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Abstract

Cryopreservation is known for its marked deleterious effects on embryonic health. Bovine

compact morulae were vitrified or slow-frozen, and post-warm morulae were cultured to the

expanded blastocyst stage. Blastocysts developed from vitrified and slow-frozen morulae

were subjected to microarray analysis and compared with blastocysts developed from unfro-

zen control morulae for differential gene expression. Morula to blastocyst conversion rate

was higher (P < 0.05) in control (72%) and vitrified (77%) than in slow-frozen (34%) morulae.

Total 20 genes were upregulated and 44 genes were downregulated in blastocysts devel-

oped from vitrified morulae (fold change� ± 2, P < 0.05) in comparison with blastocysts

developed from control morulae. In blastocysts developed from slow-frozen morulae, 102

genes were upregulated and 63 genes were downregulated (fold change� ± 1.5, P < 0.05).

Blastocysts developed from vitrified morulae exhibited significant changes in gene expres-

sion mainly involving embryo implantation (PTGS2, CALB1), lipid peroxidation and reactive

oxygen species generation (HSD3B1, AKR1B1, APOA1) and cell differentiation (KRT19,

CLDN23). However, blastocysts developed from slow-frozen morulae showed changes in

the expression of genes related to cell signaling (SPP1), cell structure and differentiation

(DCLK2, JAM2 and VIM), and lipid metabolism (PLA2R1 and SMPD3). In silico comparison

between blastocysts developed form vitrified and slow-frozen morulae revealed similar

changes in gene expression as between blastocysts developed from vitrified and control

morulae. In conclusion, blastocysts developed form vitrified morulae demonstrated better

post-warming survival than blastocysts developed from slow-frozen morulae but their gene

expression related to lipid metabolism, steroidogenesis, cell differentiation and placentation

changed significantly (� 2 fold). Slow freezing method killed more morulae than vitrification

but those which survived up to blastocyst stage did not express� 2 fold change in their

gene expression as compared with blastocysts from control morulae.
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Introduction

Cryopreservation of bovine embryos is widely used for trade of genetically superior animals

and conservation of genetic diversity. Bovine embryos are commonly frozen with either slow

freezing or vitrification method [1]. Both techniques differ in concentration of cryoprotectants

and cooling rates [2]. Slow freezing is currently a gold standard method for cryopreservation

of bovine embryos. However, it damages mammalian embryos due to intracellular ice forma-

tion and toxic effect of the permeating cryoprotectants (~1–2 M). The intracellular ice forma-

tion is dependent on cooling rate and surface area/volume of cells [3]. Cryopreservation leaves

deleterious effects on oocytes and embryos at developmental, morphological and biochemical

levels [4,5]. Over the years, the attempts have been made to minimize damage to morulae/blas-

tocysts caused by cryoprotectant-associated toxicity and intracellular ice formation during

cryopreservation [1,6]. Vitrification includes the use of highly viscous solution of cryoprotec-

tants (~7–8 M) to achieve a glass-like state with ultra-rapid cooling rates (>5000˚C/min)

avoiding the intracellular ice formation [7,8]. Following vitrification, bovine embryos undergo

extra- and intra-cellular glass-like state instead of ice crystal formation [9,10]. The vitrified

bovine embryos have improved or equivalent survival [11], blastocyst hatching and pregnancy

rates [10,12] as compared with slow-frozen embryos. It is anticipated that vitrification will

gradually replace slow freezing for embryo cryopreservation [2]. Vitrification may be a suitable

cryopreservation method for in vitro produced embryos which do not survive very well follow-

ing slow freezing method, compared to in vivo produced embryos [13]. Both, vitrification and

slow freezing cause intracellular/extracellular fractures in freezing planes, acute shrinkage in

cell volume and organelle damage in mammalian embryos [1,14,15].

The gene expression in bovine oocytes at different development stages and in pre-implanta-

tion embryos has been studied [16–18]. The gene expression in oocytes, granulosa cells and

pre-implantation embryos changed during extreme stress conditions such as heat shock [19]

and hormonal imbalance [20–22]. Vitrification of in vitro produced bovine blastocysts up-reg-

ulated genes involved in stress response [23]. Vitrification of mouse embryos exhibited differ-

ential apoptotic and DNA methylation gene expression [24]. TUNEL-based assays on embryos

showed low DNA-integrity indices after slow freezing and vitrification in mouse, human and

bovine species [25,26]. Vitrification skewed inner cell mass to trophoblast ratio and generated

reactive oxygen species in mouse embryos [27]. On contrary, slow-frozen bovine embryos

exhibited higher pro-apoptotic gene expression compared to vitrified embryos [28]. These

studies have examined individual genes in isolation. In order to fully understand the effects of

vitrification and slow freezing on cellular and molecular pathways, there is a need to compare

the global gene expression in in vitro produced bovine embryos. Such cryopreservation-related

subtle but cumulative changes may influence the embryo development at a morphological

level and may have long-term effects. The objectives of this study were to examine blastocyst

development in vitrified, slow-frozen and unfrozen control bovine morulae, and to investigate

their differential gene expression, using microarray analysis.

