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ABSTRACT

Epidemiologists are increasingly encountering complex longitudinal data, in which exposures and their confounders vary during
follow-up. When a prior exposure affects the confounders of the subsequent exposures, estimating the effects of the time-varying
exposures requires special statistical techniques, possibly with structural (ie, counterfactual) models for targeted effects, even if all
confounders are accurately measured. Among the methods used to estimate such effects, which can be cast as a marginal structural
model in a straightforward way, one popular approach is inverse probability weighting. Despite the seemingly intuitive theory and
easy-to-implement software, misunderstandings (or “pitfalls”) remain. For example, one may mistakenly equate marginal
structural models with inverse probability weighting, failing to distinguish a marginal structural model encoding the causal
parameters of interest from a nuisance model for exposure probability, and thereby failing to separate the problems of variable
selection and model specification for these distinct models. Assuming the causal parameters of interest are identified given the
study design and measurements, we provide a step-by-step illustration of generalized computation of standardization (called the g-
formula) and inverse probability weighting, as well as the specification of marginal structural models, particularly for time-varying
exposures. We use a novel hypothetical example, which allows us access to typically hidden potential outcomes. This illustration
provides steppingstones (or “tips”) to understand more concretely the estimation of the effects of complex time-varying exposures.
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BACKGROUND ON THE TOPIC

When we try to say something meaningful about a specific
exposure–outcome causal relationship, counterfactual models are
among the most popular and widely accepted approaches in the
epidemiologic community.1–6 A counterfactual approach not only
formalizes the language of cause and effect,7–13 but has also
triggered the explosive development of novel analytic methods,
including propensity scores (ie, the probability of exposure
conditional on measured confounders)14–19 and regression model-
based estimation methods (ie, multivariable-adjusted outcome
modeling, possibly followed by averaging predicted risks under
distinct exposure statuses),20,21 which have been evolved into
doubly robust estimation.22–28 More importantly, a counterfactual
approach has spurred extensive discussion on the assumptions
for inferring causality from data and the conditions for specific
statistical methods to work using, for example, causal
diagrams.2–4,6,29–35 Yet, the most striking illustration brought
about by the counterfactual approach may be that it can offer an
elegant solution to the controversy surrounding the definition and
estimability of the effects of exposures that vary over time. For
example, initiated antiretroviral therapy (exposure) for acquired
immunodeficiency syndrome may be intermitted after looking at

the symptoms of pneumonia, which is a predictor of clinical
outcomes (eg, death) but affected by the prior exposure, and thus
considered as a part of the exposure’s effects. While no existent
theory (at the time) in the statistics literature had offered clear
guidance for adjusting or not adjusting for such intermediate
variables to estimate the effect of time-varying exposures, new
causal methodologies emerged in the 1980s. These include
Robins’ unified approach, which is comprised of the generalized
computational algorithm formula (abbreviated as g-formula)
and estimation methods (ie, inverse probability weighting and
g-estimation) of two classes of counterfactual, or structural,
models.36–42

In 2000, marginal structural models were introduced as a
tool to make the effects of such time-varying exposures easily
estimable.43–45 Specifically, a marginal structural model is an
equation to demonstrate prespecified assumptions on the causal
effects to be estimated (ie, causal estimands). Thanks to the series
of Robins and Hernán’s seminal works,46–51 as well as others’
tutorials on the topic with intuitive theory and easy-to-implement
software,52–59 marginal structural models have been widely
applied to longitudinal data. Herein, we illustrate the use of
marginal structural models, parameters of which can be estimated
in a comparative way using inverse probability weighting and the
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g-formula in certain situations, featuring hypothetical data with a
time-varying exposure to point out common pitfalls as well as
serve as a stepping stone to better understand the use of these
methods.

CONCEPTUAL PITFALLS

If readers feel confused with the following statements, they could
be trapped by the pitfalls around the methodology considered in
this paper:

1. Marginal structural models should be distinguished from
inverse probability weighting.

2. A marginal structural model is an equation to show
prespecified assumptions on causal estimands, while an
exposure probability model for inverse probability weight-
ing is an imposed restriction on observed distribution for
estimation.

3. As a marginal structural model and exposure probability
model (for inverse probability weighting) are used for
different purposes, misspecification of these models would
lead to biases in different ways.

4. Principles for variable selection for marginal structural
models are distinct from that for exposure probability
models, and thus model specification of them raises
different challenges.

5. Inverse probability weighting shares identifiability assump-
tions with the g-formula and can be used to fit marginal
structural models when the assumptions are met, although
g-formula can be used to fit them only when the models are
saturated.

Although some of these pitfalls have been appreciated
previously,57 we aim to discuss them from a different perspective.
Before entering these subtleties, it would be helpful to seize the
rationale of the specialized causal methods elaborated for time-
varying exposures with simple worked examples without relying
on computerized packages. Unlike point-exposure settings,1,6,60,61

however, we rarely encounter such pedagogic examples of time-
varying exposures, including counterfactual data that explicate
causal estimands and underlying conditions. Although there are at
least four excellent numerical examples appropriate for exercise,
they rely on either the external causal knowledge (ie, causal
diagrams without explicit estimands51,59 or “g-null” theorem
implied by a causal diagram and observed data6) or “true”
parameters for simulated data.54 In this paper, we provide a step-
by-step illustration, or tips, using a novel, hypothetical numerical
example dataset that includes potential outcomes, which directly
incorporates minimal information to explicitly define causal
estimands and conditions for their identification. One may
consider a causal diagram would be helpful to understand the
structure of the dataset. As noted later, however, causal diagrams
typically include more causal assumptions than sufficient condi-
tions to identify causal effects. That is why we do not start by
drawing causal diagrams and use them only complimentarily in
our illustration, despite the fact that they are indeed useful tools
for explicating our assumptions in real data analysis.35

The following “tips” emanate from two introductory sub-
sections regarding the effects of point exposures and time-varying
exposures. Then, we step into the main contents to understand the
unique role of and distinction between inverse probability
weighting, marginal structural models, and regression=exposure
probability models.

