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ABSTRACT

As a standard treatment, endocrine therapy has dramatically enhanced the prognosis of 
patients with estrogen receptor (ER)-positive breast cancer, which accounts for nearly 70% 
of all breast cancers. Antiestrogen drugs such as tamoxifen and aromatase inhibitors are the 
standard treatment options for ERα-positive breast cancer. However, acquired antiestrogen 
resistance is still the leading cause of disease recurrence and progression. Evidence has 
shown that long noncoding RNAs (lncRNAs) play an essential role in the development of 
antiestrogen resistance in ER-positive breast cancer and can serve as biomarkers or potential 
therapeutic targets. This review highlights the role of lncRNAs in the development of 
antiestrogen resistance in breast cancer.
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INTRODUCTION

Breast cancer is the most prevalent malignancy and a major cause of cancer mortality in 
women worldwide. Up to 70% of breast cancer patients upregulate estrogen receptor (ER) and/
or progesterone receptor, which indicates that the growth of these cancers is dependent on 
estrogen [1,2]. Endocrine therapies targeting ERs, including selective ER modulators (SERMs), 
selective ER downregulators (SERDs), and aromatase inhibitors (AIs), as the dominant 
therapeutic approach, have dramatically improved hormone-dependent patient survival [3].

Tamoxifen, an antiestrogen drug, is commonly used in ER-positive (ERα+) breast cancer 
treatment and significantly improves overall survival [4]. A recent meta-analysis, that 
included 21,457 breast cancer female patients from 20 trials showed that tamoxifen treatment 
reduced mortality by 15 years in at least a third of them [5]. The third-generation AIs (i.e., 
exemestane, anastrozole, and letrozole) were observed to inhibit circulating estrogen levels 
by more than 97% in post-menopausal women with early-stage ERα+ breast cancer, and are 
thus the preferred treatment options [6]. However, de novo or acquired endocrine resistance, 
which occurred in approximately 50% of early-stage breast cancer patients and almost all 
patients with advanced disease, impairs patient survival and abrogates the initial beneficial 
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response. The related mechanisms for the development of endocrine resistance have been 
proposed to include the following: mutations in ERα, the overactivation of growth factors 
or their corresponding receptors, the overexpression of oncogenes, and aberrant crosstalk 
between hormone receptors and signaling pathways, have been proposed [7]. Although the 
addition of the mammalian target of rapamycin (mTOR) complex-1 inhibitor everolimus or 
cyclin-dependent kinase 4/6 inhibitors to standard endocrine therapy has further extended 
recurrence-free survival, results remain unsatisfactory.

Long noncoding RNAs (lncRNAs) are a class of non-coding RNAs that are greater than 
200 nucleotides in length and do not encode functional proteins. Studies have found that 
lncRNAs play roles in multiple cellular maintenance functions, such as protein scaffolding, 
chromatin looping, and the regulation of messenger RNA (mRNA) stability [8]. Although 
the exact functions of lncRNAs are still not fully understood, most of them were found to 
be critical regulators of gene expression. They alter chromatin or epigenetic modifications, 
transcriptional, and posttranscriptional gene regulation by interacting with RNAs and 
proteins [9]. The abnormal expression of lncRNAs has been detected in various malignant 
tumors [10]. In addition, studies have shown that changes in lncRNAs might be responsible 
for drug resistance, a major obstacle in cancer treatment.

The related mechanisms of lncRNA involvement in drug resistance are as follows: 1) the 
regulation of apoptosis-related proteins or transcription factors inhibiting tumor cell 
apoptosis; 2) the promotion of epithelial-mesenchymal transition (EMT) in tumor cells; 3) 
interaction with related microRNAs (miRNAs) to influence drug resistance; 4) improved DNA 
repair; 5) the regulation of cell membrane efflux and 6) the regulation of drug metabolism 
[11]. Since differential expression of lncRNAs was detected in sensitive and resistant tumors, 
the roles of lncRNAs in tamoxifen-resistant (TamR) ER+ breast cancer have been explored. 
Here, we reviewed the roles of specific lncRNAs involved in antiestrogen-resistant breast 
cancers and suggest that lncRNAs may serve as potential therapeutic targets for improvement 
of the clinical benefits of antiestrogen treatment.