Material and methods

Chemicals and culture media

All chemicals were purchase from Sigma-Aldrich1 (Oakville, ON, Canada), unless otherwise

specified. Calf serum (CS; Cat#12484–010), Dulbecco’s Phosphate Buffer Saline (DPBS Ca2+-

Mg2+ plus; Cat# 21300–025) and Tissue Culture Medium-199 (TCM-199 (Cat# 12340–030)

were purchased from Invitrogen Inc. (Burlington, ON, Canada). Lutropin-V (LH; Cat #

1215094) and Folltropin-V (FSH; Cat # PHD075) were obtained from Bioniche1 Animal
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Health, Inc. (Belleville, ON, Canada). Cryotops for vitrification and 0.25-ml straws for slow

freezing were purchased from Kitazato1 Co. (Fuzi, Shizuoka, Japan) and IMV1 Tech. (Wood-

stock, ON, Canada), respectively.

Cumulus oocyte complex (COC) collection

Cow ovaries were collected from a commercial slaughterhouse (Cargill1, Calgary) and trans-

ported to Saskatoon at 20–25˚C within 12–18 h. Ovaries, after trimming extra tissue, were

washed with normal saline at room temperature. Follicular fluid containing cumulus oocyte

complexes (COCs) was aspirated from <4mm ovarian follicles using an 18-gauge needle

attached to 5-ml syringe, and pooled among ovaries for further processing.

In vitro embryo (morulae) production

The pooled follicular fluid was searched for COCs under stereomicroscope. COCs were

washed in holding solution (HS; 5% CS in 1X DPBS) and graded as described earlier [29]. First

and second grade COCs were washed (3X) in maturation medium [TCM-199 supplemented

with 5% CS, LH (5 μg/ml), FSH (0.5 μg/ml) and gentamicin (0.05 μg/ml)]. For in vitro matura-

tion, groups of ~20 oocytes were placed in 100 μl droplets of maturation medium under min-

eral oil, and incubated at 38.5˚C, 5% CO2 in air and saturated humidity, for 22–24 h.

For in vitro fertilization (IVF), two semen straws from a fertile bull were thawed at 37˚C for

1 min. Semen was pooled and washed through Percoll gradient (45% and 90%) [30]. After

washing, sperm were diluted in Brackett-Oliphant (BO) fertilization medium to a final concen-

tration 3x106/ml [31] [BO stock A + BO stock B + sodium pyruvate (1.3% w/v) + gentamicin

(0.05 μg/ml)]. Following IVM, groups of 20 mature COCs were washed (3X) in BO medium

supplemented with 10% (w/v) bovine serum albumin and added to 100 μl droplets of sperm in

BO medium, under mineral oil, and incubated at 38.5˚C, 5% CO2 in air and saturated humid-

ity. After 18–22 h co-incubation of sperm and COCs, zygotes were washed and cultured in
vitro (IVC) in CR1aa medium [32] supplemented with 5% (v/v) CS at 38.5˚C, 5% CO2, 5% O2

and 90% N2 in air, and saturated humidity. On d7 post-IVF, compact morulae were collected,

washed in HS and randomly divided in control, vitrification or slow freezing groups. Control

morulae were incubated in IVC medium for 24–48 h. The remaining morulae underwent

cryopreservation (vitrification or slow freezing) as follows.

Cryopreservation of morulae

Vitrification. Vitrification was conducted as described earlier [33]. Briefly, morulae were

washed in HS and equilibrated in vitrification solution 1 [VS1; 7.5% Ethylene glycol (EG, v/v)

+ 7.5% dimethyl sulfoxide (DMSO, v/v) + 20% CS (v/v) in 1X DPBS] for 5 min at room tem-

perature. Morulae (n = 3 to 4 in a given batch) were passed through three 20-μl droplets of vit-

rification solution 2 [VS2; 15% EG + 15% DMSO + 20% CS + 17.1% sucrose (w/v) in 1X

DPBS] at 37˚C within 1 min, placed on cryotop (Kitazato1 Co., Fuzi, Shizuoka, Japan) in indi-

vidual droplet with minimal volume of VS2, immediately plunged in liquid N2 and stored for

at least 24 h before warming.

Slow freezing. Slow freezing was done as described earlier [34]. Briefly, morulae were

washed (1X) and incubated in cryoprotectant freezing solution [1.5 M glycerol + 5% CS (v/v)

in 1X DPBS] for 10 min at room temperature. Morulae were transferred to 0.25-ml plastic

straws (IMV1 Tech., Woodstock, ON, Canada), sealed and kept in the controlled rate freezer

(Bio-Cool1 III-80, FTS systems, SP Industries, Inc., Stone Ridge, NY, USA) already set at

-7˚C, for 5 min. Ice seeding was initiated by touching straws with an ultra-cold Q-tip

immersed in liquid N2. The straws were placed back in freezer at -7˚C for additional 10 min,
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cooled to -35˚C at the rate of 0.5˚C/min, quickly plunged in liquid N2 and stored for at least 24

h before warming.

Warming. Vitrified morulae on cryotop were transferred to warming solution [0.5 M

sucrose (w/v) + 20% CS (v/v) in 1X DPBS] at 37˚C and incubated for 5 min. Similarly, slow-

frozen morulae in 0.25 ml plastic straws were held in air for 10 s and immersed in water bath

at 37˚C for 1 min. For glycerol removal, slow-frozen morulae were transferred to warming

solution [0.7 M sucrose + 5% CS (v/v) in 1X DPBS] at 37˚C and incubated for 5 min.

Morulae culture and blastocyst collection

Post-warm (vitrified and slow-frozen) morulae were washed with HS and cultured in CR1aa

medium for 24–48 h to the expanded blastocyst stage. Blastocyst conversion rates (%) were cal-

culated for each treatment group (control, vitrification and slow-freezing) as number of

expanded blastocysts out of number of morulae used per group.