TIPS TO UNDERSTANDWHAT, WHY, AND HOWOF
MARGINAL STRUCTURAL MODELS

Prerequisite: identification of point-exposure effects
As many epidemiologists become familiarized with a potential-
outcome framework for a single time point, or a point-exposure
setting, we just briefly review it here; readers unfamiliar with the
basic concepts and notation may refer to Part 1 of Causal
Inference: What If 6 or concise introduction papers.61,62 Suppose
that exposure Ai (eg, antihypertensive drug), outcome Yi (eg, the
occurrence of cardiovascular disease), and set of covariates Li (eg,
current=prior health conditions, unhealthy behaviors, and social
support) are observed for individual i = 1,…, n. Let Yia denote the
possibly unobserved, potential outcome that would be observed
if, possibly counterfactually, exposure Ai were set to level a = 0
(unexposed) or 1 (exposed) (hereafter, we may omit subscript i
if no confusion will occur). Then, the average causal effect
of exposure A on outcome Y may be defined as E[Y1] − E[Y 0],
which compares counterfactual expectations (or risks for a binary
outcome) of Y1 and Y 0 in the same population along the
difference-scale.

Suppose a hypothetical cohort (Table 1) of 1,240 members
whose E[Y 0] = 660=1,240 = 0.532 and E[Y1] = 830=1,240 =
0.669, indicating moderate risk increase (causal risk difference
of 13.7%) by exposure A. Note that in a counterfactual frame-
work, because either Yi0 or Yi1 can be observed as Yi according to
actual exposure status Ai, we can observe neither E[Y 0] nor E[Y1]
directly in the data. Thus, we need the set of assumptions to
identify the causal effect1,6,14,61: consistency (ie, if Ai = a then
Yi = Yia for all a), positivity (ie, 0 < P(A = a∣L) almost every-
where, for all a), and the following conditional exchangeability
given covariates, say, L.

Table 1 also presents the observed distribution of (Li, Ai, Yi) in
accordance with potential outcome Yia (a = 0, 1) under con-
sistency. In Table 1, potential risk under a = 0 in the exposed
E[Y 0∣A = 1] = 213=460 = 0.463 is not equal to that in the
unexposed E[Y 0∣A = 0] = 447=780 = 0.573, and the same is true
for potential risk under a = 1, E[Y1∣A]. When A is associated with
Ya as previously, marginal (unconditional) exchangeability is
violated and the A–Y association (observed risk difference) is said
to be confounded: E[Y ∣A = 1] − E[Y ∣A = 0] = 270=460 − 447=
780 = 1.4%, indicating almost null association. Fortunately,
within every strata of L, we can verify from Table 1 (“Risk”
columns) that E[Ya∣A = 0, L = l] = E[Ya∣A = 1, L = l ] (a = 0, 1
and l = 0, 1) and thus equal to E[Ya∣L = l ]. This condition is
called “conditional exchangeability given L” and the sets of
covariates that satisfy the condition are said to be cofounders.6,36

Table 1. Hypothetical cohort data with potential outcomes under
point-exposure

Stratum
N

Potential outcomea Observed outcome

L A Y 0 = 1 Risk Y1 = 1 Risk Y = 1 E[Y ∣A, L]

1 1 280 168 0.6 210 0.75 210 0.75
1 0 720 432 0.6 540 0.75 432 0.6
0 1 180 45 0.25 60 0.333 60 0.333
0 0 60 15 0.25 20 0.333 15 0.25

Total 1,240 660 0.532 830 0.669

aUnobservable counterfactual distributions. Bold numbers are observed as
Y = 1 (by consistency) in each stratum.
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Under the condition, a weighted mean, or standardized risk,4,52P
l E[Y ∣A = a, L = l ]P(L = l ) is equal to E[Ya]6; that is, causal

effects are identifiable. In our data, standardized risks for A = 0
and A = 1 are

0:6ð1;000=1;240Þ þ 0:25ð240=1;240Þ ¼ 0:532 ¼ E½Y0� and
0:75ð1;000=1;240Þ þ 0:333ð240=1;240Þ ¼ 0:669 ¼ E½Y1�;

respectively.
The next subsection extends the definitions for and the

conditions sufficient to identify causal effects for time-varying
settings. To focus on the complexity of conditional exchange-
ability in time-varying settings, we suppose throughout this
paper that consistency and positivity assumptions, as well
as the time-varying versions of them,51,63,64 are met in our
data.

Definition and identification of effects of time-varying
exposures
Targeted effects of time-varying exposure
If an exposure varies over time, the aforementioned definition of
effects should be redefined. Consider a simple case with 2 time
points. At time 1, baseline confounders L1i are measured and then
exposure A1i is commenced; at time 2, confounder set L2i is
measured and exposure is changed to A2i; finally, outcome Yi is
measured. Thus, the observed data are (L1i, A1i, L2i, A2i, Yi), for
i = 1,…, n. Note that A1 and A2 may represent the same exposure
(eg, start=stop antihypertensive drugs) or different exposures
introduced sequentially (eg, first-line and second-line chemo-
therapy for cancer patients). Likewise, L1 and L2 may consist of
the same set of variables or (partly or entirely) distinct sets of
variables.

For time-varying exposure, potential outcome can be defined
by the combination of intervention on a joint exposure (A1i, A2i):
let Ya1;a2

i denote the potential outcome that would be observed if
exposure A1i and A2i were set to level a1 and a2, respectively. We
assume that exposure at each time takes on 0 (unexposed) or 1
(exposed), leading to 4 different potential outcomes—Yi0,0, Yi0,1,
Yi1,0, and Yi1,1 for each individual i. The average causal effect of
exposure on outcome may be defined as any contrast between
counterfactual expectations E[Ya1;a2 ]; eg, E[Y1,1] − E[Y 0,0]. We
can also consider E[Y1,0] − E[Y 0,0], which is referred to as the
“controlled direct effect of A1 while A2 set at 0.”65–67

Note that joint exposure (A1, A2) can affect not only outcome Y,
but also L2 (by A1), which is measured after exposure initiation.
Under the implausible assumption of no effect of (the part of )
exposure on (the part of ) the following confounders, the effect of

(A1, A2) can solely be seen as a multivalued exposure at a single
time-point; as shown earlier,

P
l1;l2

E[Y ∣A1 = a1, A2 = a2, L1 = l1,
L2 = l2]P(L1 = l1, L2 = l2) is equal to E[Ya1;a2 ] if the correspond-
ing exchangeability assumptions for point-exposure hold. In the
following hypothetical data, however, there is no single set of
confounders for joint effects of (A1, A2). Rather, L1 is a sufficient
set of confounders for A1, and (L1, A1, L2) is a sufficient set of
confounders for A2. This condition would enable us to identify
E[Ya1;a2 ] but the usual standardization formula,

