater bivalves and snails are scarce
compared to other representing groups such as fish, algae, and
microcrustaceans (Gonçalves et al., 2017) (Figure 3).

The ecotoxicological risks for a wide range of ENM/Ps to
bivalve and snails have been reviewed by Rocha et al. (2015) and
Caixeta et al. (2020), respectively. Both reviews evidence disparity
among studies using marine and freshwater species. Rocha et al.
(2015) showed that evaluation of toxic effects of ENM/Ps in
bivalves was conducted mainly with seawater (85%) species
compared to freshwater ones (15%). On the contrary, most of
all studies involving ENM/Ps and snails were performed with
freshwater species (74%) when compared with land (18%),
estuarine (6.5%), and marine (1.5%) species (Caixeta et al.,
2020). Despite the increasing number of reports on NM
ecotoxicity to freshwater molluscs, incomplete information is
currently available regarding the toxicity of AgNPs.

As previously discussed, after agglomeration and
sedimentation, AgNPs may ultimately accumulate in
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sediments. Jiang et al. (2017) demonstrated that the surface layer
of sediment on an aquatic system in microcosms was the main
sink of Ag originating from both AgNPs and AgNO3. This
deposition of AgNPs on sediments may present a risk of
exposure to sediment-dwelling organisms. So, benthic species
are expected to be the main receptors of NPs (Klaine et al., 2008).
Liu et al. (2018) determined the Ag concentration in water,
sediment, and the bivalve Corbicula fluminea after a pulse
treatment of AgNPs (added into upper water). The majority of
Ag was deposited in sediment and then differently
bioaccumulated in bivalve tissues: Ag tended to bioaccumulate
in soft tissues at lower AgNP concentrations; on the contrary, Ag
was more adsorbed on shells at higher exposure concentrations.
This difference may be explained by a self-protection mechanism
of C. fluminea, which closed shells. In addition, non-Ag was
detected in faeces, probably indicating that AgNPs had a long gut
retention time in this bivalve species. Similarly, Lymnaea stagnalis
and Biomphalaria glabrata snails efficiently accumulated Ag from
ionic and nanosized forms after either aqueous or dietary
exposure, but the metal elimination was very slow (Croteau
et al., 2011; Oliveira-Filho et al., 2019).

On the other hand, only few studies have assessed the toxic
effect of AgNPs on freshwater molluscs using the sediment matrix
(Bernot and Brandenburg, 2013; Bao et al., 2018; Liu et al., 2018).
For instance, in the snail Bellamya aeruginosa exposed to AgNPs
and AgNO3-spiked sediment, Ag burden varied with Ag form
(aqueous > particulate) and tissue (hepatopancreas > gonad ≈,
digestive tracts > foot) (Bao et al., 2018). The highest
bioaccumulation factor (BAF) was obtained in the
hepatopancreas, confirming it as the major tissue for Ag
accumulation.

Interestedly, Bernot and Brandenburg (2013) determined the
acute lethal toxicity (LC50) of AgNPs to Physa acuta in the
absence and presence of sediment. The survival was higher
when experimental flasks included sediment than in its
absence (Table 1), suggesting that sediment in freshwater
media may reduce the concentration of AgNPs or Ag ions
that snails may encounter. On the other hand, Luoma et al.,
(2016) compared uptake rates of Ag in the L. stagnalis snails after
AgNP exposure in the presence or absence of either humic acid
(HA) or thiol-rich organic matter (e.g., cysteine). Ag uptake into
snail tissues was not highly affected by the presence of HA. On the
contrary, the Ag uptake from AgNP markedly decreased when
cysteine was added to the media.

Besides NOM, AgNP stability and bioavailability are highly
dependent on other environmental factors (i.e., electrolytes,
hardness, and pH), which vary significantly among different
aquatic systems (stream, lagoon, and river). In this way,
Gonçalves et al. (2017) compared the acute toxicity of AgNPs
and AgNO3 in adult and juvenile snails (Physa acuta) exposed to
media with different chloride concentrations (equivalent to an
environmental low and medium level). The results showed that
juveniles were more sensitive than adults and that lethality was
higher in the lower chloride level for both ionic and NP forms.
Probably, the complexation between chloride and silver ions lead
to reducing Ag+ bioavailability, uptake, and toxicity. Moreover,
the higher-chloride-level medium led to a higher AgNP

aggregation/agglomeration state, which would reduce their
bioavailability.

Another aspect of water quality influencing the bioavailability
and toxicity of AgNPs is the water hardness. Water hardness
influenced the uptake rates of Ag from AgNPs in the freshwater
snail L. stagnalis after short waterborne exposures (Stoiber et al.,
2015). Namely, harder water increased aggregation, reducing the
bioavailability of Ag. In a similar experiment, L. stagnalis
efficiently assimilated Ag from AgNPs mixed with diatoms
(dietary exposure), but water chemistry (hardness and humic
acids) had little or no impact on AgNP bioaccumulation and
toxicity (Oliver et al., 2014).

As already mentioned above, particle shape might influence
AgNP toxicity. Recently, Auclair et al. (2021) investigated if
different forms of AgNPs (sphere, cube, and prism) could
initiate biophysical chenges (levels of liquid crystals (LCs) and
changes in the activity and fractal dimensions of pyruvate
kinase–lactate dehydrogenase (PK–LDH), F-actin, and protein
ubiquitin (UB) levels) in mussels (Dreissena bugensis). The results
suggested that the geometry of AgNPs could influence the
formation of LCs (prismatic > cubic > spherical), alter the
fractal kinetics of the PK–LDH system (spherical > cubic >
prismatic) and F-actin levels, and cause protein damage
(pattern similar to LCs levels) in the soft tissues of freshwater
mussels. Thus, the AgNP form has effects on the spatial (fractal)
organization in the cytoplasm where biochemical reactions
take place.

In general, AgNPs effects are often size dependent, showing
that smaller ones are more bioavailable and induce higher
toxicity. However, this rule does not seem applicable to
freshwater bivalves and gastropods. Bao et al. (2018) observed
that larger AgNPs (40 and 80 nm) induced higher oxidative stress
to snails compared with the smaller ones (20 nm). The authors
hypothesized that 20 nm AgNPs were prone to enter or adsorb
into the sediment pores (average pore size of sediment of 14.6 ±
7.7 nm). Therefore, the smaller particles cannot easily contact the
snail and induce further toxicity. On the other hand, Gagné et al.
(2013) examined the bioavailability and effects of AgNPs of two
different sizes (20 and 80 nm) and Ag+ on the immune system,
oxidative stress, and metal metabolism (metallothioneins and
labile zinc) of the mussel Elliptio complanata. Results showed that
Ag+ was more bioaccumulated than 20 or 80 nm AgNPs, but the
global adverse responses of 20 and 80 nm AgNPs were similar to
those found for Ag+ and independent of Ag particle size.

