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ABSTRACT The advancement of next-generation sequencing technologies in conjunction with new
bioinformatics tools enabled fine-tuning of sequence-based, high-resolution mapping strategies for complex
genomes. Although genotyping-by-sequencing (GBS) provides a large number of markers, its application for
association mapping and genomics-assisted breeding is limited by a large proportion of missing data per
marker. For species with a reference genomic sequence, markers can be ordered on the physical map.
However, in the absence of reference marker order, the use and imputation of GBS markers is challenging.
Here, we demonstrate how the population sequencing (POPSEQ) approach can be used to provide marker
context for GBS in wheat. The utility of a POPSEQ-based genetic map as a reference map to create genetically
ordered markers on a chromosome for hexaploid wheat was validated by constructing an independent de
novo linkage map of GBS markers from a Synthetic W7984 · Opata M85 recombinant inbred line (SynOpRIL)
population. The results indicated that there is strong agreement between the independent de novo linkage
map and the POPSEQ mapping approach in mapping and ordering GBS markers for hexaploid wheat. After
ordering, a large number of GBS markers were imputed, thus providing a high-quality reference map that can
be used for QTL mapping for different traits. The POPSEQ-based reference map and whole-genome se-
quence assemblies are valuable resources that can be used to order GBS markers and enable the application
of highly accurate imputation methods to leverage the application GBS markers in wheat.
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Bread wheat (Triticum aestivum L.) is one of the world’s most impor-
tant cereal crops, providing approximately 20% of all calories con-
sumed by humans, and is a staple food crop for 30% of the human
population. Increasing wheat production at the global scale is key to the
efforts of filling the anticipated future food shortage gap attributable to
global population increase and adverse effects of climate change on
crop production. The application of advanced and precise molecular
tools is needed to speed the development of new wheat varieties.

The advent of next-generation sequencing technologies led to the
emergence of high-throughput, sequence-based genotyping (Baird
et al. 2008) approaches such as genotyping-by-sequencing (Poland
and Rife 2012; Mascher et al. 2013). It also enabled the use of whole-
genome shotgun sequencing (WGS) to generate genome assemblies
of large and complex genomes. Although WGS assemblies of these
large and complex genomes often contain many small, unordered
contigs, assemblies can be made rapidly at low cost compared with
approaches based on physical maps (Mascher et al. 2013; Mascher
and Stein 2014).

The “gold-standard”method of genome sequencing is characterized
by developing a physical map followed by sequencing of the minimum
tiling path. Although the former needs coordinated efforts of several
research laboratories and requires considerable investment in terms of
time and money especially for large genome species like wheat, it is still
considered as the indispensable method that leads toward a reference
genome of a crop species without a reference genome (Feuillet et al.
2011, 2012). However, as a more tractable working assembly, the low-
copy gene-space from the WGS approach is becoming an important
genomic resource for gene discovery and functional genomics in
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species without a reference genome. This application has been proved
on large genome crop species such as barley (Hordeum vulgare) and
wheat by combining de novo WGS with classical genetic analysis
(Mascher et al. 2013; Hahn et al. 2014; Chapman et al. 2015).

Population sequencing methodology, known as POPSEQ, was pro-
posed as an integratedmethod toorderand link contigs inWGSgenome
assemblies for gene isolation, genomics-assisted breeding, and genetic
diversity assessment (Mascher et al. 2013; Ariyadasa et al. 2014). The
method relies on the genetic segregation in biparental populations to
create a linear order of contigs on an individual chromosome. The
potential of POPSEQ to bring contigs into a linkage map was demon-
strated on barley (Mascher et al. 2013) and then on hexaploid wheat
(Chapman et al. 2015). A similar approach, which was referred to as
recombinant population genome construction, was used to produce a
high-quality genome assembly using a segregating population of
Caenorhabditis elegans (Hahn et al. 2014).