P
l1 ;l2

E[Y ∣A1 =
a1, A2 = a2, L1 = l1, L2 = l2]P(L1 = l1, L2 = l2) leads to biased
estimates unless the aforementioned implausible assumption
of no-effect of past exposures on time-varying confounders
holds.6,36,43,51

A hypothetical cohort
For simplicity, consider a hypothetical cohort with empty L1.
The situation would arise if A1 is randomized at baseline, but
non-adherence occurs or another exposure is introduced during
the follow-up, or if the cohort is restricted based on measured
variables L1. In either case, the following illustration is unaffected
by including the diverse values of L1, so let us ignore the
adjustment for baseline confounders in our illustration.6,51,54

Table 2 provides the data distribution of (A1i, L2i, A2i, Yi)
augmented by unobserved potential outcome Ya1;a2

i (a1, a2 = 0, 1)
in the hypothetical cohort. As in Table 1, observed outcome Yi
coincides with Ya1;a2

i such that (A1i, A2i) = (a1, a2) by consistency.
We want to identify from observational data four expectations
E[Ya1;a2 ] (“Total” row of “Risk” columns).

We note that neither unconditional nor conditional (given L2)
exchangeability holds for joint exposure (A1, A2) in our data.
For example, in the subgroups of (A1, A2) = (1, 1) and (0, 0),
E[Y 0,0∣A1 = 1, A2 = 1] = 1,728=2,520 = 0.686 differs from
E[Y 0,0∣A1 = 0, A2 = 0] = 1,575=3,990 = 0.395 (unconditional ex-
changeability fails). Likewise, E[Y 0,0∣A1 = 1, L2 = 0, A2 = 1] =
0.6 ≠ E[Y 0,0∣A1 = 0, L2 = 0, A2 = 0] = 0.3 (conditional exchan-
geability fails). Readers can see other potential outcomes Ya1;a2

also differ on average between distinct subgroups of (A1, A2).
Next, let us see the bias in estimators ignoring or solely stratifying
on L2 as a “baseline” confounder.
Naïve standardization vs the g-formula
Table 3 shows the observable part of Table 2 in a different
layout, adding some candidate estimates from observed data. “L2-
collapsed” estimates are risks in subgroups of joint exposure,
E[Y ∣A1 = a1, A2 = a2] without considering L2. These are away
from E[Ya1;a2 ] in Table 2 because of the lack of unconditional
exchangeability. On the other hand, “naïve standardization” uses
standardization formula in point-exposure settings:

P
l2
E[Y ∣A1 =

Table 2. Hypothetical cohort data with potential outcomes under time-varying exposure

Stratum
N

Potential outcomea Observed outcome

A1 L2 A2 Y 0,0 = 1 Risk Y 0,1 = 1 Risk Y1,0 = 1 Risk Y1,1 = 1 Risk Y = 1 E[Y ∣A1, L2, A2]

1 1 1 720 648 0.9 648 0.9 432 0.6 576 0.8 576 0.8
1 1 0 180 162 0.9 162 0.9 108 0.6 144 0.8 108 0.6
1 0 1 1,800 1,080 0.6 990 0.55 900 0.5 720 0.4 720 0.4
1 0 0 1,800 1,080 0.6 990 0.55 900 0.5 720 0.4 900 0.5
0 1 1 5,670 5,103 0.9 4,536 0.8 2,835 0.5 3,402 0.6 4,536 0.8
0 1 0 630 567 0.9 504 0.8 315 0.5 378 0.6 567 0.9
0 0 1 840 252 0.3 294 0.35 462 0.55 252 0.3 294 0.35
0 0 0 3,360 1,008 0.3 1,176 0.35 1,848 0.55 1,008 0.3 1,008 0.3

Total 15,000 9,900 0.66 9,300 0.62 7,800 0.52 7,200 0.48

aUnobservable counterfactual distributions. Bold numbers are observed as Y = 1 (by consistency) in each stratum.
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a1, A2 = a2, L2 = l2]P(L2 = l2), where P(L2 = 1) = 0.48 and
P(L2 = 0) = 0.52. For example, standardized risk in (A1, A2) =
(0, 0) can be obtained as

ð567=630Þ0:48 þ ð1;008=3;360Þ0:52 ¼ ð0:9Þ0:48 þ ð0:3Þ0:52
¼ 0:59:

However, this estimate is (and other estimates are) again biased
from E[Y 0,0] = 0.66 (and other E[Ya1;a2 ] in Table 2) owing to the
violation of conditional exchangeability given L2.

Instead of using P(L2 = l2) in the standardization formula,
the “g-formula” in Table 3 averages the stratified risks E[Y ∣A1,
L2 = l2, A2] using the weights P(L2 = l2∣A1):X

l2
E½YjA1 ¼ a1; L2 ¼ l2; A2 ¼ a2�PðL2 ¼ l2jA1 ¼ a1Þ:

Unlike the previous two naïve estimates, we can see that these
values are equal to E[Ya1;a2 ] in Table 2. As elaborated in the next
subsection, the g-formula is one expression of E[Ya1;a2 ] in terms
of observed distribution under the condition that is different from
unconditional=conditional exchangeability.
Conditions for identification of the effects
Instead of conditional exchangeability E[Ya1;a2 ∣A1, L2, A2] =
E[Ya1;a2 ∣L2] for joint exposure, we can easily check the following
conditions,

E½Ya1;a2 jA1 ¼ 1� ¼ E½Ya1 ;a2 jA1 ¼ 0� and (C1)
E½Ya1;a2 jA1 ¼ a1; L2; A2 ¼ 1�

¼ E½Ya1 ;a2 jA1 ¼ a1; L2; A2 ¼ 0�; (C2)

for all a1 and a2, from upper four rows vs lower four rows (for
(C1)) and every 2 rows within the same stratum of (A1, L2) (for
(C2)) in Table 2. These conditions are collectively called the
sequential exchangeability for (A1, A2),6,36,51 which are typically
easier to hold than joint conditional exchangeability but are
neither necessary nor sufficient condition for joint conditional
exchangeability (see Appendix A for more technical notes on the
conditions). The covariates that satisfy (C2) through their stratifi-
cation (ie, L2 here) are called time-varying confounders. In fact,
slightly strong condition (C2A) E[Ya1;a2 ∣A1, L2, A2 = 1] =
E[Ya1;a2 ∣A1, L2, A2 = 0] (which requires conditional independence
in all A1 supports instead of only in A1 = a1 compatible with
intervention on Ya1;a2 ) also holds in our example, while this is not
required for the g-formula to be equal to E[Ya1 ;a2 ]. The g-formula
equals E[Ya1;a2 ] if sequential exchangeability (C1) and (C2)
holds.