According to the literature review, the main AgNP biological
effects in freshwater molluscs are oxidative stress, genotoxicity,
reproductive and embryotoxicity, and behavioural impairment.
AgNPs induced oxidative stress andDNA-damaging effects in the
digestive gland (Ali et al., 2014) and hemolymph (Ali, 2014) of L.
luteola snail. In addition, AgNPs reduced hemocyte viability and
increased apoptosis and necrosis in a time-dependent
concentration, suggesting that genotoxicity is mediated by
oxidative stress (Ali, 2014). Thus, the authors suggested that
oxidative stress may be involved in DNA damage induction,
leading to apoptosis or causing cell death. Moreover, AgNPs
induced oxidative stress in tissues of the mussels E. complanata
and C. fluminea (Gagné et al., 2013; Liu et al., 2018).
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Chronic exposure to AgNPs affects the reproduction rate and
the early developmental stages of mollusc species. For instance,
low concentrations of AgNPs (<1 μg L−1) resulted in decline in
size at the first reproduction and egg production of P. acuta
(Bernot and Brandenburg, 2013). A significant reduction in the
number of eggs and embryo per individual was also observed in
G. glabrata and Potamopyrgus antipodarum exposed chronically
to AgNPs (Völker et al., 2013; Oliveira-Filho et al., 2019). Some
authors compared the toxicity of AgNPs and Ag ions to P. acuta
and B. glabrata (Gonçalves et al., 2017; Araújo et al., 2020). The
results showed that both Ag forms increased the mortality,
reduced the hatching, and augmented the frequency of
hydropic malformation. However, AgNPs cause lower
reproductive and embryotoxicity than their ion counterparts.
This dissimilar toxicity could be explained by the mucous or
gelatinous surface of eggs and embryos, preventing a massive
penetration of the AgNPs.

On the other hand, non-lethal concentrations of AgNPs may
alter mollusc behaviours, affecting food location, predator
avoidance, searching mates, and habitat use, among other
consequences. P. acuta habitat use was modified by AgNP
exposure, with a higher proportion of gastropods occupying
the near-surface habitat, which indicates avoidance behaviour
(Justice and Bernot, 2014). In addition, AgNPs impaired P. acuta
ability to respond to the presence of a fish predator cue by
interfering with chemoreception (Justice and Bernot, 2014).
According to Young et al. (2017), snails detect the presence of
AgNPs with peripheral sensory receptors, and possibly, the NP
acts as an irritant on sensory structures, which causes a stress
response that alters the snail’s ability to form memory.
Specifically, AgNPs affected cognitive processes in L. stagnalis,
modifying its ability to learn and remember. However, results
depended on the assayed concentration, where memory
formation was blocked (50 μg L−1), enhanced (10 μg L−1), or
not altered (5 μg L−1).

In summary, as shown for other freshwater taxa, the uptake,
bioaccumulation, and biological effects of AgNPs in molluscs
might depend not only on the intrinsic characteristics of AgNPs
(e.g., shape and size) and on the environmental factors
determining their fate and transformation (water quality) but
also on the exposure routes (dietary, waterborne, and sediment)
and other experimental conditions (time, concentrations, etc.).

Fish
Fish are widely used as test organisms for nanotoxicity research.
According to a previous bibliometric analysis, the studies about
the toxic effects of ENM/Ps in fish were conducted mainly with
freshwater species compared with marine ones and Danio rerio
(zebrafish) as the most common fish species used as a model
system (~60% of the total reviewed scientific articles) for testing
ENM/P toxicity (Cazenave et al., 2019). Some reviews have even
focused on the toxic effects induced by ENM/Ps in zebrafish and
summarized the advantages of using this species for nano(eco)
toxicity assessments (Chakraborty et al., 2016; Haque and Ward,
2018; Jia et al., 2019; Pereira et al., 2019; Bai and Tang, 2020).

When AgNPs come into contact with fish, they might be
retained in the skin/gill mucus layer or be absorbed by either gills

or intestinal epithelia and distributed into different tissues. The
uptake and accumulation of Ag ions in the gills, liver, intestine,
and brain have been reported by several studies (Wu and Zhou,
2013; Jung et al., 2014; Bacchetta et al., 2017; Ale et al., 2018a, Ale
et al., 2018b; Khosravi-Katuli et al., 2018, among others). In the
same way, it has been proved that AgNPs were able to penetrate
zebrafish embryos through the chorionic pore (Lee et al., 2012)
and that they were distributed in the brain, heart, yolk, and blood
of embryos (Asharani et al., 2008).

There is a lot of evidence showing that AgNP exposure
generates negative impacts on fish, although it is still discussed
if the toxicity is mainly attributed to the release of silver ions
(Ag+) or AgNP themselves (McShan et al., 2014; Wang et al.,
2015; Cáceres-Vélez et al., 2018; Haque and Ward, 2018; Bai and
Tang, 2020). Anyway, it has been shown that AgNPs can cause
acute toxicity (Griffitt et al., 2008) and, mainly, a wide range of
sublethal damages in fish. Interestingly, AgNPs provoked changes
in the beneficial microbial community living on both skin and
intestinal mucus, which constitutes the first barrier and
immunological defence of fish (Merrifield et al., 2013;
Bacchetta et al., 2016; Ale et al., 2018a). To counteract the
effects of AgNPs, an increase in the number of mucus cells in
the gills of Cyprinus carpio and Prochilodus lineatus has been
recorded (Lee et al., 2012; Ale et al., 2018a).

Once AgNPs have been internalized by the cells, they elicit a
range of toxicities, including immunotoxicity, cytotoxicity,
genotoxicity, and other physiological effects. Undoubtedly,
oxidative stress is the most studied mechanism for explaining
AgNP toxicity. Exposure to AgNPs commonly results in the
overproduction of ROS, the activation of the antioxidant
system, the increase of lipid peroxidation, and membrane
damage, which lead to apoptosis and loss of cellular functions
(Chae et al., 2009; Lee et al., 2012; Massarsky et al., 2014; Valerio-
García et al., 2017; Ale et al., 2018a; Ale et al., 2018b; Khan et al.,
2018). On the other hand, some studies have demonstrated that
AgNPs can reach the cell nucleus, inducing DNA damage and
nuclear abnormalities (Sayed, 2016; Bacchetta et al., 2017; Sayed
and Soliman, 2017).