SERMS: TAMOXIFEN

LncRNA breast cancer antiestrogen resistance 4 (BCAR4)
The lncRNA BCAR4 was first screened by Meijer et al. [12] in ZR-75-1 breast cancer TamR 
cells. The lncRNA BCAR4 is located at 16p13.13 and is 9017 bp long. It is normally expressed 
in the human placenta and oocytes [13]. Thus far studies have demonstrated that the lncRNA 
BCAR4 is abnormally expressed in various malignant tumors and is substantially related to 
the degree of malignancy [14]. It has been reported that the lncRNA BCAR4 is overexpressed 
in nearly 27% of primary breast cancers [12]. Overexpression of the lncRNA BCAR4 in 
endocrine-sensitive ZR-75-1 cells was observed to enhance cell invasion and proliferation [15].

It is well-established that the amplification of ERBB2 in breast cancer is a significant cause of 
tamoxifen treatment failure. The ERBB family, a group of receptor tyrosine kinases receptors, 
plays an essential role in many critical physiological processes that include, development, 
cell growth, differentiation, and tumorigenesis. Godinho et al. [15] predicted the amino 
acid sequence of the lncRNA BCAR4 and found 2 transmembrane domains in its molecular 
structure, suggesting that it may be located on the cell membrane. Considering that the 
lncRNA BCAR4 is overexpressed in TamR cells and is generally co-expressed with the human 
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epidermal growth factor receptor 2 (HER2) molecule (the ERBB2 gene product) [16], the 
authors proposed that the lncRNA BCAR4 may act as a ligand for ERBB3—potentially by 
activating the ERBB2/ERBB3 pathways—to drive tamoxifen resistance [13]. As a critical 
transcription factor in the Hedgehog (Hh) pathway, glioma-associated oncogene homolog 
2 (GLI2) is involved in tumor development, proliferation, and metastasis. Additionally, 
studies have shown that the lncRNA BCAR4 can promote endocrine therapy resistance via 
the non-canonical Hh/GLI2 pathway [14,17]. Importantly, the authors further demonstrated 
that overexpression of the lncRNA BCAR4, independent of estrogen receptor 1 (ESR1) 
function, induced the conversion of estrogen-dependent breast cancer cells into an estrogen-
independent phenotype.

Furthermore, high expression of the lncRNA BCAR4 may be linked to resistance to multiple 
drugs, such as raloxifene and fulvestrant (Faslodex) [13]. Thus, the lncRNA BCAR4 may act 
as a potential clinical biomarker for tamoxifen resistance [15]. Since lncRNA BCAR4-induced 
tamoxifen resistance may rely on the co-expression of HER2 [18], the specific targeting of the 
HER2 signaling pathway might be useful for patients with positive BCAR4 expression [15]. 
Further investigation is required to identify the mechanisms of this action.

HOX antisense intergenic RNA (HOTAIR)
The lncRNA HOTAIR is transcribed from the antisense strand of the homeobox C locus, a 
2.2 kb gene located on chromosome 12. HOTAIR was the first identified lncRNA involved 
in trans-regulated gene transcription [19]. Studies have indicated that the lncRNA HOTAIR 
is upregulated in breast cancer, gastrointestinal stromal tumors, hepatocellular carcinoma, 
colorectal cancer, and pancreatic cancer. Moreover, high levels of the lncRNA HOTAIR 
increase the invasiveness of tumor cells, resulting in poor patient survival. Mechanistically, 
the lncRNA HOTAIR reprograms the chromatin status and promotes tumor metastasis 
through interaction with polycomb repressive complex 2 [20]. The lncRNA HOTAIR is a 
robust predictor of adverse outcomes in cancer, the high expression of the lncRNA HOTAIR 
is linked to breast cancer invasion, metastasis, and drug resistance, especially in ER+ breast 
cancer. Xue et al. [21] observed that the expression of the lncRNA HOTAIR was increased in 
TamR cells. Conversely, the downregulation of the lncRNA HOTAIR inhibited the colony-
forming abilities of TamR cells.