Expanded blastocysts (n = 5 to 7 per treatment per replicate) were pooled in 50–100 μl

RNAse-free water in 0.5 ml cryovials (RNase-free; Neptune1, San Diego, CA). Expanded blas-

tocysts were flash frozen by plunging cryovials in liquid N2 and shipped to Dép. des Sciences

Animales, Université Laval, Quebec city, QC, for microarray analysis. Total five IVF/IVC/

cryopreservation cycles (i.e. biological replicates) were conducted on separate dates. Four bio-

logical replicates were used in microarray analysis (i.e. one cryotube per treatment per cycle).

Three biological replicates were used in quantitative real-time PCR (qRT-PCR) analysis. Two

biological replicates (cycles) were common between microarray analysis and qRT-PCR. Differ-

ent tubes containing blastocysts (within treatment and replicate) were used for microarray and

qRT-PCR analyses.

Microarray analysis

All procedures for microarray experiment were conducted according to procedures described

previously [22,35], with little modifications. Total RNA was extracted from blastocysts devel-

oped from vitrified, slow-frozen and control morulae (replicate-wise) using Arcturus Pico-

pure1 RNA isolation kit (Cat#KIT0204, Life Technologies, Burlington, ON). The samples

were subjected to a DNAse I (Cat#79254, Qiagen1 Inc., Toronto, ON) digestion on the col-

umn. Total RNA was eluted in 13 μl of elution buffer. The quality and quantity of RNA was

analyzed using Agilent 2100 Bioanalyzer™ and Agilent RNA 60001 pico kit (Cat# 5067–1513,

Agilent technologies, Santa Clara, CA) and stored at -80˚C until microarray and qRT-PCR

analyses. High quality RNA samples with RNA integrity number (RIN) over 7.0 were ampli-

fied using T7 RNA amplification procedure RiboAmp1 HSPlus RNA Amplification Kit (Cat#

KIT0525, Life™ technologies, Burlington, ON) and used for microarray hybridization.

The amplified RNA (aRNA) samples from control, vitrified and slow-frozen blastocysts

(replicate wise) were labeled with DY-547/647 (Green–Cy3 and Red–Cy5) fluorescent dyes

using Universal Labeling System (ULS™) Labeling Kit (Cat# EA-021, Kreatech1 Diagnostics,

Amsterdam, The Netherlands), as recommended by manufacturer. The unfrozen control

group was used as reference for both vitrification and slow freezing groups, therefore 4 μg

aRNA from control samples, and 2.5 μg aRNA from each vitrification and slow freezing sam-

ples were labeled with Cy3 or Cy5 dyes. Non-reacted residual dyes were filtered out using Pico-

pure RNA isolation kit (Cat#KIT0204, Life™ Technologies, Burlington, ON) without DNAse I

treatment. Pure labeled aRNA was eluted with 13 μl elution buffer. Labeling efficiency for both

dyes was measured with NanoDrop™ ND-1000 spectrophotometer (Nanodrop Technologies,

Wilmington, DE, USA) with a minimum 30 pmol/μg (dye concentration/aRNA concentra-

tion) for each sample.
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Two custom-built bovine microarray slides (EmbryoGENE EMBV3 manufactured by Agi-

lent1 technologies GEO Accession #: GPL13226, Design ID-028298), were used [36]. Each

slide consisted of 4 arrays and each array contained 43,671 probes, including 21,139 unique

genes and 9,322 novel transcribed regions (NTRs). One slide was used to compare control (ref-

erence) and vitrification groups, and other one to compare control (reference) and slow freez-

ing groups. A hybridization mixture [containing 825 ng of each cyanine (Cy3 or Cy5) labeled

aRNA, Agilent spikes, nuclease-free water, 10X blocking agent, and 25X fragmentation buffer],

in total volume 55 μl, was pipetted onto the microarray slides. Four biological replicates in

each comparison (control vs. vitrified or control vs. slow-frozen) were used in the experimen-

tal design, in dye-swap setup. Slides were incubated at 65˚C for 17 h, washed with wash buffers,

dried and scanned using Tecan PowerScanner™ (Tecan Group Ltd., Mannedorf, Switzerland)

[36].

The quality of hybridization was determined from the distribution of signals generated by

both channels, in addition to the negative and spike-in controls, as reported earlier [36].

Repeatability and specificity of hybridization were visualized through the distribution across

channels of repeated and control probes bearing an increasing number of mismatches, respec-

tively. Within an experiment, the set of microarrays was compared through a correlation

matrix that enabled the quick identification of poor and divergent replication.

The normalized and differential expression data from FlexArray1 were uploaded and ana-

lyzed in Ingenuity1 Pathway Analysis (IPA) software. Differential gene lists from vitrified vs.

control (� ± 2-fold change and P< 0.05) and slow-frozen vs. control (� ± 1.5 fold change,

P< 0.05), and vitrification vs. slow freezing (� ± 2 fold change, P< 0.05) were compared for

functional analysis to obtain molecular, cellular and functional correlations.

Quantitative real-time PCR (qRT-PCR) analysis

Total RNA extraction from blastocysts developed from vitrified, slow-frozen and control mor-

ulae, and initial processing is described under microarray analysis. Total RNA was reverse

transcribed to cDNA using qScript™ cDNA supermix (Cat#95048–100, Quanta Biosciences,

Inc., MD, USA) following kit instructions. Total cDNA quantity was measured using Nano-

drop spectrophotometer and stored in -80˚C until further use. In addition, total RNA and

cDNA were obtained from extra samples of pooled IVP bovine expanded blastocysts for

primer optimization and standard curve generation.