In addition to cellular, subcellular, and molecular effects, the
toxicity of AgNPs has been demonstrated at multiple levels on
different toxic endpoints, such as diverse physiological processes
(e.g., metabolic pathways, ion regulation, and respiratory system)
(Bilberg et al., 2012; Massarsky et al., 2014; Valerio-García et al.,
2017; Ale et al., 2018b; Khan et al., 2018), organ histopathology
(Govindasamy and Rahuman, 2012; Lee et al., 2012; Rajkumar
et al., 2016; Ale et al., 2018a; Khan et al., 2018), neurotoxicity and
behavioural alterations (Powers et al., 2011), and embryotoxicity
and teratogenic effects (Yoo et al., 2016; Pereira et al., 2019).

As already described for other aquatic organisms, smaller
AgNPs seem more toxic, probably because of being more
easily taken up by embryos or fish tissues. For instance, 4 nm
AgNPs were more efficiently accumulated and resulted in higher
zebrafish embryotoxicity than 10 nm particles (Xin et al., 2015).
This is in line with the reported values of LC50 for adult zebrafish
(Table 1), which clearly showed that smaller particles (20 nm)
were more toxic than larger ones (100 nm), irrespective of the
surface coating (Cit or PVP) (Liu et al., 2019). In another study,
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juvenile female rainbow trout (Oncorhynchus mykiss) exposed via
water to nanosized (10 and 35 nm) and bulk-sized silver particles
(600–1,600 nm) for 10 days showed that the smaller particle was
the most highly concentrated in the gills and induced expression
of genes involved in oxidative metabolism (Scown et al., 2010).
However, the liver analysis did not show differences in Ag
concentration between 10 nm AgNP and bulk silver
treatments. Similarly, Osborne et al. (2015) investigated the
size-dependent effects between 20 and 110 nm of AgNPs in
the zebrafish gills and intestine, utilizing different endpoints.
Results showed that 20 nm AgNPs were more accumulated in
gills than the 110 nm ones, while the Ag content was similar in the
intestines for both particle sizes. Moreover, AgNPs were localised
in the basolateral membranes, leading to disruption of the Na+/K+

ion channel in both target organs, with the smaller particle
causing greater toxicity than the larger one. At the embryonic
stage, mortality, morphological malformations, and altered
locomotor activity were also observed after different sizes of
AgNPs’ exposure (Bar-Ilan et al., 2009; Powers et al., 2011;
Osborne et al., 2013). However, toxicity was size dependent at
certain concentrations, times, and light conditions. Thus, the size
dependence of AgNP-mediated toxicity is still controversial
(Haque and Ward, 2018).

On the other hand, some researchers have also studied the
relationship between AgNP shape and toxicity. George et al.
(2012) compared nanosized Ag spheres, plates (AgPLs), and
wires (AgNWs) in both in vitro (rainbow trout gill fish cell,
RT-W1) and in vivo (zebrafish embryos) models. Results showed
that AgPL induced higher cyto- and embryotoxicity than other
particle shapes in spite of a lower rate of dissolution and
bioavailability of plate-shaped Ag. The authors demonstrated
that these differences were due to a high level of crystal defects on
the AgPL surfaces, which caused damages during direct physical
contact with the cells or organism. Thus, in addition to Ag ion
release, the increased surface reactivity of AgPL should be
considered as another important mechanism of nanosilver
toxicity (George et al., 2012). In agreement with this study,
Abramenko et al. (2018) reported higher acute toxicity of
AgPL to D. rerio embryos than nanospheres (Table 1).
Interestingly, both types of NPs were more toxic than silver
ions (LC50 0.0649 mg L−1), suggesting that toxicity may be
associated with AgNPs themselves rather than with ionic silver
released into solution. In addition, the LC50 values of Ag
nanospheres and AgNW for Oryzias latipes indicated that
nanospheres displayed greater toxicity than NWs (Table 1).

In agreement with other freshwater taxa, surface modifications
of AgNPs could also influence the toxicity of AgNPs in fish. For
instance, Osborne et al. (2013) demonstrated that coating AgNPs
with Cit or fulvic acid reduced mortality rates in zebrafish
embryos compared to uncoated NPs. In another study, AgNPs
coated with gum arabic exhibited more toxicity than PVP and Cit
AgNPs (which showed similar and lower toxicity, respectively) to
early life stages of O. latipes (Kwok et al., 2012). However, these
results should be interpreted with caution because differently
coated AgNPs showed dissimilar aggregation behaviour and
dissolution in the test medium. On the other hand, Auclair
et al. (2019) compared the bioavailability and toxicity of

AgNPs having similar size and shape (50 nm, spherical), but
different coatings: Cit, PVP, branched polyethyleneimine (bPEI),
and silicate (Si). Although Ag was detected in the liver of
Oncorhynchus mykiss juveniles from the four treatments, some
coatings led tomore bioavailability than others (PVP >Cit > bPEI
> Si); for example, the hepatic Ag content of AgNP-PVP was
15 times higher than that of AgNP-Si. Regarding toxicity, the
authors showed that both negative (Cit) and positive (bPEI)
coatings caused more DNA damage and inflammatory effects
than neutral coatings (Si and PVP). Thus, these results
demonstrated that NP charge, which is conferred by the
coating, might be an important intrinsic particle property
governing toxicity. In line with these results, Liu et al. (2019)
reported higher Ag contents in different organs (intestines > gills
>muscles) of zebrafish after exposure to AgNP-PVP compared to
AgNP-Cit. In contrast, acute toxicity tests and gene expression
analyses confirmed that AgNP-Cit were more toxic. Differences
in toxicity could be caused by changes in zeta potential. In this
regard, the authors observed that the absolute zeta potential on
the surfaces of Cit decreased after 96 h, while only slight changes
were observed for PVP, indicating that AgNP stability played an
important role in affecting biological responses.

Interestingly, Lee et al. (2013) synthesized AgNPs, which were
functionalized with peptides in order to offer positive (3.0 ±
0.2 mV) or negative (−5 and −11.9 mV) charges. The three Ag-
peptide-NPs were very stable in zebrafish exposure media over
the entire duration of the experiment (120 h), and they passively
diffused into embryos via chorionic pores and affected embryonic
development. However, positively charged AgNPs diffused faster
and longer distances than negatively charged ones, suggesting
that the first ones were more biocompatible. In contrast, the most
negatively charged NPs (−11.9 mV) caused the highest mortality
rate (77%), while positively charged AgNPs showed the lowest
toxic effects (0% deformed embryos; 33% mortality). Thus, the
biocompatibility and toxicity of AgNPs could be dependent on
their surface charges.