Next-generation, sequencing-based genotyping approaches have been
applied to understand the biological basis of agronomic traits in several
plant species and for making selections via whole-genome prediction
(Berkman et al. 2012). Studies on major crop species such as Zea mays
(Bernardo and Yu 2007; Bernardo 2009; Crossa et al. 2013), T. aestivum
(Heffner et al. 2010; Poland et al. 2012b; Daetwyler et al. 2014), Oryza
sativa (Xu et al. 2014), and H. vulgare (Iwata and Jannink 2011) have
indicated that genomic selection has the advantage of reducing the
time needed to release new cultivars for production in plant breed-
ing. Because genome-wide prediction needs a large number of
evenly distributed markers per chromosome, genotyping-by-sequencing
(GBS) markers are suitable for accurately predicting breeding values of
candidate individuals in plant breeding programs. The GBS platform
provides tens of thousands of markers with relatively low investment
(Elshire et al. 2011; Poland et al. 2012a) and allows marker discovery
and genotyping to be conducted simultaneously. GBS has been shown
as an effective marker platform for whole-genome profiling and sub-
sequent trait prediction (Poland et al. 2012b; Crossa et al. 2013; Zhang
et al. 2014). Another promising area of application of GBS markers in
plant breeding is for quantitative trait locus (QTL) mapping either by
narrowing previously detected gene/QTL candidate regions or for the
identification of novel gene/QTL regions that underlay economically
important traits through saturating chromosomes with high-density
GBS markers.

The recent availability of a draft genome sequence and gene space
assemblies forhexaploidanddiploidwheat alsomakes theGBSplatform
an attractive approach for gene identification and precisely mapping
QTL through anchoring trait-associated GBS single-nucleotide poly-
morphism (SNP) tags on draft genome sequence and/or gene space
assemblies. From recent QTL studies with GBS markers, saturating
chromosome regions with markers enabled the detection of previously
detected and novel QTL for aluminum tolerance and leaf width in rice
(Spindel et al. 2013), for drought tolerance in chickpea (Jaganathan
et al. 2014), and for precise identification of the location of a dwarfing
gene called Breviaristatum-e in barley (Liu et al. 2014).

A drawback of genotypic data from theGBS platform is often a large
proportion of missing data points across samples as genomic DNA
fragments are sequenced at low depth (Elshire et al. 2011). For GBS
marker application in genomic selection, methods of imputing missing
data points for unorderedmarkers have been developed (Rutkoski et al.
2013). However, many other imputation approaches that have been
developed first require markers to be linearly ordered on a chromo-
some. Here we demonstrate the utility of the POPSEQmethodology for
mapping, ordering and imputing marker data from GBS.

MATERIALS AND METHODS

Germplasm and genotyping
Weusedrecombinant inbred lines (RILs) fromacrossbetweenSynthetic
W7984 andOpataM85 (“SynOpRIL”; Sorrells et al. 2011) for this study.
The total number of inbred lines used in this study was 183 lines, a
subset of the larger population of ~2000 lines. Genomic DNA was
extracted from seedlings of each individual line grown in a greenhouse.
The GBS libraries were constructed in 96-plex following the two-
enzyme systemGBS protocol with restriction enzymes PstI (CTGCAG)
andMspI (CCGG) (Poland et al. 2012a). Each librarywas sequenced on
the Illumina HiSequation 2000 platform.

SNP calling and sequence data processing
Raw sequence data were processed with a custom java script in TASSEL
4, and a population-based SNP calling approach was used (Poland et al.
2012a). Unique sequence tags of 64 bp were aligned internally allowing
mismatches of up to 3 bp to identify SNPswithin the tags. Fisher’s exact
test was applied to determine independence of SNP alleles and then
filter the SNPs. SNPs with up to 80%missing data points were retained
for subsequent data analysis.

Linkage map construction and comparison with
POPSEQ data
Construction of a linkage map for Synthetic W7984 · Opata M85 RIL
population was performed with MSTMap software (Wu et al. 2008) to
group the markers into linkage groups. A total of 6362 polymorphic
markers with up to 20%missing data, minor allele frequency of greater
than 30%, and heterozygosity of less than 2% were considered for
linkage map construction. Logarithm of odds score of 10 was used to
cluster the markers into linkage groups. Linkage groups from the same
chromosome were merged together and markers of the same chromo-
some were reordered with MSTmap.

We used the synthetic wheat W7984 and Chinese Spring shotgun
assemblies that were ordered with the POPSEQ approach using Synthetic
W7984 · Opata M85 doubled haploid population (SynOpDH) to anchor
SNP tags on genetically ordered WGS contigs (The International Wheat
Genome Sequencing Consortium 2014; Chapman et al. 2015). To sum-
marize in brief, the SynOpDHpopulation, consisting of 90 individuals, was
shotgun-sequenced, and SNPs were identified to construct a high-density
linkage map that has all 21 wheat chromosomes. Then this highly dense
genetic map was used to linearly order SNP-associated contigs in theWGS
assembly of W7984 (Chapman et al. 2015). The contigs of Chinese Spring
assembly were also integrated into the samemap of SynOpDH population
(The International Wheat Genome Sequencing Consortium 2014).