Total 7 genes (AKR1B1, CLDN23, CYP11A1, KRT19, PLAU, SPP1 and TKTL1) and one

housekeeping gene (conserved helix-loop-helix ubiquitous kinase, CHUK) [35] were selected

for qRT-PCR analysis. Primer testing and optimization was done using end-point PCR imply-

ing Taq DNA polymerase (Cat#201203, Qiagen) kit. PCR products were visualized on 1% aga-

rose gel, purified, quantified, and sequenced to confirm specificity and validity of primers. The

list of selected genes and primers is presented in Table 1.

The cDNA equivalent to 0.2 embryos was used from each treatment group per replicate.

Quantitative real-time PCR was done on Stratagene1 Mx3005P fast thermal cycler (Agilent

technologies, Santa Clara, CA) using QuantiFast1 SYBR1 green PCR kit (Qiagen). PCR pro-

tocol included initial step at 95˚C for 5 min followed by 40 cycles of 95˚C for 10 s and 60˚C for

1 min.

Cycle threshold (CT) values were recorded for each selected gene for every treatment group.

These CT values were used to calculate differential expression in blastocysts developed from

vitrified and slow-frozen morulae vs. blastocysts developed from control morulae. At first,

PCR efficiency was calculated using standard curve data for each gene and software used pair-

wise fixed reallocation randomization test using Relative Expression Software Tool (REST1
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2009, Qiagen). PCR efficiency ranging between 1.90 and 1.99 (i.e. 90% and 99%) was consid-

ered optimum for each gene.

The relative levels of a transcript for each treatment group were calculated as cycle thresh-

old (CT) normalized separately (ΔCT) for levels of transcripts for house-keeping (CHUK)

gene. A lower CT (or Δ CT) of “1” indicates approximately a two-fold (21) higher concentration

of RNA.

Statistical analysis

Data on blastocyst development rate were analyzed using link-function for binary distribution

(yes/no response variable). Three groups (control, vitrification, slow freezing) were considered

categorical fixed-effect explanatory variables and replicate was considered as a random factor.

Data were analyzed using Proc Glimmix in SAS1 Enterprise Guide 4.3 (SAS). Data were

arranged in columns for replicate, treatment, outcome (each embryo was coded as 1 = success-

ful development, 0 = no development). Following common SAS syntax model was used: Proc

glimmix method = quad; class = replicate treatment; model outcome (event = “1”) = treat-

ment/ dist = bin link = logit; random intercept/subject = Replicate; run. If the p-value for treat-

ment was�0.05, then least square means were compared using Tukey’s test.

Microarray data were normalized and analyzed as described earlier [22]. After laser scan-

ning the slides, image files and median signal intensities from each spot were obtained using

Array-Pro™ software (Media Cybernetics Inc., Rockville, MD, USA). The gene-spot intensity

file was uploaded in MIAME-compliant ELMA (EmbryoGENE Laboratory Information Man-

agement System and Microarray Analysis) portal. Data quality control (probe specificity, and

variance between biological replicates and between treatments) was monitored by in-built

Gydle™ software (http://www.gydle.com). The background and spot median intensities were

uploaded and analyzed in FlexArray1 software Version 1.6.3. For background normalization,

background signal intensity was subtracted from median grayscale signal intensity of spots to

obtain required correct signal intensity. In case of higher background intensity for a spot than

the signal intensity, negative value was replaced with 0.5 as a default (false spots). The median

value for each target was transformed to the log2 value and normalized “within array” for dye

Table 1. Primer sequences used for qRT-PCR.

Gene Genebank accession no. Strand (5’-3’) Primer sequence Annealing temp (˚C) Product size (bp)

AKR1B1 BC110178 Forward CCAACCACATCGTGCTCTAC 55 163

Reverse CCCACCTCGTTCTCATTCTG 55

CLDN23 XM_592516 Forward AAACACCTGGCTCGGAGTC 55 166

Reverse AGGGCCTTGATTCCTCTGG 55

CYP11A1 NM_176644 XM_003587562 Forward ATCCAGTGTCTCAGGACTTCGT 61 209

Reverse GAACATCTTGTAGACGGCATCA 61

KRT19 NM_001015600 XM_592718 Forward GAGGAGCTGAACAGGGAGGT 61 218

Reverse CTGGGCTTCGATACCACTGA 61

PLAU XM_015460988 Forward GCTGGTGTTCTGTGTCTG 55 230

Reverse GGTCGGAAGGGATAACTG 55

SPP1 NM_174187.2 Forward ATT GTG GCT TAC GGA CTG 54 196

Reverse TTG GCG TGA GTT CTT TGG 54

TKTL1 NM_001003906.1 Forward ACAAGCCAAGGTGGTCCTGAAGAA 62 185

Reverse TAGCACGGGCACTGTCAAGAATGA 62

CHUK NM_174021.2 Forward TGATGGAATCTCTGGAACAGCG 56 181

Reverse TGCTTACAGCCCAACAACTTGC 56

https://doi.org/10.1371/journal.pone.0187268.t001
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bias using non-parametric regression (locally weighted scatter plot smoothing “lowess”), and

subjected to between array normalization to unify intensities across the arrays using quantile

normalization methodology (GEO #: GSE45381), respectively [37]. Linear Models for Micro-

array (LIMMA) and RNA-Seq data simple statistical analyses were done in FlexArray and lists

of upregulated and downregulated genes were obtained for each comparison [i.e. vitrification

vs. control (reference) group and slow freezing vs. control (reference) group]. Statistically

adjusted signal intensity data for vitrification and slow-frozen were derived from the previ-

ously acquired data for vitrification-control and slow freezing-control groups and then in silico
FlexArray analysis was conducted between vitrification and slow freezing (reference) groups.