Concerning the development of the environmentally friendly
synthesis of ENM/Ps, it is demonstrated that AgNPs produced
from the green methods are usually less toxic than those achieved
from the non-green methods. Moreover, according to the
literature reviewed by Tortella et al. (2020), AgNPs
biosynthesized from plant extracts (e.g., Ocimum tenuiflorum
and Brassica oleraceae) (Daniel et al., 2011; Lathamuthiah et al.,
2015) seemed to be less toxic to zebrafish eggs than those
synthesized by Escherichia coli (Kannan et al., 2011). However,
further studies are necessary due to other factors, such as the size
or the presence of capped protein, which might also explain the
differences in toxicity.

In addition to the different properties of the particles, several
experimental or environmental conditions could influence AgNP
toxicity. For example, George et al. (2014) observed that
simulated solar light induced transformation of AgNPs
(surface oxidation and Ag+ release) and augmented their
toxicity to zebrafish embryos. On the other hand, exposure
medium containing a high concentration of chloride ions
(Groh et al., 2015) or higher salinity (Kalbassi et al., 2011;
Cáceres-Vélez et al., 2018; Joo et al., 2018) attenuated the
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acute and sublethal effects of AgNPs to zebrafish embryos and
rainbow trout fry. Taken together, these findings suggest that
laboratory conditions may over- or under-estimate the risk
potential of ENM/Ps and demonstrate the need for carrying
out toxicity tests under environmentally relevant exposure
conditions.

Similarly, it was demonstrated that the presence of natural
organic matter (NOM) affects the physicochemical properties of
AgNPs (e.g., initial diameter, surface charge, and dissolution
rate), leading to a lower bioavailability and toxicity. For
instance, the EC50 values, based on morphology and
teratogenicity endpoints in zebrafish embryos, showed that the
toxicity of AgNPs decreased with increasing HA substances
concentrations (Wang et al., 2015). In the same way, Cáceres-
Vélez et al., 2018; Cáceres-Vélez et al., 2019 reported that the
presence of HA in an exposure medium (zebrafish facility water)
reduced the mortality (Table 1), adverse effects, and Ag content
in the embryos and adults of zebrafish exposed to AgNPs
(Cáceres-Vélez et al., 2018; Cáceres-Vélez et al., 2019). In
addition, Kim et al. (2013) demonstrated that the interaction
of AgNPs with HA mitigated the mortality of Oryzias latipes
embryos. On the other hand, Ale et al. (2021a) and Ale et al.
(2021b) assessed the mitigation of HA on bioaccumulation and
oxidative stress in the gills of Neotropical fish (Piaractus
mesopotamicus and Corydoras paleatus) exposed ex vivo to
AgNPs. P. mesopotamicus gills accumulated Ag almost six-fold
lower when HA was present in the media. Moreover, AgNP
treatment (without the presence of HA) increased catalase
activity in the P. mesopotamicus gills and the lipid
peroxidation levels in C. paleatus. However, these oxidative
stress responses were similar to control values when the HA
was added to the media. In addition, the authors observed that
HA was adsorbed on the AgNPs surface and reduced the Ag+

release, impacting the nanoparticle fate and toxicity.

Brackish and Marine Environments
The ecotoxicity of AgNPs and Ag-based NEPs for marine species
has been less investigated, and MoA, barely understood if
compared to freshwater ones (Butz et al., 2019), was also
confirmed by the wide range of reported effect concentrations
(EC50 from 1 μg L−1 to >100 mg L−1, see Table 1) which often
barely mimic real exposure scenarios.

Phytoplankton
Several studies have been reporting the ability of AgNPs to inhibit
cell growth in marine phytoplankton including diatoms
(Burchardt et al., 2012; Angel et al., 2013; Gambardella et al.,
2015; Huang et al., 2016; Sendra et al., 2017; Pham, 2019), green
microalgae (Oukarroum et al., 2012; Gambardella et al., 2015;
Sendra et al., 2017; Hazeem et al., 2019), raphidophytes (He et al.,
2012), and cyanobacteria (Burchardt et al., 2012) with effect
concentrations in the range from μg L−1 to mg L−1 (see
Table 1 for details) depending on the specific size, coating,
and surface charges of AgNPs stock tested and the taxa
investigated.

In a recent study by Dedman et al. (2020), microbial cell
density seemed to affect the toxicity (populations reduced by over

90%) and recovery of the cyanobacteria Prochlorococcus strain
MED4 exposed to Cit-stabilized AgNPs (≥10 μg L−1) under
environmentally relevant cell densities in natural oligotrophic
seawater. Synergistic adverse effects caused by AgNPs (e.g,
induced oxidative stress) as a consequence of NP–cell
membrane interaction and dissolved Ag ions are hypothesized.
Oxidative stress and damage on cell walls or membrane is largely
documented in phytoplankton upon AgNP exposure due to the
production of ROS and/or release of Ag ions. Photosynthesis is
also reported to be affected generally as a decrease in chlorophyll-
α content and lipid peroxidation in the marine diatom
Talassiosira sp. (0–200 μgL−1) (Pham, 2019) and in the
microalgae Chlorella vulgaris (100–200 mgL−1) (Hazeem et al.,
2019),Dunaliella tertiolecta (10 mgL−1) (Oukarroum et al., 2012),
and Phaeodactylum tricornutum (10–300 μg L−1) (Sendra et al.,
2017) and disruption in photosystem-II electron transport in the
marine diatom Skeletonema costatum (AgNPs coated with
oleylamine, 0.5 ml−1) (Table 1) (Huang et al., 2016).

Cell wall composition/structure and coating agents have been
recognized as the main drivers of algal toxicity in three marine
microalgae (Isochrysis galbana, Phaeodactylum tricornutum, and
Tetraselmis suecica) exposed to PVP/bPEI-coated AgNPs (5 nm)
and uncoated (47 nm). Schiavo et al. (2017) suggested that the
coating agent was most responsible for the observed algal
toxicities as well as their different sensitivities based on the
presence of a resistant silicified cell wall in the diatom.

Coating agents can control particle dissolution and, thus, the
release of Ag ion, for instance, by limiting the particle contact
with oxidizing agents, such as dissolved oxygen and ROS or
driving aggregation (Gondikas et al., 2012; Sigg and Lindauer,
2015; Wu et al., 2017). Examples of reduced particle dissolution
and ecotoxicity have been provided with AgNPs coated with
sulfur and sulfur-containing molecules (Yang et al., 2012; Levard
et al., 2013) such as cysteine (Prosposito et al., 2019).