The lncRNA HOTAIR is negatively regulated by estrogen. Evidence has shown that its 
expression is significantly increased under estrogen starvation or tamoxifen treatment. 
Importantly, the lncRNA HOTAIR can upregulate nuclear ER and further influence the 
expression of estrogen-responsive genes. This indicates that the lncRNA HOTAIR might 
stimulate endocrine therapy resistance in an estrogen-independent manner. In addition, 
the lncRNA HOTAIR is also regulated by many breast cancer-related transcription factors, 
such as forkhead box protein A1 (FOXA1) and forkhead box protein M1 (FOXM1). FOXA1 and 
FOXM1 are critical components of the ER signaling pathway in breast cancer and are closely 
associated with tamoxifen resistance and unfavorable outcomes [22,23]. Therefore, the 
combination of HOTAIR and FOXM1 can better distinguish endocrine therapy responders 
from non-responders in antiestrogen therapy [24]. Recent studies have found that increased 
chromosomal instability (CIN) can induce tamoxifen resistance in ER+ breast cancer, and 
that the activation of ER signaling with high levels of CIN is likely to be a strong predictor of 
patient survival [25]. According to previous reports, increased FOXM1 can also have a positive 
impact on CIN levels [26]. Thus, Milevskiy et al. [24] proposed that HOTAIR might play a 
regulatory function between the CIN and ER pathways. It was found that the level of HOTAIR 
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is increased while the CIN-related gene is amplified when ER signaling is suppressed (e.g. 
ER deletion). Given that high levels of CIN can affect the effectiveness of endocrine therapy 
and chemotherapy, CIN inhibitors such as threonine and tyrosine kinase and polo-like kinase 
1 can potentially overcome drug resistance [27]. Consistent with this finding, studies have 
reported that breast cancer cells might be sensitive to CIN inhibitors in cases of ER receptor 
mutations or estrogen deficiency [25].

It is well known that EMT is involved in the development of multidrug resistance, and that 
HOTAIR overexpression induces EMT [27,28]. Tian et al. [29] observed that TamR cells 
display a mesenchymal/fibroblast-like morphology, which is similar to cells undergoing the 
EMT process. Thus, researchers have proposed that HOTAIR promotes tamoxifen resistance 
by inducing EMT.

H19
The lncRNA H19 is located in the H19/IGF2 cluster on human chromosome 11p15.5. It was 
the first imprinted gene to be discovered [30]. The lncRNA H19 can function as a miRNA 
molecular sponge in genomic imprinting, transcriptional activation, and transcriptional 
interference [31]. High H19 expression is observed in an estimated 72.5% of breast cancers, 
and can increase the tumorigenicity and resistance to endocrine therapy in breast cancer.

In a study by Gao et al. [31], the knockout of H19 downregulated the expression of EMT-
related transcription factors in TamR breast cancer cells by inhibiting Wnt/β-catenin 
pathway activation. This reversed the sensitivity of TamR cells, reduced cell proliferation and 
increased apoptosis. In concordance with this result, Basak et al. [32] also demonstrated that 
H19 is upregulated in both tamoxifen- and fulvestrant-resistant cells compared to endocrine-
sensitive cells. In addition, the authors noted that the lncRNA H19 is regulated by the Notch 
and c-Met receptor pathways. When pharmacological inhibitors were applied to block Notch 
and c-Met receptor signaling, tumor cells lost their resistance to fulvestrant and tamoxifen in 
an H19-dependent manner. Therefore, patients who are resistant to fulvestrant or tamoxifen 
may benefit from treatments using Notch and c-Met inhibitors. Notably, H19 protects ERα 
from the degradation of fulvestrant. In addition, the lncRNA H19 is downregulated after ERα 
knockdown, indicating that they are mutually regulated each other.

Down syndrome cell adhesion molecule-antisense RNA (DSCAM-AS1)
The lncRNA DSCAM-AS1 has a total length of approximately 1.4 kb and is transcribed 
from the gene located on chromosome 21q22.3 (GRCh38/hg38). It was first described in 
2002 by Liu et al. [33], who found its abnormally high expression in breast cancer. To date, 
studies have shown that the lncRNA DSCAM-AS1 is involved in vital biological processes 
in tumorigenicity, including DNA replication, G1/S phase transformation, sister chromatid 
condensation, chromosome separation, protein localization to the chromosome and 
DNA recombination [34]. Transcriptome sequencing data from 6,503 cancer samples, 
healthy tissues and cell lines from The Cancer Genome Atlas (http://cancergenome.nih.
gov/) and Michigan Center for Translational Pathology showed that lncRNA DSCAM-AS1 is 
overexpressed specifically in breast and lung adenocarcinoma [35]. It has been proven that 
the knockdown of DSCAM-AS1 in nude mice can reduce the ability of liver metastasis in 
breast cancer cells. This suggests that DSCAM-AS1 may contribute to the liver metastasis of 
breast cancer [36].
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Recent studies have suggested that the lncRNA DSCAM-AS1 is highly expressed in breast 
cancer cell lines with ER+ and HER-2 overexpression and weakly expressed in triple-negative 
breast cancer. As reported, the lncRNA DSCAM-AS1 sequence has an ER binding site, 
indicating that its expression is regulated by estrogen. Based on these results, Miano et al. 
[37] and Sun et al. [34] further found that DSCAM-AS1 is the most abundant lncRNA in ER+ 
breast cancer cells and is directly regulated by ERα. Thus, there may be positive feedback 
regulation between ERα and DSCAM-AS1.