It is helpful to depict the conditions in causal diagrams,
namely, causal directed acyclic graphs (DAGs)2,29 and single-
world intervention graphs (SWIGs)31,32; we would like readers
unfamiliar with these graphical terminology and rules (eg,
opening=blocking paths, d-separation, the backdoor criterion) to
refer to introductory articles30,32,35 or book chapters6,34 on the
topic. Informally, variables are d-separated if they are not con-
nected with each other or connected only through paths on which
at least one unadjusted “colliders” or adjusted “non-colliders”
exist. If a supposed exposure is d-separated from a supposed
outcome by adjusting for non-descendant variables of the
exposure (in an original graph) after deletion of arrows emanating
from the exposure, then we would say the backdoor criterion is
satisfied. Figure 1, which is adopted from Part 3 of Causal
Inference: What If,6 represents the causal diagrams that imply
(C1) and (C2). Note that the typical strategy for causal inference
in practice starts by drawing a causal DAG (eg, Figure 1(a)) or a
SWIG (eg, Figure 1(c)) assumed for the data-generating process.
Then, (conditional) independences between potential and ob-
served variables, such as (C1) and (C2), are deduced from the
graph. Here, we go backward; we start with counterfactual data
(Table 2) in which (C1) and (C2) hold and proceed to causal
DAGs=SWIGs that are compatible with those conditions.

In Figure 1(a), there is no non-descendant variable set that
blocks all backdoor paths from collective nodes (A1, A2) to Y (ie,
satisfies the backdoor criterion). On the contrary, the backdoor
paths to Y from A1 and A2 are separately blocked by distinct sets
of variables: empty set for A1 and (A1, L2) for A2. The arguments
can be more directly depicted using potential variables in
Figure 1(c), which is a “template” of the SWIG representing
each intervention (a1, a2) on (A1, A2).32 For example, A1 is d-
separated from any variables, and Aa1

2 is d-separated from Ya1 ;a2

given La1
2 . After additionally conditioning on A1 = a1 (which is

automatically done in the “template”), Aa1
2 ¼ A2 (by consistency)

is still d-separated from Ya1;a2 given La1
2 ¼ L2 (by consistency)

and A1 = a1; thus, (C1) and (C2) are satisfied in this SWIG. The
same arguments can be applied to Figure 1(b) and (d), where
A1–L2 is confounded (ie, connected by a backdoor path) by
unobserved W. In other words, there are settings where joint
effects of (A1, A2) on Y can be identified (via sequential
exchangeability) even if the effects of A1 on L2 are not identifiable
(by the unobservable). More implication obtained from Figure 1
is detailed in Appendix B. The remainder of the paper does not
require the reference to causal diagrams.

Table 3. Estimates of effects of time-varying exposure from hypothetical cohort data

A1 = 0 A1 = 1

p(L2)A2 = 0 A2 = 1
p(L2∣A1)

A2 = 0 A2 = 1
p(L2∣A1)

L2 N Y = 1 Risk N Y = 1 Risk N Y = 1 Risk N Y = 1 Risk

1 630 567 0.9 5,670 4,536 0.8 0.6 180 108 0.6 720 576 0.8 0.2 0.48
0 3,360 1,008 0.3 840 294 0.35 0.4 1,800 900 0.5 1,800 720 0.4 0.8 0.52

Estimates of E[Ya1 ;a2 ]a

L2-collapsedb 3,990 1,575 0.39 6,510 4,830 0.74 1,980 1,008 0.51 2,520 1,296 0.51
Naïve standardizationc 0.59 0.57 0.55 0.59
G-formulad 0.66 0.62 0.52 0.48

a(a1, a2) corresponds to the value of (A1, A2).
bCalculate E[Y ∣A1, A2] using N and Y = 1 data in the subgroup defined by (A1, A2).
cCalculate

P
l2
E[Y ∣A1, A2, L2 = l2]p(l2), where data in “Risk” and “p(L2)” columns in each L2 = l2 (0 or 1) row are used for E[Y ∣A1, A2, L2 = l2] and p(l2),

respectively.
dCalculate

P
l2
E[Y ∣A1, A2, L2 = l2]p(l2∣A1) as above, except for using probabilities in “p(L2∣A2)” instead of “p(L2)” for the corresponding L2 and A2 values.
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Different view of the g-formula: inverse probability
weighting
We have seen that under the sequential exchangeability (C1) and
(C2), the g-formula is equivalent to the averages of potential
outcome. If baseline confounders L1 exist, the g-formula is

E½E½E½YjL1; A1 ¼ a1; L2; A2 ¼ a2�jA1 ¼ a1; L1��
¼

X
l1

X
l2
E½YjL1 ¼ l1; A1 ¼ a1; L2 ¼ l2; A2 ¼ a2�

� PðL2 ¼ l2jL1 ¼ l1; A1 ¼ a1ÞPðL1 ¼ l1Þ; ð1Þ
which is equivalent to E[Ya1;a2 ] if (C1) and (C2) hold by addi-
tionally conditioning on L1. The left-hand side of equation (1) is
a representation of the iterative conditional expectation of the
g-formula.

The alternative expression of E[Ya1;a2 ] under (C1) and (C2) is
inverse probability weighting6,42,51,64:

E
IðA1 ¼ a1; A2 ¼ a2Þ

pðA1jL1ÞpðA2jL1; A1; L2Þ Y
� �

; ð2Þ

where I(A1i = a1, A2i = a2) is an indicator function that takes 1 if
individual i has joint exposure level (a1, a2) and 0 otherwise,
p(a1∣l1) = P(A1 = a1∣L1 = l1) is a conditional probability func-
tion of first exposure having level a1 and p(a2∣l1, a1, l2) =

P(A2 = a2∣L1 = l1, A1 = a1, L2 = l2) is a conditional probability
function of second exposure having level a2 given past exposure
and covariates. Accordingly, p(A1i∣L1i) and p(A2i∣L1i, A1i, L2i) in
formula (2) are functions of individual data.