As already mentioned for freshwaters, an increase in ionic
strength as the one of seawater has been shown to play a
significant role in increasing AgNP dissolution though this is
not associated with an increase in ecotoxicity due to
complexation of Ag ions with chloride species and the
presence of NOM rich in sulfur and nitrogen (Kennedy
et al., 2012; Gunsolus et al., 2015; Asadi Dokht Lish et al.,
2019; Li et al., 2020). Therefore, in seawater, AgNP ecotoxicity
for single-cell species seems to be the result of more complex
dynamics, somehow higher than expected based on only Ag
ions’ dissolution rate and supporting the theory of a NP-
specific effect.

Microcrustaceans
Falugi et al. (2012) first reported AgNP (1–10 nm) toxicity in the
range between 1.0 × 10–1 mg L−1 and 100 mg L−1 for brine shrimp
Artemia salina using serial dilutions. Higher toxicity for the brine
shrimp was reported upon exposure to PVA-stabilized AgNPs
(EC50 5.5 × 10–2 mgL−1) (Becaro et al., 2015).

The acute exposure of A. salina nauplii (72 h) to AgNPs
(<100 nm; 0.39, 1.56, 6.25, 25, and 100 mgL−1) and AgNWs
(0.01, 0.1, 1, 10, and 50 to 100 mgL−1) caused concentration-
dependent immobilization with a clear sign of Ag retention inside
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the gut and adsorption in the external whole body of the nauplii
(An et al., 2019).

A concentration-dependent decrease in cyst hatching,
immobilization, apoptotic cell and DNA damage, and the
presence of aggregates in gut regions were observed in
Artemia sp. nauplii upon exposure to AgNPs (30–40 nm)
(Arulvasu et al., 2014). Gambardella et al. (2015) reported
concentration-dependent sensitivity and effect upon exposure
to AgNPs (1–10 nm, 1–1,000 μL−1) in marine species belonging
to different trophic levels as microalgae D. tertiolecta and diatom
Skeletonema costatum, the jellyfish Aurelia aurita,
microcrustaceans Amphibalanus amphitrite and A. salina, and
echinoderma P. lividus (Table 1). Brine shrimp were less sensitive
compared to the other species which showed an increased
sensitivity from diatoms, green algae, sea urchins, barnacles,
and finally, jellyfish as the most sensitive.

A harmonized protocol for testing ENM/P ecotoxicity
including AgNPs using the brine shrimp Artemia franciscana
has been proposed by Kos et al. (2016). The intercomparison of
laboratory data revealed poor repeatability of AgNP toxicity
results probably caused by the variation in the illumination
regime which could cause different Ag species to be formed,
so a standardized 16 h/8 h light/dark cycle should be adopted.
Moreover, incubation conditions of plates during the test (room
T, incubator, and ventilation) could play a role in the ecotoxicity
outcomes; therefore, the authors concluded that more studies
should be performed to standardize such procedures. Similarly,
Asadi Dokht Lish et al. (2019) reported how changes in
environmental parameters affected AgNP (8.80 ± 5.13 nm,
max 29.1 nm) effect concentration (EC) values for A. salina
instar I, for instance, decreased with increasing water
temperature, decreasing water salinity, and in continuous
darkness condition; in addition, EC50 value decreased in
specimens exposed in 100 ml beakers (21.35 ± 5.67 mgL−1)
compared to 10 ml well plates (42.44 ± 11.30 mgL−1). A
concentration-dependent manner of the immobilization rate of
A. salina nauplii with higher sensitivity of instar stage II than
instar I at higher concentrations (p < 0.05) was also reported.

Bivalves
Several contributions have investigated the ecotoxicity of AgNPs
in marine benthic filter-feeders as bivalves, as they are recognized
among the most suitable marine bioindicators of anthropogenic
pollutants including the emerging ENM/Ps (Matranga and Corsi,
2012; Canesi and Corsi, 2016). In vivo studies mostly
concentrated on the understanding of potential
bioaccumulation through waterborne exposure and biological
effects through physiological and molecular biomarkers in
potential target tissues (e.g., gills, immune circulating cells as
hemocytes, and digestive glands) (Ringwood et al., 2010; Buffet
et al., 2013; Gomes et al., 2013a, Gomes et al., 2013b; McCarthy
et al., 2013, Gomes et al., 2014; Buffet et al., 2014; Bebianno et al.,
2015; Katsumiti et al., 2015; Jimeno-Romero et al., 2017). Omics
studies have also been performed to unravel the mechanism of
actions and pathways of exposure by transcriptomics and
proteomics coupled with physiological responses. In a more
recent study by Duroudier et al. (2019a), mussels (Mytilus

galloprovincialis) exposed to 10 µgL−1 5 nm PVP/bPEI-coated
AgNPs through diet (microalgae) in autumn and spring
showed Ag bioaccumulation after 21 days in the digestive
gland and gills and proteomics recognized 104 differentially
expressed protein spots in autumn and 142 in spring
suggesting how season could affect organism responses to
AgNP exposure. The same authors showed that, upon 21-day
dietary exposure (by microalgae) to PVP/bPEI-coated 5 nm
AgNPs (1 μg L−1–10 μg L−1), impairment of reproduction was
observed with females releasing less eggs than non-exposed
ones and higher % of abnormal embryos at both exposure
concentration doses. Cytotoxicity on mussel’s hemocytes
exposed in vitro for 24 h was also observed (Duroudier et al.,
2019b). Changes in mussel’s gill and digestive gland proteome,
but not in gene transcription profile, were previously reported
upon exposure to either AgNPs (10 µgL−1 AgNPs for 15 days) or
AgNO3, but with different expression signatures, thus suggesting
the involvement of different mechanisms in the observed AgNP
and Ag ion toxicity (Gomes et al., 2013a, Gomes et al., 2013b;
Bebianno et al., 2015). In a similar study, the same authors
showed Ag accumulation in both tissues (gills and digestive
glands) and induction of antioxidant enzymes and
metollotionein; however, in the digestive glands, only a small
fraction of Ag seems to be associated with this protein as well as
for lipid peroxidation more marked in the gills than in the
digestive glands (Gomes et al., 2014). Bouallegui et al. (2017a)
reported morphological changes associated to the inflammatory
response in the gills of mussels exposed for a short time to PVP-
coated AgNPs (3, 6, and 12 h) and the highest histopathological
indices upon exposure to AgNPs of the smallest size (<50 nm).
They concluded that inflammation intensity was related to NP
size and exposure time and overall toxicity depending on the
uptake pathway.