Furthermore, data from Oncomine (https://www.oncomine.org) revealed that DSCAM-AS1 
was associated with malignant biological behaviors linked to endocrine therapy resistance, 
high breast cancer grade, early recurrence, and metastasis. In a study by Niknafs et al. [36], 
the high expression of DSCAM-AS1 in MCF-7 TamR cells was detected. When DSCAM-AS1 
was knocked down, the sensitivity to tamoxifen treatment in MCF-7 TamR cells was restored. 
It was also shown that lncRNA DSCAM-AS1 may enhance carcinogenicity and promote drug 
resistance through its interaction with heterogeneous nuclear ribonucleoprotein. Similarly, 
Ma et al. [38] demonstrated the overexpression of lncRNA DSCAM-AS1 in TamR breast 
cancer tissues. They suggested that DSCAM-AS1 regulates the EPS8 expression in breast 
cancer cells through miR-137, to promote cell proliferation and metastasis, inhibit apoptosis, 
and induce tamoxifen resistance. Therefore, the DSCAM-AS1/miR-137/EPS8 axis might be a 
potential therapeutic target for ER+ breast cancer [38].

Taken together, these results suggest that increased lncRNA DSCAM-AS1 expression predicts 
a poor prognosis and a high risk of endocrine therapy resistance in patients receiving 
endocrine therapy [34].

Urothelial carcinoma-associated 1 (UCA1)
The lncRNA UCA1 was first discovered in bladder cancer and is located on human 
chromosome 19p13.12. It is 1,439 bp in length and contains 3 exons and 2 introns [39]. 
According to reports, UCA1 is associated with resistance to a variety of drugs, such as 
cisplatin, gemcitabine, fluorouracil, tamoxifen, imatinib, and epidermal growth factor 
receptor tyrosine kinase inhibitors.

The lncRNA UCA1, is involved in carcinogenesis and is overexpressed in a number of 
drug-resistant malignant cells. Li et al. [40] suggested that UCA1 knockout in TamR breast 
cancer LCC2/LCC9 cell lines increases apoptosis in drug-resistant cells. In addition, the 
upregulation of UCA1 in TamR breast cancer cells was found to be hypoxia-inducible 
factor 1α (HIF-1α)-dependent. Consistent with these findings, Xu et al. [41] noted that the 
introduction of exosomes carrying bioactive lncRNA UCA1 into tamoxifen-sensitive MCF-7 
breast cancer cells and significantly increased tamoxifen resistance. Functionally, UCA1 acts 
as a molecular sponge to adsorb miR-18a, a negative regulator of HIF-1α. The upregulation of 
HIF-1α hence enhances UCA1 expression and induces tamoxifen resistance [42].

The activation of the Wnt/β-catenin signaling pathway promotes proliferation and survival 
and maintains the stem-like characteristics of breast cancer cells, associated with the 
development of resistance to various antitumor drugs, including tamoxifen [43]. Evidence 
has shown that the lncRNA UCA1 induces tamoxifen resistance by activating Wnt/β-Catenin 
signaling [44]. It is well documented that the PI3K/AKT/mTOR pathway plays an important 
role in the promotion of tamoxifen resistance in ER+ breast cancer. Everolimus (an mTOR 
inhibitor) is effective in reversing tamoxifen resistance. Previous studies have demonstrated 
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that elevated UCA1 enhances the activation of the AKT/mTOR pathway in various types 
of tumors [45]. Targeting mTOR significantly inhibited tamoxifen resistance induced by 
UCA1 overexpression, suggesting that the lncRNA UCA1 partially reduces breast cancer cell 
sensitivity to tamoxifen by activating the mTOR pathway [46]. Finally, UCA1 regulates the cell 
cycle by affecting the expression of the p21 protein by enhancer of zeste homolog 2 to control 
G2/M phase transition or to regulate the cell cycle by altering PI3K/AKT pathway activity and 
cAMP response element-binding protein transcription factors [40].