A gene was considered differentially expressed if the fold change was� ± 2 with a P< 0.05. As

no genes were detected as differentially expressed at fold change ± 2 in the slow freezing vs.

control comparison, and additional analysis was performed by lowering the fold change

threshold to� ± 1.5. Microarray data have been deposited in NCBI’s Gene Expression Omni-

bus accessible through GEO SuperSeries accession number GSE95382. The fold changes from

microarray and qRT-PCR data were compared using a Student’s t-test in Microsoft1 Excel,

for each tested gene.

Results

Morula to blastocyst development rate

The blastocyst development rate (number of expanded blastocysts/number of morulae used;

%) did not differ between vitrification and control groups (P> 0.05). The slow freezing group

had the lowest blastocyst development rate among all three groups (P< 0.05; Fig 1).

Differential gene expression profile

Using FlexArray software, total 64 genes differentially expressed in blastocysts developed from

vitrified compared to control morulae (fold change� 2; P< 0.05); and 1 and 165 genes differ-

entially expressed in blastocysts developed from slow-frozen compared to control morulae at

fold change� ± 2 and� ± 1.5, respectively (P< 0.05; Table 2). In silico comparison revealed

75 genes differentially expressed in blastocysts developed from vitrified compared to slow-fro-

zen morulae at fold change� 2 (Table 2). Top 5 upregulated and 5 downregulated genes in

blastocysts developed from vitrified vs. control morulae, slow-frozen vs. control morulae, and

vitrified vs. slow-frozen morulae, are presented in Table 3.

Upstream regulators

To understand broader implications of gene expression changes in blastocysts developed from

vitrified and slow-frozen morulae, a list of potentially “inhibited” or “activated” upstream reg-

ulators was generated using IPA software. The analysis was based on the activation score� ± 2

and P< 0.05. Activation score represents the direction of change for the function. Compared

to blastocysts developed from control morulae, blastocysts developed from vitrified morulae

had two “inhibited” upstream regulators i.e. NFKB and Tretinoin (Table 4). To provide a better

picture, other upstream regulators are also listed in Table 4. Three upstream regulators (NFKB,

Tretinoin and EGF) were common between blastocysts developed form vitrified vs. control

morulae and vitrified vs. slow-frozen morulae.

Functional annotation and pathway analysis

The differentially expressed genes from the FlexArray analysis for each treatment comparison

were uploaded in IPA software and analyzed to determine the affected cellular, molecular,
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physiological and disease-related pathways. Top 10 affected pathways in blastocysts developed

from vitrified and slow-frozen morulae as compared with blastocysts developed from control

morulae are presented in Fig 2. Among these, cellular movement, small molecule biochemis-

try, carbohydrate metabolism, cellular function and maintenance, cellular growth and prolifer-

ation, and cellular development pathways were common between blastocysts developed from

vitrified and slow-frozen morulae. Similarly, 10 pathways affected in blastocysts developed

from vitrified as compared with slow-frozen morulae are presented in Fig 2. Genes involved in

well-known canonical pathways were also examined, using the IPA software and top 10

Fig 1. Blastocyst development rate (%; number of expanded blastocysts/number of morulae used per

group) in unfrozen control, vitrified and slow-frozen bovine morulae. Each bar represents mean±SEM

from five replicates. Different letters (a,b) on bars represent difference (P < 0.05) between groups.

https://doi.org/10.1371/journal.pone.0187268.g001

Table 2. Upregulated and downregulated transcripts in blastocysts developed from vitrified and

slow-frozen vs. unfrozen control (reference) morulae and in vitrified vs. slow-frozen (reference) moru-

lae (P < 0.05). Transcripts with known functions and novel transcripts are listed separately.

Treatments Fold change Upregulated transcripts Downregulated

transcripts

Known Novel Known Novel

Vitrified vs. control �±2 7 13 33 11

Slow-frozen vs. control �±2 0 0 1 0

Slow-frozen vs. control �±1.5 35 67 49 14

Vitrified vs. slow-frozen �±2 10 15 30 20

https://doi.org/10.1371/journal.pone.0187268.t002
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affected canonical pathways in vitrified vs. control, slow-frozen vs. control and vitrified vs.

slow-frozen are presented in Fig 3. A network of top differentially expressed genes (P< 0.05;

fold change� ± 2) in blastocysts developed from vitrified as compared with control morulae is

presented in Fig 4.

Quantitative real-time PCR

Based on microarray data and function analysis, 6 differentially expressed genes (AKR1B1,

CLDN23, CYP11A1, KRT19, PLAU and TKTL1) from vitrification group and 1 gene (SPP1)

from slow freezing group were selected for validation with qRT-PCR. After quantification in

three independent biological replicates from treatment (vitrification and slow freezing) and

control groups, differential expression was validated in 7 genes (90% confidence level;

P� 0.01; Fig 5).

Table 3. Top five upregulated and downregulated genes detected by FlexArray® analysis in blastocysts developed from vitrified vs. unfrozen con-

trol (reference) morulae, slow-frozen vs. unfrozen control (reference) morulae, vitrified vs, slow-frozen (reference) morulae.