By testing a AgNP-based commercial product
(nanArgen™,Nanotek S.A; Ag purity>99%, 20–40 nm, with
PVP as the stabilizing agent), we showed strong similarities
in marine mussel adverse effects with those reported for
pristine AgNPs at even more realistic exposure
concentrations (1 and 10 µgL−1, 96 h) (Ale et al., 2019).
Again, mussel’s gills seemed the more affected by the
disruption of ATP-binding cassette proteins’ functionality
which regulate the efflux of other toxic chemicals from the
cells, thus having a protective role during filtration and
feeding. Ag ion bioaccumulation was also observed in
agreement with previous studies with bare AgNPs (Gomes
et al., 2013a; Gomes et al., 2013b). The effect of size (20, 40, and
100 nm) of maltose-stabilized AgNPs and commercial ones in
comparison with ionic and bulk Ag was investigated by
Katsumiti et al. (2015) on mussel immune cells (hemocytes)
and gills showing higher cytotoxicity for the smaller size
(20 nm) similar to ionic Ag probably as a consequence of
higher dissolution of Ag. Similar responses upon maltose-
stabilized AgNPs and Ag ion exposure were also observed
in both cell types (hemocytes and gill cells) with induction of
oxidative stress (e.g., ROS production and antioxidant
enzymes catalase, CAT) and DNA damage, activation of
lysosomal AcP activity, disruption of actin cytoskeleton, and
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stimulation of phagocytosis in hemocytes and increase of
MultiXenobiotic Resistance (MXR) transport activity and
inhibition of Na-K-ATPase in gill cells. DNA damage on
mussel hemocytes (comet assay) was already reported by
Gomes et al. (2013a) upon exposure for 15 days to AgNPs
(<100 nm) and bulk form, the latter showing higher
genotoxicity suggesting a different mechanism of action
probably mediated by oxidative stress. Silver ion dissolution
of 20 nm maltose-stabilized AgNPs (tested in the range 0.75,
75, and 750 μg L−1) was recognized responsible of edema/
hyperplasia in the gills and severe damage on mussel
digestive tissues upon 21 days of exposure associated with
intralysosomal Ag accumulation, lysosomal membrane
destabilization, loss of digestive gland integrity,
vacuolization in digestive cells, and atrophy–necrosis in
digestive alveoli (Jimeno-Romero et al., 2017). Upon
chronic exposure to AgNPs obtained from a green synthesis
method using Ceratonia siliqua fruit extract to the clam
Ruditapes decussatus in vivo for 30 days (1, 2.5, and 5 mg/
aquarium), an increase in glutathione transferase (GST),
glutathione reductase (GR), and CAT activities was
observed in the gills (Hidouri et al., 2017). More recent
findings on the same species on short-term exposure (48 h
and 7 days) to commercial AgNPs (20–30 nm, 100 and
200 μg L−1) confirmed the gills’ antioxidant system as a
target of AgNPs with changes in CAT significantly varying
depending on AgNP concentration, time of exposure, and
organ analyzed. On the contrary, GST and
acethylcholinesterase (AChE) activities significantly
decreased, thus hypothesizing an antagonistic effect on
clams in both oxidative and cholinergic states (Elyousfi
et al., 2021).

Dissolution of Ag ions as the main driver of toxicity of AgNPs
was also hypothesized for endobenthic marine bivalve Scrobicularia
plana upon exposure to 10 µgL−1 AgNPs (40 nm) and bulk Ag for
14 days either directly (water) or via the diet (microalgae) (Buffet
et al., 2013). However, based on results on DNA damage and
phenoloxidase and lysozyme activities in digestive glands of S.
plana caused by AgNPs and bulk forms upon 21 days of
exposure in mesocosms, the same authors recognized a nano-
specific Ag effect (Buffet et al., 2014). No differences in Ag levels
were observed between mesocosms contaminated with AgNPs and
soluble Ag as well as bioaccumulation in specimens exposed to
AgNP aggregates and ionic forms. A different tissue response
towards 20–30 nm Cit-coated AgNPs and bulk Ag forms is
reported for Crassostrea virginica with oxidative damage in the
gills upon exposure to dissolved Ag and in the digestive glands to
AgNPs with consequences on metabolism and reproductive
impairments, suggesting a distinct NP effect (McCarthy et al.,
2013). More recently, Carrazco-Quevedo et al. (2019) reported
higher dissolution rate of low concentrations of AgNPs NM300K
(20 ± 5 nm) (12.5 µgL−1 vs 125 µgL−1) in the presence of the rock
oyster Saccostrea glomerata, with higher bioaccumulation in the gills,
but not the digestive gland and induction of DNA strand breaks and
oxidative stress biomarkers (GST, GR, and lipid peroxidation
(LPO)). The authors underline the importance of characterizing
the bio-nano-interaction of AgNPs in seawater media which are

affecting dissolution and aggregation, thus influencing the uptake
and bioaccumulation of AgNPs, including aggregates.

Benthic-Grazers
Few contributions have been made on marine benthic-grazers
such as sea urchins. Magesky et al. (2017) reported apoptotic-like
processes in the immune cells of Strongylocentrotus
droebachiensis upon exposure to poly(allylamine)-coated
AgNPs (17 ± 6 nm, PAAm-AgNPs) at 100 µgL−1 up to 96 h.
By comparison with the ionic form, a differential uptake is
hypothesized as mediated by a Trojan-horse mechanism
operating over a 12-day exposure to AgNPs, while physical
interactions with cell structures in short-term are responsible
for the highest levels of stress-related proteins observed. The same
authors also reported lower effect on the developing embryos of S.
droebachiensis compared to Ag ions probably due to the low
dissolution of PAAm-AgNPs in seawater (Magesky et al., 2017).
In a previous study, the authors reported lower effect on mid-to-
late gastrula to PAAm-AgNPs at 50 and 100 µgL−1 compared to
Ag ions (Magesky and Pelletier, 2015). In the Mediterranean sea
urchins Paracentrotus lividus, short-term exposures to 5–35 nm
Cit-stabilized AgNPs (~0.3 mgL−1) caused dose-dependent
developmental abnormalities in embryos and larvae although
no explanation on MoA is provided (Šiller et al., 2013). A
different species sensitivity of sea urchin embryos to AgNPs
(50 nm) was also revealed upon short-term exposure in the
range of 1–100 μg L−1, with Arbacia lixula resulting the most
sensitive with more aberrant embryos or arrested development at
the lowest concentrations tested (1–10 μgL−1 AgNPs) compared
to P. lividus and Sphaerechinus granularis (Burić et al., 2015).
Sperm motility of P. lividus resulted to be affected upon AgNP
exposure (Gambardella et al., 2015) (Table 1).