Tags from which we detected SNPs were first aligned against both
W7984 and Chinese Spring assemblies. To assemble the SNP tags, we
used bwa software with “aln”method with default set up. The Samtools
“view” method was used to further process sequence output. The SNP
tags were filtered with a minimum alignment quality score of 37, and
then markers that passed the quality requirements were merged with
the high-density genetic map from SynOpDHpopulation. BothW7984
and Chinese Spring assemblies and the high-density genetic map were
linked by scaffold name in the former and by contig name in the latter,
which facilitated navigation from assembly to genetic map or vice versa.

Independently constructed de novo linkage maps were compared
with the POPSEQ-based map for the number of markers correctly
assigned to their respective linkage groups, and the linear relationship
of marker order between de novo and POPSEQmaps. The step-by-step
procedure of integrating GBS tags into the POPSEQ assembly is in-
dicated in Supporting Information, Figure S1.
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Missing data imputation
Genotypic data imputation was performed after anchoring SNP tags to the
POPSEQassembly.We aligned sequences of SNP tags for 33,664 SNPs that
wereobtainedfromtheSynOpRILpopulationtoW7984andChineseSpring
assemblies to impute missing data points. For W7984 assembly, a total of
16,591markers, and for Chinese Spring 9709markers were imputed by use
of the FSFHap (Full-Sib Haplotype imputation) method implemented in
TASSEL 5 (Swarts et al. 2014). The algorithm first detects two parental
haplotypes and recombination break points via a Hidden Markov model
and Viterbi algorithm. A missing data point is imputed to the matching
genotype of flanking markers. If genotypes of markers flanking a missing
data point do not match, the missing data point is left missing.

Imputation accuracy of FSFHapmethod alsowas assessed by the use
of squared correlation coefficient (R2). To calculate this parameter, 5%
of the total genotypes were masked randomly for each marker in the
dataset at genotypes where the SNP call was present. Squared correla-
tion coefficient (R2) was calculated by comparing the original data

where SNP calls were masked with corresponding imputed data for
each marker. The R2 calculation also was performed for the markers
common between Chinese Spring and W7984 assemblies.

Data availability
Recombinant Inbred Lines used in this study are available on request
from the Wheat Genetic Resource Center at KSU. Sequence data is
available from NCBI SRA under SRP066497.

RESULTS

Validating POPSEQ with de novo linkage map
The use of an ultradense genetic linkage map constructed from the 90-
individual doubled haploid population (SynOpDH) with the POPSEQ
approach was validated through integrating SNP tags of GBS markers
used to construct de novo linkage maps. We used an independent RIL
mapping population made from the same synthetic W7984 and Opata

Figure 1 Marker order relationship between de novomap and POPSEQ map for all 21 chromosomes of hexaploid wheat for markers anchored to
W7984 assembly.
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M85 parents for this validation work. A total of 23 linkage groups with
greater than two markers were obtained with a logarithm of odds score
of 10. There was a total of 6360markers in the linkage groups. Aligning
sequences of SNP tags of these markers with sequences of linearly
ordered gene space assembly of W7984 and Chinese Spring resulted
in 3364markers and 2049markers that passedminimum quality align-
ment score of 37, respectively. A total of 3357 (99.8%) forW7984 and a
total of 2037 markers (99.4%) for Chinese Spring were assigned cor-
rectly to their respective linkage group based on the sequence identity
search in the assemblies. After removing incorrectly assigned markers
and markers reported suspicious by the mapping algorithm in
MSTmap, 21 linkage groups that correspond to the total number of
hexaploid wheat chromosomes were obtained. Comparison of genetic
map positions of theGBSmarkers in each of the 21 linkage groups based
on the de novomap with that of positions of each marker based on the
high density geneticmap of POPSEQalso showed that there was a linear
relationship between the two genetic maps (Figure 1 and Figure 2).

Originally, a total of 33,664 GBS markers with up to 80%missing
data were obtained for the synthetic W7984 · Opata M85 RIL
population. All marker tags, without consideration of the level of
missing data, were integrated into POPSEQ data. After discarding
markers with low alignment quality score (,37), we found map
positions for 16,591 markers (49.3%) for W7984 assembly and
9709 (28.8%) for Chinese Spring assembly. The number of markers
per chromosome was greater for W7984 assembly for all chromo-
somes than that of Chinese Spring (Figure 3 and Table S1). Simi-
larly, the average gap size per chromosome was low for all
chromosomes in the case of W7984 assembly (Figure 4). Maximum
gap size for markers anchored to W7984 assembly was lower than
20 cM for all chromosomes. All chromosomes had less than 30 cM
maximum gap size for markers anchored to the Chinese Spring as-
sembly (Table S2). The two assemblies had a total of 7040 markers in
common, and there was a strong positive relationship between
marker and map positions between the two maps (Figure S2).