These two expressions are equivalent forms of E[Ya1;a2 ] under
sequential exchangeability (C1) and (C2), as well as the time-
varying versions of consistency and positivity. Despite the
equivalence of these identification formulas, the estimator that
plugs each estimate into (1) is called a g-formula estimator and
that based on (2) is an inverse probability weighted estimator. The
arguments can be extended to “dynamic regimes” with stronger
conditions (Appendix B).51,64

Now, let us obtain inverse probability weighted estimates from
Table 2. First, we garner the probability of actually received
exposure given past exposure and covariates separately for A1 and
A2. As L1 is empty to achieve sequential exchangeability, p(A1i)
and P(A2i∣A1i, L2i) for each combination of (A1i, L2i, A2i) are
provided in Table 4. Next, calculate the “inverse probability
weights” 1={p(A1i)p(A2i∣A1i, L2i)} and multiply the numbers of
combinations (A1i, L2i, A2i) by the weights. Note that the sum of
the weights I(A1 = a1, A2 = a2)={p(A1)p(A2∣A1, L2)} for each (a1,
a2) equals total sample size (ie, n = 15,000 in our data). Hence,
formula (2) indicates that we only have to estimate the probability

A1 A2L2 Y

U

A1 A2L2 Y

UW

A1|a1 A2
a1|a2L2

a1 Y a1,a2

U

A1|a1 A2
a1|a2L2

a1 Y a1,a2

UW

a b

c d

Figure 1. Causal DAGs and SWIGs compatible with example data, where U and W are unobserved variables: (a) causal DAG
without W, in which A1–L2, A1–Y, and A2–Y are (conditionally) unconfounded given observed data; (b) causal DAG
with W, in which A1–Y and A2–Y are (conditionally) unconfounded but A1–L2 is confounded given observed data; (c) a
“template” under intervention (a1, a2) of SWIG that corresponds to causal DAG (a); (d) a “template” under intervention
(a1, a2) of SWIG that corresponds to causal DAG (b).

Table 4. Hypothetical cohort data weighted by inverse probability of exposures

A1 L2 A2
Unweighted number

p(A1) p(A2∣A1, L2) IPW
Number multiplied by IPW

N Y = 1 N Y = 1

1 1 1 720 576 0.3 0.8 4.17 3,000 2,400
1 1 0 180 108 0.3 0.2 16.67 3,000 1,800
1 0 1 1,800 720 0.3 0.5 6.67 12,000 4,800
1 0 0 1,800 900 0.3 0.5 6.67 12,000 6,000
0 1 1 5,670 4,536 0.7 0.9 1.59 9,000 7,200
0 1 0 630 567 0.7 0.1 14.29 9,000 8,100
0 0 1 840 294 0.7 0.2 7.14 6,000 2,100
0 0 0 3,360 1,008 0.7 0.8 1.79 6,000 1,800

IPW, inverse probability weight.
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of Y = 1 for every combination of (a1, a2) in these multiplied
numbers, or the inverse probability weighted population:

EIPW½YjA1 ¼ 1; A2 ¼ 1� ¼ ð2;400 þ 4;800Þ=ð3;000 þ 12;000Þ
¼ 7;200=15;000 ¼ 0:48;

EIPW½YjA1 ¼ 1; A2 ¼ 0� ¼ ð1;800 þ 6;000Þ=ð3;000 þ 12;000Þ
¼ 7;800=15;000 ¼ 0:52;

EIPW½YjA1 ¼ 0; A2 ¼ 1� ¼ ð7;200 þ 2;100Þ=ð9;000 þ 6;000Þ
¼ 9;300=15;000 ¼ 0:62;

EIPW½YjA1 ¼ 0; A2 ¼ 0� ¼ ð8;100 þ 1;800Þ=ð9;000 þ 6;000Þ
¼ 9;900=15;000 ¼ 0:66:

Marginal structural models
We have estimated four distinct E[Ya1 ;a2 ] separately via g-formula
(1) or inverse probability weighting (2). No approximation, or
model, has been used.

Now, carefully look at the true values E[Ya1;a2 ] in the last row
of Table 2. We can see that E[Y1,0] − E[Y 0,0] = 0.52 − 0.66 =
0.48 − 0.62 = E[Y1,1] − E[Y 0,1]; the difference between a1 = 1 vs
a1 = 0 is −14%, irrespective of the value of a2. Likewise, review
E[Y 0,1] − E[Y 0,0] = 0.62 − 0.66 = 0.48 − 0.52 = E[Y1,1] − E[Y1,0]
and the causal risk difference of a2 = 1 vs a2 = 0 is −4%. We can
collectively write the counterfactual expectations as follows:
E[Ya1;a2 ] = 0.66 − 0.14a1 − 0.04a2. More generally, we may
describe the relation between E[Ya1;a2 ] and (a1, a2) as

E½Ya1 ;a2 � ¼ �0 þ �1a1 þ �2a2: ð3Þ
This is the correctly specified marginal structural model; if we
have the data in Table 2, the parameters of marginal structural
model (3) can be unbiasedly estimated by, for example, the least-
squares or maximum-likelihood methods. The marginal structural
models are the simplified expressions of E[Ya1;a2 ] by restricting
the possible values of E[Ya1;a2 ].42,43,51 In equation (3), the left-
hand side can take any four values, but the right-hand side
expresses them by only three parameters. Model (3) is marginal
because the expectations are taken with the marginal distributions
of Ya1;a2 unconditional on other observed variables (though the
condition is relaxed later) and other potential outcomes Ya0

1
;a0

2

other than (a1, a2) (thus, we need not consider any cross-world
joint distributions under different interventions).42,46 Model (3)
is also structural because it imposes restrictions on potential
outcomes Ya1;a2 rather than observed distributions.