Regulator of reprogramming (ROR)
The lincRNA ROR was discovered by Loewer et al. [47] in embryonic stem cells (ESCs) and 
induced pluripotent stem cells (iPSCs). It is located on chromosome 18 and is a 2.6 kb-long 
transcript with 4 exons expressed both in the nucleus and cytoplasm. Functionally, the lincRNA 
ROR modulates the formation of iPSCs by regulating pluripotency transcription factors, such 
as octamer binding transcription factor 4, SRY-box 2, and Nanog homeobox, to maintain 
ESC self-renewal. The overexpression of the lincRNA ROR has been reported to contribute to 
tumorigenesis and progression. In addition, the lincRNA ROR acts as an important regulator of 
EMT and promotes the invasion and migration of several tumors, including breast cancer [48]. 
In contrast, silencing lncRNA ROR inhibited breast cancer cell growth and lung metastasis.

Due to the role of lncRNAs in drug resistance, Zhang et al. [49] found that the expression of 
the lincRNA ROR was positively correlated with tamoxifen resistance. It is well known that the 
transition from estrogen-dependence to estrogen-independence in ER+ breast cancer cells 
is a key process in the development of endocrine therapy resistance [50,51]. It is also well-
established that the mitogen-activated protein kinase/extracellular regulated protein kinase 
(MAPK/ERK) pathway is involved in the estrogen-independent growth of breast cancer. In 
the absence of estrogen, it was found that the lincRNA ROR, as a regulator of ER signaling, 
upregulates the phosphorylated MAPK/ERK pathway and activates ER signaling [50,52].

Moreover, studies have confirmed that lincRNA ROR knockdown restores tamoxifen 
sensitivity in MCF7-TamR cells. It was also observed that the downregulation of the lincRNA 
ROR increased miR-205 levels, which inhibited the expression of zinc finger E-box binding 
homeobox (ZEB) 1 and ZEB2, and further reversed EMT [49]. Furthermore, Li et al. [53] found 
that inhibition of the lincRNA ROR reversed tamoxifen resistance by inducing autophagy.

Other lncRNAs
The luminal lncRNA (LOL) is a novel lncRNA highly expressed in breast cancers, especially 
ER+ breast cancer. It can thus be an independent prognostic factor for a poor prognosis. 
LOL represents an enhancer-associated lncRNA, which is extremely sensitive to enhancer-
regulating factors ZMYND8 and BRD4. Bioinformatics analysis and GEO database evaluation 
revealed that LOL might not be directly regulated by ERα. Either estrogen deprivation or 
ERα signaling pathway blockage can stimulate LOL expression, which can in turn promote 
tumor progression [54]. The lncRNA LOL is significantly upregulated in MCF-7 TamR cells, 
which acts as a natural sponge for let-7 to promote tumor growth and tamoxifen resistance 
by enhancing the expression of let-7 target genes (including CCND1, CDC25A, DICER, PBX1, 
MYC, and ESR1) [54]. LncRNA CCAT2 is a non-coding RNA located at 8q24, and functions 
as an oncogene in breast cancer development. Cai et al. [55] showed that the high level of 
the lncRNA CCAT2 present in TamR cells was related to cell proliferation, inhibition of 
apoptosis, and tamoxifen resistance. In addition, they observed that the expression of CCAT2 
was suppressed when the hyper-activated ERK/MAPK signaling pathway was blocked.
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LncRNAs also inhibit the development of drug resistance. LINC00894-002 is significantly 
downregulated in MCF-7 TamR cells was the first lncRNA discovered to inhibit the 
development of tamoxifen resistance. It is transcribed from a locus on the X chromosome 
and may act as a tumor suppressor in various cancers. There is crosstalk between the ER 
and transforming growth factor-β (TGF-β) pathways and they are both critical pathways 
for the development of tamoxifen resistance. LINC00894 suppresses TGF-β2/ZEB1 
signaling by adsorbing miR-200, thereby lowering the occurrence of drug resistance. In 
addition, LINC00894-002 can be upregulated by ERα activation and positively modulates 
the expression of miR-200a-3p and miR-200b-3p to inhibit the downstream TGF-β2/
ZEB1 signaling pathway [56]. Moreover, Zhang et al. [57] found that lncRNA uc.57 and its 
downstream gene B-cell lymphoma/leukaemia 11A (BCL11A) were differentially expressed 
in MCF-7 and MCF-7 TamR cells. They suggested that the expression levels of BCL11A, 
as the target gene of uc.57, was positively correlated with the development of TamR. 
Mechanistically, uc.57 downregulated BCL11A and inhibited drug resistance by inhibiting the 
PI3K/AKT and MAPK pathways.