Genes Description Fold change P value

Vitrified vs. control

WBP5 WW domain binding protein 5 2.148 1.49 X10-05

TKTL1 Transketolase 1 2.119 8.63 X10-04

HS3ST5 Heparan sulpfate (glucosamine)-O- sulphotransferase 5 2.113 6.68 X10-04

TRIM64/TRIM64B Tripartite motif 64-B 2.100 1.33 X10-05

COL9A2 Collagen, type IX alpha 2 2.078 5.82 X10-05

CYP11A1 Cytochrome P450 family 11 subfamily A polypeptide 1 -3.971 3.43X10-04

CCL17 Chemokine (C-C motif) ligand 17 -2.946 4.39 X10-04

FADS2 Fatty acid desaturase 2 -2.897 1.54 X10-04

HEBP2 Heme binding protein 2 -2.817 5.48 X10-05

KRT19 Keratin 19 -2.784 2.36 X10-03

Slow-frozen vs. control

PLA2R1 Phospholipase A 2 recepetor-1 1.983 3.99 X10-03

DCLK2 Doublecortin-like kinase-2 1.829 2.56 X10-02

FBXO32 F-box protein 32 1.774 8.90 X10-04

SMPD3 Sphingomyelin phosphodiestrase 3, neutral 1.772 7.48 X10-03

ZMYM6 Zinc finger, MYM-type 6 1.772 2.48 X10-02

SPP1 Secreted phosphoprotein 1 -2.197 1.14X10-03

VIM Vimentin -1.959 6.0 X10-03

PAH Phenylalanine hydroxylase -1.928 9.33 X10-03

TBX18 T-box 18 -1.886 1.07 X10-02

TXNL4 Thioredoxin like 4A -1.857 4.10X10-03

Vitrified vs. slow-frozen

SDS Serine dehydratase 2.482 1.24 X10-02

SERPINA5 Serpin peptidase inhibitor, clade A (alpha 1, antiproteinase, antitrypsin), member 5 2.469 5.71 X10-04

AGXT2L1 Alanine-glyoxylate aminotransferase 2-like 1 2.326 2.48 X10-03

LYZ3 Lysozyme 3 2.284 2.10 X10-03

GLDC Glycine dehydrogenase (decarboxylating) 2.161 2.64 X10-03

NAGK N-acetylglucosamine kinase -3.861 4.83X10-02

CYP11A1 Cytochrome P450, family 11, subfamily A, polypeptide 1 -3.326 7.89 X10-04

CCL17 Chemokine (C-C motif) ligand 17 -2.738 1.92 X10-03

HEBP2 Heme binding protein 2 -2.631 1.95 X10-03

CLDN23 Claudin 23 -2.455 9.85X10-04

https://doi.org/10.1371/journal.pone.0187268.t003
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Discussion

This is the first report, to our knowledge, on the comparison of differential gene expression in

bovine blastocysts following vitrification and slow freezing at morula stage. In this study, vitri-

fication of bovine morulae demonstrated better survival rate than slow freezing. However, this

is the first report on the poor quality of surviving blastocysts developed from vitrified morulae

at transcriptome level comparing with blastocysts developed from control morulae. Microar-

ray data revealed that blastocysts developed from vitrified morulae may have impaired implan-

tation and placentation in uterus. On the other side, the majority of morulae did not survive

slow freezing method but those which survived to the blastocyst stage showed a similar tran-

scriptome compared to blastocysts developed from control morulae.

In the present study, vitrification at morula stage affected the lipid metabolism and excre-

tion mechanisms in in vitro produced bovine blastocysts. During slow freezing, the fluidic

lipid portion of cell membrane changes into gel phase called ‘lipid phase transition’ [38]. In vit-

rification, embryos are exposed to the permeating cryoprotectants in high concentration and

undergo ultra-fast cooling rate by direct plunging in liquid nitrogen [39]. In this procedure,

embryos turn into glass-like solid phase, avoiding intracellular ice formation, as confirmed by

synchrotron x-ray diffraction method [9]. However, vitrification causes irreversible damage to

cell membranes in bovine embryos [40]. Membrane phospholipids [arachidonic acid and poly-

unsaturated fatty acids (PUFA)] are source for steroid metabolism. The current study revealed

the downregulation of genes involved in steroid biosynthesis, pregnenolone biosynthesis and

eicosanoid signaling (cytochrome P450 subunit 11 type A 1 (CYP11A1), 3-beta hydroxy steroid

dehydrogenase delta-isomerase type 1 (HSD3B1), ATP-binding cassette subfamily C-2

(ABCC2) and prostaglandin synthase 2 (PTGS2) / cyclooxygenase 2 (COX2) in blastocysts

developed from vitrified morulae. Earlier, the genes involved in purine metabolism and sphin-

golipid metabolism were upregulated in vitrified blastocysts [23]. This difference in gene regu-

lation could be due to the difference in embryonic stage (morula vs. blastocyst) at which

vitrification was done. The lipid metabolism genes (CYP11A1, HSD3B1 and APOA1), involved

in retinoids and their receptor (FXR/RXR) pathway were also downregulated in this study.

Table 4. Upstream regulators predicted by IPA software to be inhibited/downregulated based on differential expression of target molecules identi-

fied in blastocysts developed from vitrified morulae vs. unfrozen control (reference) and vs. slow-frozen morulae (reference).