There are other possibilities for specification of marginal
structural models. For example, we can fit the simpler additive
model

E½Ya1;a2 � ¼ �0 þ �1ða1 þ a2Þ; ð4Þ
which has only two parameters assuming that A1 and A2 have the
same effect (risk difference) on Y, or a multiplicative marginal
structural model

logE½Ya1;a2 � ¼ �0 þ �1a1 þ �2a2; ð5Þ
where exp(β1) and exp(β2) represent the (common) risk ratios
E[Y1;a2 ]=E[Y0;a2 ] (a2 = 0, 1) and E[Ya1 ;1]=E[Ya1;0] (a1 = 0, 1),
respectively. However, these are incorrectly specified or
misspecified marginal structural models because any parameter
values (β0, β1) or (β0, β1, β2) in the right-hand sides of (4) and (5)
cannot exactly express the left-hand sides. A marginal structural
model is correctly specified in multiplicative scale by making it

saturated by, for example, including an interaction term of a1 and
a2:

logE½Ya1 ;a2 � ¼ �0 þ �1a1 þ �2a2 þ �3a1a2: ð6Þ
We estimate these marginal structural models through inverse

probability weighting from observed data in Table 3, where
sequential exchangeability (C1) and (C2) holds. Of course,
models (4) and (5) are misspecified and necessarily result in
biased estimates of E[Ya1;a2 ]. Nevertheless, the estimates of
misspecified marginal structural models may well approximate
the true E[Ya1 ;a2 ] unless the model forms differ significantly from
the true relationship between E[Ya1;a2 ] and (a1, a2). A typical
estimation process is as follows: 1) calculate the inverse
probability weight, 1={p(A1i)p(A2i∣A1i, L2i)}, for each variable
pattern (A1i, L2i, A2i) as in Table 4; 2) fit the regression model for
E[Y ∣A1 = a1, A2 = a2] with the same functional form of the
marginal structural models; and 3) obtain confidence intervals by
the sandwich estimator or bootstrap. The SAS and Stata codes to
create a dataset and replicate the results are provided in
Appendix C and Supplementary Material, respectively. Table 5
shows the parameter estimates of these models. Expectations
E[Ya1;a2 ] are also estimated by linear combination of these
estimates in the corresponding models; eg, E[Y 0,0] = β0 (models 3
and 4) or exp(β0) (models 5 and 6), and E[Y1,1] = β0 + β1 + β2
(model 3), β0 + 2β1 (model 4), exp(β0 + β1 + β2) (model 5), or
exp(β0 + β1 + β2 + β3) (model 6).

Why do we need to model E[Ya1;a2 ] by taking the risk to cause
bias? Consider exposures can change at an additional one time
point. Without models, we need to estimate 23 = 8 (double of
our case) distinct E[Ya1;a2;a3 ]. If we have six time points, the
task requires 64 estimates from the limited amount of data.
Furthermore, if we have continuous exposure, we have to rely on
the dose-response curves irrespective of the number of exposure
time points. Given we always have a limited amount of data,
our estimation tasks must rely on the dimension reduction of
parameter space by imposing restriction on the possible values of
counterfactual outcome means. In Table 5, despite both models
(3) and (6) being correctly specified and unbiasedly estimated, the
estimates of E[Ya1 ;a2 ] from model (3) (3 parameters) have slightly
narrower confidence intervals than those from model (6) (four
parameters). The efficiency gain owing to dimension reduction
will be modest as the number of time points increases.

Note that models (3)–(6) do not require covariate information,
though can incorporate baseline confounders L1 for examining
effect modifications by certain variables in specific scales (eg, risk
difference or ratio).6,68 The convenient choice that is commonly
seen in practice may be the simplest model assuming a common
exposure effect across time and baseline confounder strata:

E½Ya1 ;a2 jL1 ¼ l1� ¼ �0 þ �1ða1 þ a2Þ þ �2
Tl1;

which imposes more restriction than the marginal structural
model (4), which is agnostic about (ie, does not assume) no-effect
modification by L1. To assess effect modification by baseline
confounders, the model can be modified as

E½Ya1 ;a2 jL1 ¼ l1� ¼ �0 þ �1ða1 þ a2Þ þ �2
Tl1 þ �3

Tða1 þ a2Þl1;
though this is still generally stricter than model (4) because the
effect of exposure is restricted to be linearly modified by L1.

Dealing with high-dimensional covariates
In our example, we have no baseline confounder and only one
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time-varying binary confounder variable L2, as well as two binary
exposures A1 and A2. As a result, we can estimate all conditional
expectations and conditional probabilities in g-formula (1) and
inverse probability weighting (2) from the direct calculation of
the mean=proportion in each stratum; in other words, we used
saturated regression and exposure probability models. In practice,
however, we have many variables in L1 or L2, or both, some of
which may follow continuous or multinomial distributions. In
such cases, we must rely on models for observed distribution of
(L1, A1, L2, A2, Y ).4,20,69,70

For example, g-formula (1) can be estimated by fitting the
following outcome and covariate regression models:

E½YjL1 ¼ l1; A1 ¼ a1; L2 ¼ l2; A2 ¼ a2�
¼ �0 þ �1

Tl1 þ �2a1 þ �3
Tl2 þ �4a2

E½L2kjL1 ¼ l1; A1 ¼ a1; L20 ¼ l20; . . . ; L2;k�1 ¼ l2;k�1�

¼
�k0 þ �Tk1l1 þ �k2a1 ðfor k ¼ 1Þ

�k0 þ �Tk1l1 þ �k2a1 þ
Xk�1

j¼1 �k3jl2j ðfor k ¼ 2; . . . ; K Þ

8<
:

where L2k is a kth variable in arbitrarily ordered L2 = (L21,…,
L2K)T with a constant L20. Note that in general, we must conduct
numerical approximation of conditional distribution of L2k by
simulating the Monte–Carlo samples from the model fit, which
has the conditional means following the above regression models
(the parametric g-formula estimator).38,47 Alternatively, we could
iteratively model the left-hand side of g-formula (1) from inside
to outside of expectations by fitting the outcome regression
models for the predictions from previous model fit (equivalent to
the Q-learning estimator).24,71

Inverse probability weighting formula (2) can also be
estimated by, for example, logistic models for exposure
probabilities:

logitPðA1 ¼ 1jL1 ¼ l1Þ ¼ �10 þ �11
Tl1;

logitPðA2 ¼ 1jL1 ¼ l1; A1 ¼ a1; L2 ¼ l2Þ
¼ �20 þ �21

Tl1 þ �22a1 þ �23
Tl2:

We then calculate the weighted mean using 1={p(A1i∣L1i)p(A2i∣L1i,
A1i, L2i)} from predicted values from these models.