As reported, the activation of nuclear factor kappa-B (NF-κB) activation promotes tamoxifen 
resistance in breast cancer patients [58]. Wang et al. [59] found that the overexpression 
of LINC00472 regulated the interaction between NF-κB and ERα and reduced the growth, 
invasion, and drug resistance associated with breast cancer. Since ERα binds to the 
LINC00472 promoter and upregulates the expression of LINC00472, LINC00472 targets NF-
κB and negatively regulates its expression. Therefore, the long-term usage of tamoxifen may 
reduce the suppression of NF-κB phosphorylation through LINC00472, inducing endocrine 
resistance and tumor progression.

Finally, lncRNA growth arrest-specific transcript 5 (GAS5) is localized at chromosome 1q25 
and was originally isolated from a subtraction complementary DNA library. It was found to 
be markedly downregulated in MCF-7 TamR (MCF-7R) cells [60]. The lncRNA GAS5 reduces 
miR-222 levels by sponge adsorption and leads to the upregulation of phosphatase tensin 
homologs (PTEN). Thus, the lncRNA GAS5 partially restores the sensitivity of MCF-7R cells 
to tamoxifen via the lncRNA GAS5/miR-222/PTEN pathway [61]. Similarly, the lncRNA 
ADAMTS9AS2 (an antisense transcript of tumor suppressor ADAMTS9) enhances PTEN 
expression by targeting miRNA-130a-5p and restores cell sensitivity to tamoxifen [62,63].

AIS

To date, few studies have focused on the role of lncRNA in AI resistance. In the study by 
Ingle et al. [64], lncRNA MIR2052HG was defined as a functionally polymorphic gene, 
which increases the risk of breast cancer recurrence in women treated with AI. They 
identified 2 single nucleotide polymorphisms (SNPs) (rs4476990 and rs3802201) in the 
gene, MIR2052HG. Their results showed that estrogen and AI induced MIR2052HG and 
ERα expression in a SNP-dependent manner. Overexpression of MIR2052HG promotes cell 
proliferation, colony formation, and ERα expression. Mechanistic investigations revealed 
that MIR2052HG sustained ERα expression both by enhancing AKT/FOXO3-mediated ESR1 
(gene, encoding ERα) transcription and by preventing ubiquitin-mediated proteasome-
dependent degradation of ERα.
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The important role of lemur tyrosine kinase 3 (LMTK3) in de novo and acquired endocrine 
resistance in breast cancer has been reported [65]. Cairns et al. [66] found that MIR2052HG 
enhanced LMTK3 transcription by directly interacting with early growth response protein 
1. High levels of LMTK3 in turn, sustained ESR1 expression and stabilized ERα protein. 
Mechanistically, MIR2052HG regulates LMTK3 in a SNP- and AI-dependent manner and 
LMTK3 regulates ERα stability via the PKC/MEK/ERK/RSK1 axis. Therefore, MIR2052HG 
plays a key role in regulating ERα and endocrine resistance.

SERDS: FULVESTRANT

At the time of writing, only 1 study reported a lncRNA associated with fulvestrant resistance. 
As described above, the overexpression of H19 can also induce fulvestrant resistance through 
Notch and HGF signaling. It was demonstrated that H19 regulates ERα expression at the 
mRNA and protein levels, and in turn, protects ERα proteins from fulvestrant-mediated 
downregulation. The combination of pharmacological inhibitors of Notch and c-MET with 
fulvestrant significantly restored the sensitivity of drug-resistant cells to fulvestrant in an 
H19-dependent manner [32]. A summary is provided in Table 1.