Figure 2 Marker order relationship between de novomap and POPSEQ map for all 21 chromosomes of hexaploid wheat for markers anchored to
Chinese Spring assembly.
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Data imputation
Twodatasets comprised a total of 16,591markers (forW7984 assembly)
and 9709 markers (for Chinese Spring) were submitted to FSFHap for
imputation. After imputation, 95% of the markers for W7984 assembly
and 94% of the markers for Chinese Spring had less than 10% missing
data points (Table S3 and Table S4). Furthermore, 92.4% and 89.8% of
the markers had less than 5% of missing data for W7984 assembly and
Chinese Spring assembly, respectively. Only 2.7% of the markers for
W7984 assembly and 3.2% of the markers for Chinese Spring assembly
had more than 20% remaining missing data points per marker. The
greatest average missing data points per chromosome in the imputed
data set was recorded for chromosome 2D (Figure S3), and there was
no clear relationship between the amount of missing data per chromo-
some in the original and imputed data sets (Figure S4 and Figure S5).
The number of un-imputedmissing data points was greater for Chinese
Spring than that of W7984 assembly in 15 chromosomes. The average
proportion of heterozygous genotypes per marker was comparable be-
tween the two assemblies except for chromosomes 2A, 3D, and 4A,
where differences between the two assemblies were large (Figure S6).
The exceptionally high average proportion of heterozygous genotypes
for chromosome 2A for Chinese Spring was due to high heterozygous
genotypes per marker (28–37%) for markers within the interval
58.7267.4 cM (around the centromeric region) (Table S4). Markers
on chromosome 4D had high heterozygote genotypes for both assem-
blies. However, except for these two chromosomes (2A and 4D), the
average proportion of heterozygote genotypes per marker was less than
10% for all chromosomes (Figure S6). There was no relationship be-
tween the amount of heterozygote genotypes before imputation and the
amount remaining after imputation for both assemblies (Figure S7 and
Figure S8). The average proportion of heterozygote genotypes per
markers in imputed data set was greater than that of before imputation
for both assemblies for all chromosomes. The algorithm implemented
in FSFHap is taking into account heterozygote undercalling for GBS
platform SNP calling. However, taking into account the low proportion
of heterozygote genotypes in the original data and the expected residual
heterozygosity for RIL populations, FSFHap may be overestimating the
amount of heterozygote genotypes per marker in the imputed data.

Imputation accuracy of FSFHap was evaluated by the use of squared
correlation coefficient (R2). The average R2 for themarkers anchored to

Chinese Springwas 0.94, and 90% of themarkers had R2 greater than or
equal to 0.8 (Figure S9). Similar average R2 of 0.94 was obtained for the
markers common between Chinese Spring and W7984 assemblies.

DISCUSSION
We validated the utility of POPSEQ, a reference map-based marker
orderingmethod, by using a newRIL population.Wefirst constructed a
de novo genetic linkage map by using filtered, high-quality GBS
markers from the Synthetic W7984 · Opata M85 RIL population.
For the POPSEQ map to be used as a reference map to order the
GBS markers from different populations, first GBS markers within a
de novo linkage group should be assigned to the same chromosome
with the chromosome assignment of the markers based on aligning
SNP tags sequences with the POPSEQ genome assembly. Second,
marker order of the de novo linkage map should also agree with the
order of the same markers on the POPSEQ-based reference genetic
map. When a high alignment stringency level was used, both chromo-
some assignment and marker order indicated that there is a good
agreement between the de novo linkage map and POPSEQ-based
high-density genetic map. This supports that the POPSEQ approach
can be used as an alternative method to assign and order GBS markers
on wheat chromosomes.

The advantage of using the POPSEQ approach for mapping and
orderingGBSmarkers is twofold. Inclassical linkagemappingapproach,
chromosome assignment information is required for all constructed
linkage groups. With the absence of this information, anchor markers
are needed to guide linkage map construction and for downstream
interpretation of QTL analysis. In the case of GBS markers, for species
without a reference genome sequence, this information is presumably
lacking and consequently construction of a de novo linkage map is a
tedious job. Moreover, genetic map construction is limited by the large
number of markers with a high proportion missing data. However, the
POPSEQ anchored reference can give a priorimarker positions as with
any reference genome and avoids the need of both anchor markers and
de novo map construction.