Upstream regulator Molecule type Predicted activation state Activation (z) score P value

Vitrified vs. control

NFKB Complex Inhibited -2.165 1.55E-04

Tretinoin Chemical endogenous mammalian Inhibited -2.124 1.68E-02

CEBPB Transcription regulator -1.972 2.57E-03

IGF1R Transmembrane receptor -1.969 2.08E-05

EGF Growth factor -1.831 8.30E-05

IFNG Cytokine -1.731 2.92E-04

TGFB1 Growth factor -1.546 2.88E-03

Vitrified vs. slow-frozen

NFKB Complex -1.921 1.18E-02

Tretinoin Chemical endogenous mammalian -1.886 1.89E-01

Beta -estradiol Chemical endogenous mammalian -1.561 9.33E-04

EGF Growth factor -1.194 8.00E-03

FGF2 Growth factor -1.181 2.35E-03

IFNG Cytokine -1.137 4.80E-04

TNF Cytokine -1.043 1.03E-02

https://doi.org/10.1371/journal.pone.0187268.t004
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Fig 2. Functional analysis of differential gene expression in IVP bovine embryos based on–log (P-

value) obtained with Ingenuity® Pathway Analysis software. Higher log values relate to higher significance

of the functions. Top 10 cellular and molecular functions in each comparison are illustrated. Taller bars are more

significant than shorter bars and the dotted line represents the cut-off value for P� 0.05, -log-value = 1.3.

Abbreviations: CON–control; SF–slow freezing; VIT–vitrification.

https://doi.org/10.1371/journal.pone.0187268.g002
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Fig 3. Canonical pathway analysis of gene expression in blastocysts developed from vitrified and

slow-frozen vs. control morulae, and blastocysts developed from vitrified vs. slow-frozen morulae.

Score ratio (open circles) depicts the number of genes affected in the treatment versus the total number of

genes involved in the pathway (y-axis on right side of each figure).

https://doi.org/10.1371/journal.pone.0187268.g003
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FXR/RXR are expressed in inner cell mass (ICM) and trophectoderm (TE) cells and enhance

blastocyst development and hatching in sheep and cattle [41,42].

In this study, CYP11A1, HSD3B1, PTGS2 and aldo-keto reductases family 1 B1 (AKR1B1)

genes were downregulated. These genes are involved in steroid metabolism and are important

for embryo implantation and placentation [43,44]. The impaired gene expression of CYP11A1
leads to inefficient lipid metabolism and defective placentation which are hallmarks of tran-

scriptional deregulations in pre-eclamptic conditions [45]. Therefore, it is suggested that vitri-

fication downregulates the genes involving implantation of bovine blastocysts. This hypothesis

will be further discussed in subsequent sections along with other genes and pathways.

Vitrification is known for cytotoxicity associated with high concentration of the permeating

cryoprotectants (DMSO and EG). This study demonstrated the downregulation of genes

Fig 4. Functional network of differentially expressed genes in bovine blastocysts following vitrification at morula stage.

All genes involved in this network are part of the matrix-remodeling network. Genes are arranged horizontally in four cell

compartments (nucleus, cytoplasm, plasma membrane and extracellular space), based on subcellular location of their gene

products. The differences in color intensity of molecules show the degree of up- (red) and down- (green) regulation. The

relationship lines between molecules and functions are supported by at least one reference derived from the literature, textbooks,

and/or canonical pathways stored in Ingenuity® Knowledge Base.

https://doi.org/10.1371/journal.pone.0187268.g004
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associated with cellular uptake and efflux of cholesterol and fatty acids [apolipoprotein type A1

(APOA1) and ABCC2] from the external media and are actively involved in cellular detoxifica-

tion through waste disposal (detoxification) during oxidative stress [46–48]. This is an impor-

tant mechanism for the survival of semi-independent pre-implantation embryos. Similarly,

AKR1B1 also performs detoxification that protects cells against lipid peroxidation products

and toxic carbonyl-compounds produced during cell metabolism under stressful conditions

[49].

The use of serum and/or bovine serum albumin in in vitro culture media renders bovine

embryos susceptible to cryodamage due to increased cytoplasmic lipid content [50,51]. The

downregulation of lipid metabolism and external uptake in stressful conditions may be

responsible for better survival of vitrified than slow-frozen morulae to blastocyst stage. These

findings support “quiet embryo” hypothesis i.e. embryo with relatively low metabolic activity

survive better [52]. The addition of phenazine ethosulfate, a metabolic inhibitor for fatty acid

synthesis, reduced lipid accumulation and increased blastocyst re-expansion after vitrification

[53].

An important aspect of bovine embryo development is the blastocyst formation from mor-

ula stage which involves differentiation of blastomeres into ICM and TE cells. Claudin family

and actinγ2 (ACTG2) are involved in formation of tight cell junctions in placental develop-

ment [54,55]. These tight junctions prevent leakage of fluid during blastocoel formation, and

support blastocyst expansion and hatching processes [56]. The downregulation of claudin and

actin genes led us to develop a notion that vitrification delays the hatching of blastocysts. This

supported previous findings that vitrification caused downregulation of tight junction and cell

adhesion (tight junction protein and desmocollin2 genes in bovine blastocysts [28].

Fig 5. Quantification (fold-change; mean±SEM) of mRNA profiles of 7 genes in in vitro produced

bovine blastocysts after cryopreservation treatment [Vitrification (VIT) vs. control and slow freezing

(SF) vs. control] using qRT-PCR and microarray analyses (n = 3 replicates per morula group). Black

bars represent the differential level of expression of transcripts detected in the microarray analysis, while light

grey bars represent the differential level of expression of the same transcripts obtained by qRT-PCR analysis.