Sediment-Dwelling Species
Several contributions have been published on sediment-dwelling
species in terms of the bioaccumulation and biological effects of
AgNPs. In the work of Cong et al. (2014), Ag accumulation and
effects of nano (<100 nm)-, micro (2–3.5 µm)-, and ionic
(AgNO3)-Ag were investigated on the polychaete, Nereis
diversicolor. The highest genotoxicity of the nano-Ag form
compared to the other two was observed but no differences in
the Ag bioaccumulation probably due to ingestion of Ag-
associated particles in the sediment during feeding, or through
body surface contact during burrowing. Higher DNA damage
and protein activities related to immune system disruption have
been also reported in H. diversicolor upon exposure to lactate-
and maltose-coated AgNPs (40–45 nm, 10 µgL−1) compared to
Ag ions (Mouneyrac et al., 2014). In outdoor mesocosm settings,
Buffet et al. (2014) reported bioaccumulation of Ag upon
exposure to AgNPs (10 µgL−1) and ionic Ag in H. diversicolor
for 21 days and induction of oxidative stress defenses,
detoxification, apoptosis, genotoxicity, and immunomodulation
with higher phenoloxidase and lysozyme activities suggesting a
specific nano-effect. Similarly, Cozzari et al. (2015) reported
changes in antioxidant markers (glutathione, superoxide
dismutase (SOD), CAT, glutathione peroxidase, GST, and GR)
without significant Ag accumulation upon exposure to either

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org March 2022 | Volume 10 | Article 83674216

Corsi et al. Safety by Design Nanotechnology

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


AgNPs of different sizes (63 ± 27 nm; 202 ± 56 mm) or ions form
Ag (range 2.5, 5, and 10 μg g−1sediment (dw)) in specimens of
Nereis diversicolor exposed to contaminated sediments up to
11 days. Concentration- and time-dependent differences in the
accumulation of the three Ag forms were observed, and the effects
caused by AgNPs on biomarker responses suggest that the
mechanism of oxidative stress is distinct from that of
dissolved Ag.

Effects of AgNPs on early life stages are also reported on
polychaetes. García-Alonso et al. (2011) reported mortality and
abnormal development rate increased with early life stages in
specimens of Platynereis dumerilii exposed to Cit-AgNPs or HA-
AgNPs coated AgNPs and dissolved Ag. Exposures to HA-AgNPs
caused higher toxicity responses and uptake rate in adult worms,
consistent with higher toxicity in early life stages by AgNPs than in
juveniles or adults. Chan and Chiu (2015) reported effects on
growth, development, and settlement in the polychaete Hydroides
elegans larvae upon exposure to oleic acid or PVP-coated AgNPs
(30–50 nm, 1–100 μL−1). Sediment contaminated with either mixed
Cit-AgNPs (13 nm) or ion Ag (100 µgg−1 dry weight) caused
bioaccumulation of Ag but no related toxicity and differential
impact on two polychaete species Capitella teleta and Capitella
sp. Impairment of growth was reported for Capitella sp., while C.
teleta was not affected by either Ag form (Ramskov et al., 2015). A
28-day bioaccumulation study showed a different pattern of
speciation upon the AgNP coating on bioaccumulated Ag in the
marine polychaete Nereis virens upon exposure to Cit-AgNPs and
PVP-AgNPs, as well as Ag ionic form. Such findings suggest the
influence of coating agents on Ag uptake, biotransformation, and/or
excretion in marine polychates (Wang et al., 2014).

Fish
Few studies have been performed on assessing the impact of
AgNPs on marine/brackish fish species. Kleiven et al. (2019)
reported that Ag is taken up regardless of the route of exposure
(waterborne and diet) in juvenile of Atlantic salmon (Salmo salar)
exposed to radiolabeled Cit-AgNPs (110 mAg) and Ag ionic form
for 48 h. Higher Ag concentrations in the gills are observed via
waterborne exposure, while dietary exposure led to high
concentrations in the gastrointestinal tract, with the liver as
the main target organ. Ionic Ag forms were highly
accumulated through water, while no differences were
observed in specimens exposed through diet. The smallest
citrate-AgNPs (4 nm) resulted in four orders of magnitude
more accumulation from water than from feed; otherwise,
their transfer from other contaminated prey could provide
long-term exposure scenarios with unknown consequences on
Ag bioaccumulation and fish health.

Upon exposure to 5 nm PVP-AgNPs (80 μg L−1 for 48 h),
adult killifish, Fundulus heteroclitus, showed a significant
depression of oxygen consumption (ṀO2min and ṀO2max)
compared to control fish, but neither aerobic scope nor
biochemical indicators of toxicity were affected as well as gill
epithelium (Campbell et al., 2019). Furthermore, gill NKA
activity, although sensitive to Ag ions, did not affect
specimens exposed to PVP-AgNPs suggesting that dissolution,
even occurring, is not making Ag bioavailable to fish gills.

THE (ECO)SAFE BY DESIGN APPROACH
TO PREVENT HUMAN AND
ENVIRONMENTAL HEALTH EFFECTS
Several progresses have been made in the last years towards the
definition of successful strategies aiming to assess the nano(eco)safety
of ENM/Ps as demonstrated by a number of publications and
projects addressing “nanosafety” either for humans and the
environment (Corsi et al., 2014, Corsi et al., 2021; Hjorth et al.,
2017; Joint Research Centre European Commission, 2017; Lin et al.,
2018; Chen et al., 2020). At the European level, the most recent “Safe
and Sustainable-by-Design” (SSbD) intended as “a systems approach
by integrating safety, circularity, and functionality of advanced
materials, products, and processes throughout their life cycle” has
been proposed with the aim to reduce any potential hazard posed by
ENMs from their synthesis, production, application, and final release
into the environment following the fundamental and well-developed
framework of environmental risk assessment adopted for legacy
pollutants (Gottardo et al., 2021). Also, the OECD recently
developed a Safe(r) Innovation Approach (SIA) still relying on the
safe by design concept along with life cycle assessment and
socioeconomic analysis (SEA) (regulatory Ppreparedness) to be
considered as a priority issue for limiting/reducing risks to
humans and the environment (Soeteman-Hernández et al., 2019;
OECD, 2020b).

Significant steps towards providing guidelines for ENM/P
ecotoxicological testing which cannot follow classical molecules
due to their peculiar nature and properties have been made by
the OECD with a guidance document published in 2020 for
freshwater aquatic and sediment toxicological testing (n. 317)
(OECD, 2020b). Several important issues as the need to fully
characterize particle properties and behaviour prior to test and
during testing with organisms inside, as well as the metrology
used to prepare test dispersion and recommendations on how to
conduct test and how to analyse data and report them to the
scientific community, have been faced and guidelines are provided.