By using thePOPSEQapproach,wewere able to geneticallymapand
order 16,591 and 9711 GBS markers anchored to W7984 and Chinese
Spring assemblies, respectively. The greater number of markers for
W7984 assembly compared with Chinese Spring assembly may be

Figure 3 Genome-wide distribution of genotype-by-sequencing
markers anchored to both W7984 and Chinese Spring (CS) assemblies.

Figure 4 Average gap size (cM) for the markers anchored to both
W7984 and Chinese Spring (CS) assemblies.
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attributable to W7984 being one of the parents of the biparental
population from which SNP tags were detected. Chromosome 4D
had the least number of markers whereas chromosome 3B the greatest
number of markers for both assemblies (Figure 3 and Table S1). This
agrees with the observation that the larger the chromosome size, the
more number of markers it contains (Poland et al. 2012a; Saintenac
et al. 2013). Similarly, as expected the total number of markers mapped
to the D genome (25% for both assemblies) was lower than that of A
(31% forW7984 assembly and 28% for Chinese Spring assemblies) and
B (44% for W7984 assembly and 47% for Chinese Spring assembly)
genomes as the D genome of hexaploid wheat is smaller and less diverse
than A and B genomes (Chao et al. 2010; Wang et al. 2013; Edae et al.
2014; Iehisa et al. 2014). However, the difference between the number
ofmarkers mapped toD andA genomes was lower than reported in the
literature, which was about fivefold greater for both A and B genomes
(Allen et al. 2011, 2013; Cavanagh et al. 2013). One of the probable
explanations for this small difference between A and D genomes is
attributable to reintroduction of D genome diversity through synthetic
W7984 to the current hexaploid wheat mapping population.

The maximum gap size per chromosome for markers anchored to
W7984 assembly (,20 cM)was lower than that ofmarkers anchored to
Chinese Spring assembly (,30 cM). The original reference map from
POPSEQ had good marker coverage (maximum gap size,20 cM) for
all chromosomes with the exception of 1A and 4D with maximum gap
size of 26 cM and 28 cM, respectively (data not shown). Overall, the
pattern of marker distribution on chromosomes observed for our pop-
ulation also has good agreement with that of reference map, indicating
the potential of POPSEQ approach of marker ordering and imputing.
However, our final high-quality SNP dataset represented only approx-
imately 30 and 49% of the total original 33,664 SNP tags for Chinese
Spring and W7984 assemblies, respectively. A majority of the markers
did not pass the strict sequence alignment threshold we used to reduce
the risk of assigning the tags to incorrect positions. Therefore, for full
utilization of the POPSEQ-based gene space assemblies, consensus
reference genetic maps of two or more populations are needed.

Imputing missing data are a necessary step, particularly for the
genotypic data sets with a large proportion of missing data per marker
(up to 80% in our case). The high-density genetic map enabled us to use
FSFHap as implemented in TASSEL 5 (Swarts et al. 2014). FSFHap
generally needs a large data set for best results. Imputation accuracy
measurements (R2) found here indicated that FSFHap is still accurate in
imputing a relatively small dataset with a large proportion of missing
data. We found average imputation accuracy (R2 = 0.94) roughly sim-
ilar with that of average imputation accuracy (R2 = 0.97) obtained for a
large genotypic data set of maize nested association mapping panel
(NAM RILs) used by Swarts et al. (2014). We observed an increase
in the number of heterozygous genotypes called in the imputed data.
Low-coverage sequencing with GBS is expected to undercall true het-
erozygous genotypes. Therefore, an increase in heterozygous calls is
expected to some extent with the GBS imputation. Apart from the effect
of algorithms implemented in FSFHap, the greater levels of heterozy-
gosity for some markers near centromeric regions (e.g., 2A) in the
imputed dataset may be the result of deleterious alleles in trans-linkage
combined with low levels of recombination in these regions (McMullen
et al. 2009).

In conclusion, POPSEQ methodology can be used as an alterna-
tive method of mapping and ordering GBSmarkers. For crop species
lacking a high-quality reference genome, like hexaploid wheat,
genetically ordered markers allow the implementation of marker-
order2dependent but highly accurate imputation algorithms (e.g.,
FSFHap) to impute genotypic data with a large proportion of missing

data points so that QTL/gene mapping can be done precisely. Because
both the Chinese Spring and W7984 POPSEQ results were based on
the same SynOpDH genetic mapping population, full integration of
markers to the reference map needs POPSEQ-based, high-density ge-
neticmap and gene space assemblies that are developed from additional
biparental populations.
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