Note that both of these approaches do not impose any restric-
tion on the values of E[Ya1 ;a2 ]; we could use regression or
exposure probability models without specifying marginal struc-
tural models and vice versa (recall the calculation of Table 5).
Marginal structural models are causal assumptions about the
relationship between E[Ya1 ;a2 ] and hypothetical intervention
(a1, a2); on the contrary, regression and exposure probability
models are approximations of certain aspects of the observed
distribution of (L1, A1, L2, A2, Y ). In practice, however, we should
rely on both marginal structural models and exposure probability
models when using inverse probability weighting for estimating
the effects of exposure with a moderate number of time points.44–50

Table 6 shows the estimates of marginal structural models
(3)–(6) using the fit of a misspecified exposure probability model:
logitP(A2 = 1∣A1 = a1, L2 = l2) = α0 + α1a1 + α2l2. As expected,
all estimates of E[Ya1;a2 ] are biased from Table 2 owing to the
exposure probability model misspecification. Moreover, even for
correctly specified marginal structural models (3) and (6), these
estimates diverge from each other when using an exposure
probability model to estimate inverse probability weights. Similar
to the dimension reduction via marginal structural models, we
would expect a greater efficiency gain (ie, variance reduction) in
inverse probability weighting estimators when high-dimensional
confounders must be conditioned on to achieve sequential
exchangeability.

Summary of pitfalls and tips
Our hypothetical dataset explicitly shows estimands (ie, E[Ya1;a2 ])
and minimally possesses the counterfactual conditions (ie,
sequential exchangeability) to estimate counterfactual means
under joint intervention on time-varying exposure (A1, A2). We
hitherto illustrate the tips (Box) for formal understanding of
marginal structural modeling and its estimation through inverse
probability weighting (pitfall 1), as well as the required causal
assumptions on unobservable data. Models are used to account
for the “curse of dimensionality.” On one hand, marginal struc-
tural models reduce the dimension of counterfactual outcome
means under a huge number of the combinations of time-varying
exposures. On the other hand, exposure probability models must

Table 5. Inverse probability weighted estimates of marginal structural models from observed hypothetical cohort data (Table 3)

MSM (3): Correct MSM (4): Incorrect MSM (5): Incorrect MSM (6): Correct

Estimatea 95% CIb Estimatea 95% CIb Estimatea 95% CIb Estimatea 95% CIb

Risk difference or ratio
A1 (a1 = 1 vs 0) −0.140 −0.160, −0.120 −0.090c −0.104, −0.076 0.781 0.753, 0.810 0.788d 0.746, 0.832
A2 (a2 = 1 vs 0) −0.040 −0.060, −0.020 −0.090c −0.104, −0.076 0.932 0.900, 0.965 0.939e 0.903, 0.978
A1A2 — — — 0.983f 0.914, 1.057

Potential outcome mean
E[Y 0,0] 0.660 0.643, 0.677 0.660 0.643, 0.677 0.663 0.645, 0.681 0.660 0.641, 0.680
E[Y 0,1] 0.620 0.605, 0.635 0.570 0.560, 0.580 0.618 0.602, 0.634 0.620 0.604, 0.637
E[Y1,0] 0.520 0.501, 0.539 0.570 0.560, 0.580 0.518 0.499, 0.537 0.520 0.497, 0.544
E[Y1,1] 0.480 0.463, 0.497 0.480 0.463, 0.497 0.483 0.466, 0.499 0.480 0.461, 0.500

CI, confidence interval; MSM, marginal structural model.
aRisk differences β (MSMs (3) and (4)) or risk ratios exp(β ) (MSMs (5) and (6)) in the upper part.
bUsing sandwich estimator.
cCommon risk difference for A1 and A2.
dRisk ratio for A1 when controlling A2 at 0: E[Y1,0]=E[Y 0,0].
eRisk ratio for A2 when controlling A1 at 0: E[Y 0,1]=E[Y 0,0].
fInteraction between A1 and A2 in risk ratio scale: (E[Y1,1]E[Y 0,0])=(E[Y1,0]E[Y 0,1]).
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be adopted in practice to account for the large numbers of
baseline and time-varying confounders, which usually do not
have implications on marginal structural modeling (pitfalls 2 and
4). We also show the biases based on the misspecification of
exposure probability models and misspecification of marginal
structural models separately (pitfall 3). Note that while inverse
probability weighting and the g-formula are applicable to estimate
marginal counterfactual means (ie, saturated marginal structural
models), only the former can estimate general, unsaturated
marginal structural models (pitfall 5). Although running into
these pitfalls may not necessarily lead to large biases in practical
analysis, failure to recognize these subtleties would advocate
unprincipled and suboptimal strategies for causal inference.

We would conclude this section with additional emphases of
two pitfalls. First, variable selection and model specification
are generally different tasks in modeling for causal inference.
By inverse probability weighting, exposure probability models
should select confounders, stratification of which is sufficient to
achieve sequential exchangeability. In our example, all analyses
with or without an exposure probability model include all
confounder(s), L2. Even if the models include all confounders,
however, they may be misspecified as in the analysis in Table 6.
The same is true for regression models for the g-formula. On the

contrary, it is unnecessary for marginal structural models to
include confounders; only covariates (need not to be confounders
but should be conditioned in propensity score19) that may modify
the exposure effect of interest may be included in marginal
structural models.6,68

Second, doubly robust estimators can alleviate the bias from
misspecification of regression and exposure probability mod-
els,22–28 but not the bias owing to the misspecification of marginal
structural models nor other causal models (that are not introduced
in this paper). For example, Table 6 provides the biased estimates
using a misspecified exposure probability model for correct=
incorrect marginal structural models. Among them, bias in the
estimates of correct marginal structural models (3) and (6) would
be mitigated by doubly robust methods, by including outcome
regression models via the iterative model-fitting algorithm of
Bang and Robins,24 while the fitting of incorrect marginal struc-
tural models (4) and (5) must result in biased estimates. Hence,
even with doubly robust methods, the careful consideration of
marginal structural models is needed, especially for long-term
follow-up study with many time points at which exposure can
change. Marginal structural models for dynamic regimes may
also have to depend on strong modeling assumptions,51,64,72–74

even when exposure is binary and change at several time
points.