A set of required minimum criteria for ENM/P characterization
such as, for instance, size, shape, composition, and purity are already
mandatory in nano(eco)toxicological testing in order to achieve a
better comparison of experimental data and environmental metrics
in the design process together with functional performances and
costs (e.g., Nanotechnology Road Map for 2030) (Haase and
Klaessig, 2018; Plata and Janković, 2021). Aquatic
nanoecotoxicology has moved forward in such direction by
including as mandatory a full characterization of environmentally
relevant exposure conditions (e.g., aggregation, agglomeration, and
eco-bio-corona formation in water media) to provide more
consistent and reliable informative data for exposure and hazard
estimates (OECD, 2020a).

In terms of environmental safety design named as eco-design,
those ENM/P properties that will satisfy high safety standard for
humans and environmental health should be incorporated into the
material design since the beginning of their conceptualization while
avoiding those which could represent a potential hazard from their
synthesis (e.g., cradle) to their final disposal (e.g., grave) by following
a re-design conceptual procedure (Fiorati et al., 2020a, Fiorati et al.,
2020b; Corsi et al., 2021). The knowledge acquired by ecotoxicity
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testing of AgNPs in either freshwater or marine species allows us to
recognize some peculiar properties of the NPs themselves which
could be considered predictors of environmental safety such as, for
instance, particle size, surface coating, and charges according to the
specific properties of the water body receiving them (e.g, freshwater,
brackish, or marine). The possibility to build up a validation
framework in which the ENM/P properties along with
ecotoxicological testing will be defined along with their efficacy
towards specific application and final disposal into the environment
could guide the product development before being put into the
market, thus limiting any potential human and environmental risk
(Figure 4).

As such, this safety approach can be recognized as a
“precautionary strategy” which includes both human and
environmental safety although not yet adopted but clearly
supported as demonstrated by a number of funded projects by
the European Commission in collaboration with international
funding agencies and bodies, already showing promising results
(www.nanosafetycluster.eu).

An example in this direction has been made in the development
of sensors for mercury based on plasmonic AgNPs with the aim to
support their safe environmental applications in both fresh and
marine waters (Prosposito et al., 2019). The addition of specific
capping molecules such as Cit and L-cysteine on the surface of
AgNPs, thus increasing reduced sulfur groups (SH-) able to bind free
cationic metals, was shown to successfully limit their ecotoxicity for
either freshwater or marine microalgae. The sulfidation of AgNPs,
with the formation of an insoluble Ag sulfide (Ag2S) layer on the
surface of the NP, has been shown to significantly reduce its
dissolution and increase aggregation (Levard et al., 2013). Lower
ecotoxicity of NPs including AgNPs functionalized with sulphur
groups has been reported compared to bare NPs (Levard et al., 2011,
Levard et al., 2012; Pem et al., 2019). The release of silver ions in
water media (either fresh and saline) and ecotoxicity assessed
towards two model microalgae, such as the freshwater R.
subcapitata and the marine P. tricornutum, demonstrated such

design to be environmentally safe, ecosafe, in terms of reduced
dissolution and ion release and no ecotoxicological effects.

The toxicological information from biological models
represents a useful tool to predict the potential risk of
nanomaterials on humans and the environment (Zielińska
et al., 2020). However, due to the several different factors that
influence the toxicity of AgNPs, more efforts from the scientific
community, industrial companies, and governments are required.
Physical and chemical synthesis procedures are widely employed,
and their impact was a subject of investigation, but the emerging
field of ecofriendly methods should be also taken into account to
decrease the environmental impact of their production. In
addition, the characteristics of the AgNPs could also be tuned
to diminish their undesired effects. Initially, the size-dependent
effect of NPs was well known and reported, suggesting that
smaller AgNPs are more toxic probably due to their higher
bioavailability and increased release of silver ions. Secondly,
surface chemistry and charge were also identified as key
parameters affecting the interaction with cell membranes, the
adsorption of molecules, and the protein corona formation. In
this sense, NPs with surface positive charge (zeta potential) were
found to be safer. Finally, the capping agent employed is also
highly relevant since it determines the stabilization of the AgNPs
and also controls the release of silver ions. In conclusion, the
criteria for the completely safe application of AgNPs are not easily
met; however, great progress has been made toward this end. The
generation of multidisciplinary forums of research with
contribution of researchers of different fields will certainly
contribute to developing the safety by design approach and,
consequently, the successful application of AgNPs.

FINAL REMARKS

During the past few years, an interesting number of new applications
of AgNPs have emerged. Indeed, the unique physical and chemical
functions together with antimicrobial activities and new large-scale
manufacturing procedures suggest that they have important
applications. Moreover, considerable efforts have been devoted to
analysing the sophisticated interactions of AgNPs with biological
systems. The different studies presented in this review highlight the
importance of these emerging fields with implications in human and
biota healthcare. Finally, to minimize the human and environmental
risks of ENM/P s, toxicity results need to be considered during their
design and production. Building the bridge from aquatic
nanotoxicology to safety by design of ENM/P made of silver may
contribute to developing safer and sustainable nanotechnologies.
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FIGURE 4 | Schematic representation of the production, use, disposal,
fate, and effect of AgNPs as well as the main parameters affecting the toxicity
mechanisms of AgNPs.
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GLOSSARY

AChE Acetylcholinesterase

Ag+ Silver ion

AgNO3 Silver nitrate

AgNPs Silver nanoparticles

AgNW Silver nanowireAg nanowire

AgNW Silver nanowireAg nanowire

AgPL Ag nanoplate

ASTM American Society for Testing and Materials

BAF Bioaccumulation factor

bPEI Branched polyethyleneimine

CARS Coherent Anti-stokes Raman Scattering

CAT Catalase

Cit Citrate

EC50 Effect concentration causing effect in 50% of exposed organisms

Eco-corona Environmental corona known

Eco-design Environmental safety design

ENM Engineered nanomaterials

ENM/Ps Engineered nanomaterials and nanoparticles

EPS Extracellular polymeric substance

GR Glutathione reductase

GSH Glutathione

GST Glutathione transferase

HA Humic acid

LC50 Lethal Concentration

LCs Liquid crystals

LPO Lipid peroxidation

MoA Mode of action

MXR MultiXenobiotic Resistance

Nano-bio-interactions Nanoparticle biological interactions

NEPs Nano-enabled products

NM Nanomaterial

NOM Natural organic matter

NPs Nanoparticles

PAAm Poly (allylamine)

PEC Predicted environmental concentrations

PEG Polyethylene glycol

PEI Polyethyleneimine

PLFA Pony Lake Fulvic Acid

PVA Polyvinyl alcohol

PVP Polyvinylpyrrolidone

ROS Reactive oxygen species

Si Silicate

SOD Superoxide dismutase

SRHA Suwannee River humic acid

SSbD Safe and Sustainable-by-Design

Tan Tannic acid

TEM Transmission electron microscopy

WWTP Wastewaters from treatment plants
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