FUTURE PROSPECTS

In this review, we summarized the lncRNAs that are differentially expressed between breast 
cancers resistant and sensitive to antiestrogens. Although the role of lncRNAs in reversing 
tamoxifen resistance is undeniable, there are still some fundamental issues that need to 
be further addressed. First, given that breast cancer is heterogeneous, different lncRNAs 
may have different regulatory effects on tamoxifen resistance. Second, the study of lncRNA 
involvement in drug resistance is still limited to in vitro experiments, and further validation 
using in vivo experiments is necessary. Finally, lncRNAs have been confirmed to be closely 
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Table 1. LncRNAs in anti-cancer drug resistance
LncRNA Type of cancer Related drug Genes/proteins or pathways involved Carcinogenicity Reference
BCAR4 Breast cancer Tamoxifen ERBB; hedgehog Carcinogenic [12,13]
HOTAIR Breast cancer Tamoxifen FOX protein; CIN; EMT Carcinogenic [22,23,29]
H19 Breast cancer Tamoxifen,  

Fulvestrant
Wnt pathway; EMT;  

NOTCH and C-Met pathways
Carcinogenic [31]

DSCAM-AS1 Breast cancer Tamoxifen HnRNPL protein;  
DSCAM-AS1/miR137/EPS8 axis

Carcinogenic [34,36]

UCA1 Breast cancer Tamoxifen, Gemcitabine,  
Fluorouracil, Imatinib, EGFR-TKIS

MiR-18a/UCA1/HIF-1α;  
Wnt/β-catenin; AKT/mTOR

Carcinogenic [39,41,43]

ROR Breast cancer Tamoxifen ZEB1/2; Mi205 MAPK/ERK; autophagy Carcinogenic [47,49,51]
LOL Breast cancer Tamoxifen Let-7; miRNA Carcinogenic [53]
CCAT2 Breast cancer Tamoxifen ERK/MAPK Carcinogenic [54]
UC.57 Breast cancer Tamoxifen BCL11A; PI3K/AKT and MAPK Tumor suppressor [56]
LINC00472 Breast cancer Tamoxifen NF-κB Tumor suppressor [58]
GAS5 Breast cancer Tamoxifen MiR-222; PTEN-AKT/mTOR Tumor suppressor [60]
ADAMTS9AS2 Breast cancer Tamoxifen MiRNA-130a-5p; PTEN Tumor suppressor [61]
MIR2502HG Breast cancer Ais AKT/FOXO3; EGR1/LMTK3 Carcinogenic [63-65]
LncRNA = long noncoding RNA; BCAR4 = breast cancer antiestrogen resistance 4; AI = aromatase inhibitor; CIN = chromosomal instability; EMT = epithelial-
mesenchymal transition; DSCAM-AS1 = down syndrome cell adhesion molecule-antisense RNA; EGR1 = early growth response protein 1; mTOR = mammalian 
target of rapamycin; FOX = forkhead box; hnRNPL = heterogeneous nuclear ribonucleoprotein; miRNA = microRNA; NF-κB = nuclear factor kappa-B; PTEN = 
phosphatase and tensin homolog deleted on chromosome ten; ZEB = zinc finger E-box binding homeobox; LMTK3 = lemur tyrosine kinase 3; HIF-1α = hypoxia-
inducible factor 1α; UCA1 = urothelial carcinoma-associated 1; MAPK = mitogen-activated protein kinase; ERK = extracellular regulated protein kinase; ROR = 
regulator of reprogramming; LOL = luminal lncRNA; HOTAIR = HOX antisense intergenic RNA.

https://ejbc.kr


related to the development of cancer, and most of the exosomal lncRNAs are stably present 
in human body fluids. The study of exosomal lncRNAs (as a kind of liquid biopsy) may be 
valuable in cancer diagnosis, prognosis assessment, the prediction of drug resistance and 
treatment outcome [67].

CONCLUSION

Considering the extensive clinical application of endocrine therapies, there is an urgent need 
for the prevention, early prediction and management of antiestrogen resistance, which will 
contribute to prolonged patient survival. LncRNAs may serve as a potential therapeutic target 
for the improvement of antiestrogen treatments.
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