Asterisks (*) represent difference between gene expressions determined by microarray and qRT-PCR

(P� 0.01) analyses. NS = nonsignificant.

https://doi.org/10.1371/journal.pone.0187268.g005
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Cytokines (IFNT and IFNG) and growth factors (EGF, FGF, TGFB and IGFBPB) present in

uterus, involved in cell growth, proliferation and differentiation, are important for transforma-

tion of morula to blastocyst and subsequent hatching. IFNT and IFNG play major roles in

embryo signaling, maternal recognition of pregnancy, immune regulation and establishment

of pregnancy [57,58]. IFNG secreted by the implanting embryos, inhibits the production of

prostaglandin synthase (PGS) in bovine [59]. Interestingly, the expression of CALB1, PTGS2,

PLAU, KRT19 and CYP11A1 genes was downregulated in blastocysts developed from vitrified

morulae in this study. Another study failed to detect such change in IFN expression levels [28].

In the present study, keratin family (KRT19) and urokinase-based plasminogen activator

(PLAU) genes were also downregulated in blastocysts developed from vitrified morulae. The

PLAU is a key player in implantation and its downregulation has been associated with

resorbed embryos in bovine [60]. Taken together, the downregulation of keratin family and

PLAU along with predicted decrease in upstream regulator IFNG suggests the possible

impairment in early embryo recognition and implantation process in vitrified embryos.

In the current study, IPA analysis of differentially expressed genes indicated apoptosis

(NFKB, CYP11A1, AKR1B1, CALB1 and PLAU) and necrosis (TGFB, IFNG, PLAU, KRT19,

CYP11A1, ABCC2, and CCL17) pathways in blastocysts developed from vitrified morulae.

Necrosis is a large scale cellular damage associated with membrane damage, nuclear disinte-

gration and cellular swelling, thus may affect whole embryo survival [61]. Apoptosis, a physio-

logical process, is usually associated with single cell damage i.e. cytoplasmic shrinkage,

chromatin condensation and DNA damage leaving adjacent cells intact. Apoptosis of individ-

ual blastomere is a part of strategy of embryo survival under stressful circumstances [62]. This

seems to be true for greater survival rate in vitrified morulae than slow-frozen.

Interestingly, the surviving blastocysts developed from slow-frozen morulae showed fewer

changes in gene expression comparing with blastocysts developed from control morulae but

differed significantly comparing with blastocysts developed from vitrified morulae. The upre-

gulation of cell structure and morphology genes microtubule polymerization, doublecortin-

like kinase 2 (DCLK2) and zinc finger MYM 6 (ZMYM6) compared to control group may be

the compensatory mechanisms for cell structure damage. Vimentin (VIM) was also downregu-

lated in blastocysts developed from slow-frozen morulae. VIM encodes a protein member of

cellular intermediate filaments known to enhance cell elasticity, capacity to adapt stress and

thus is important for normal bovine embryo development [63]. Other upregulated genes in

slow-frozen blastocysts related to membrane lipid metabolizing enzymes i.e. phospholipase A2

recepetor 1 (PLA2R1) and sphingomyelin phosphodiestrase 3 (SMPD3) depict the utilization

of embryo’s internal resources for metabolism. These changes point towards the viability and

better quality of blastocysts developed from slow-frozen which survived the transition from

morula to blastocyst after warming.

Vitrification is becoming popular under field conditions due to high embryo survival rates

as well as the ease of technique [10]. Their study demonstrated higher morula to blastocyst

rate in vitrified blastocysts (77%) than slow-frozen blastocysts (34%). Similar results were

obtained in the present and earlier studies on bovine embryos [10,64,65]. Interestingly, in silico
comparison between blastocysts developed from vitrified and slow-frozen morulae revealed

similar changes in gene expression as between blastocysts from vitrified and control morulae.

Similar pathways like lipid metabolism and cell movement and adhesion were affected. Inspite

of better survival, a similar pregnancy rate (~45%) was observed after transfer of vitrified and

slow-frozen bovine embryos, under field conditions [12]. Studies conducted on rabbit morulae

following vitrification demonstrated impaired trophoblast proliferation and differentiation,

retarded fetal development and altered gene expression (ANXA3, EGFLAM and TNAIP6) com-

pared to slow-frozen blastocysts [66,67]. Based on discussion in previous sections and
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considering the field pregnancy data in cattle, we anticipate that vitrified blastocysts compared

to slow-frozen blastocysts have higher failure rate during maternal recognition of pregnancy

and pre-implantation, resulting in similar pregnancy rates by 30-days of gestation. This

hypothesis needs to be tested further.

Bovine embryos between compact morula- and blastocyst-stage, suitable for non-surgical

embryo transfer, are frozen with great success [13]. Morula/early blastocyst is a favourite stage

for cryopreservation to avoid embryo manipulation like blastocoel collapse in the expanded

blastocyst [68]. In this study, compact morulae were cryopreserved so that post-warm tran-

scriptomic changes could be expressed at later (blastocyst) stage. This study represented tran-

scriptomic changes in bovine embryos cryopreserved at morula stage. It is anticipated that

transcriptomic changes of bovine embryos may be different if cryopreserved at the expanded

blastocyst stage.

Conclusions

Blastocysts developed from vitrified morulae showed downregulation of genes involved in

lipid metabolism, cell differentiation and cell adhesion leading to impaired implantation.

Although the survival rate of blastocysts developed from slow-frozen morulae was poor, the

intensity of changes in gene expression was low comparing with blastocysts developed from

unfrozen control morulae. Also, gene expression changes between blastocysts developed from

vitrified vs. slow-frozen morulae were similar as between blastocysts developed from vitrified

vs. control morulae. Generally, the cryosurvival of morulae is assessed at blastocyst, expanded

blastocyst and/or hatched blastocyst stages. It will be important to study the developmental

competence of cryopreserved embryos beyond blastocyst stage, like implantation, placentation

and actual pregnancy.
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