FUTURE DIRECTIONS

There is a relevant method other than the g-formula and inverse
probability weighting that requires essentially the same assump-
tions to estimate causal effects of time-varying exposures: g-
estimation.15,18,38–41,51,67 Like the relation of marginal structural
modeling and inverse probability weighting, g-estimation is a
method to estimate the parameters of structural nested models.
Structural nested models and g-estimation indeed have attractive
statistical properties (eg, robustness, efficiency, and flexible
parameterization), which successfully work within Robins’ causal
“interventionism” framework with minimal conditions.31,41,46,63,75

Despite its theoretical superiority, g-estimation has been under-
used in epidemiologic literature probably because of the
complexity of background theory and interpretability of the

Table 6. Inverse probability weighted estimates of marginal structural models using a misspecified exposure probability model

MSM (3): Correct MSM (4): Incorrect MSM (5): Incorrect MSM (6): Correct

Estimatea 95% CIb Estimatea 95% CIb Estimatea 95% CIb Estimatea 95% CIb

Risk difference or ratio
A1 (a1 = 1 vs 0) −0.119 −0.145, −0.092 −0.081c −0.095, −0.068 0.813 0.774, 0.855 0.886d 0.819, 0.958
A2 (a2 = 1 vs 0) −0.045 −0.073, −0.017 −0.081c −0.095, −0.068 0.924 0.880, 0.969 1.022e 0.983, 1.063
A1A2 — — — 0.822f 0.749, 0.902

Potential outcome mean
E[Y 0,0] 0.655 0.635, 0.674 0.649 0.628, 0.671 0.658 0.638, 0.679 0.625 0.606, 0.644
E[Y 0,1] 0.610 0.593, 0.628 0.568 0.552, 0.584 0.608 0.590, 0.626 0.639 0.624, 0.654
E[Y1,0] 0.536 0.503, 0.570 0.568 0.552, 0.584 0.535 0.502, 0.569 0.554 0.515, 0.595
E[Y1,1] 0.491 0.472, 0.511 0.487 0.466, 0.507 0.494 0.475, 0.513 0.465 0.445, 0.486

CI, confidence interval; MSM, marginal structural model.
aRisk differences β (MSMs (3) and (4)) or risk ratios exp(β ) (MSMs (5) and (6)) in the upper part.
bUsing sandwich estimator.
cCommon risk difference for A1 and A2.
dRisk ratio for A1 when controlling A2 at 0: E[Y1,0]=E[Y 0,0].
eRisk ratio for A2 when controlling A1 at 0: E[Y 0,1]=E[Y 0,0].
fInteraction between A1 and A2 in risk ratio scale: (E[Y1,1]E[Y 0,0])=(E[Y1,0]E[Y 0,1]).

Box. Key messages for clear understanding of marginal struc-
tural modeling

• Marginal structural models (MSMs) should be distinguished from inverse
probability weighting

• MSM shows prespecified assumptions on causal estimands, while an
exposure probability model is an imposed restriction on observed
distribution

• As MSM and exposure probability model are used for different purposes,
misspecification of these models would lead to biases in different ways

• Model specifications of MSMs and exposure probability models raise
different challenges in real data analysis

• G-formula, which shares identifiability assumptions with inverse
probability weighting, can be used to fit MSMs only when the models
are saturated
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parameters.75 However, structural nested models are especially
useful for dynamic regimes of time-varying exposures by model-
ing the effect modification by time-varying covariates,38,41,51

which cannot generally be included in marginal structural
models.46,68

Besides the conceptual pitfalls considered in this paper, there
are important pitfalls regarding specification and estimation of
marginal structural models, which will often lead to mistakes in
practice:

• One should always use the independence working correla-
tions in marginal structural models of repeated-measures
outcomes.47,76,77

• If “stabilized” weights include covariates in the numerator
weights,43 they should be conditioned in the marginal struc-
tural models.50

• “Stabilization” of the weights is not always acceptable (eg,
dynamic-regime marginal structural models72–74).

• It is always important to check the fits of exposure
probability models (eg, checking calibration or model-
diagnostic measures78 and weight distributions50) and
marginal structural models (eg, comparing the estimating
equation-based quasi-likelihood information criterion with
that for less restricted models79 or testing equivalence
between asymptotic values of parameter estimates obtained
through different weighting options80).

There are other practical concerns in real data analysis.
For example, many follow-up studies compare time-to-event
outcomes, which complicate the modeling and estimation process
for the effects of time-varying exposure. In these settings, time-
dependent Cox models or the risk-set switching Kaplan–Meier
estimators would need unrealistic assumptions to yield causally
interpretable estimates.43,81 In addition, censoring of the events
must be taken with care by, for example, constructing the inverse
probability weights to prevent attrition bias.44,45,51 Note that the
idea of inverse probability of censoring weights appears in
diverse causal inference fields; eg, adjustment for treatment
discontinuation in clinical trials,82,83 estimation of the effects of
dynamic regimes,72 and the effects of the treatment duration on
survival.84
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APPENDIX A. EXCHANGEABILITY CONDITIONS
FOR IDENTIFYING THE EFFECTS OF TIME-
VARYING EXPOSURES

As shown in Figure 1, sequential exchangeability (C1) and (C2)
is more likely in practice than conditional exchangeability
E[Ya1;a2 ∣A1, L2, A2] = E[Ya1;a2 ∣L2] for joint exposure (A1, A2);
conditional exchangeability for joint exposure is not a necessary
condition for sequential exchangeability, which would be
intuitively understandable to many readers. Mathematically,

however, conditional exchangeability for joint exposure itself is
not a sufficient condition for sequential exchangeability, either.
Nevertheless, these conditions are closely related with each other
in other realistic situations, as shown subsequently.

First note that conditional exchangeability always implies
(C2), which is rewritten as E[Ya1 ;a2 ∣A1 = a1, L2, A2] =
E[Ya1;a2 ∣A1 = a1, L2]. The right-hand side is E[Ya1;a2 ∣A1 =
a1, L2] =

P
a0
2
E[Ya1 ;a2 ∣A1 = a1, L2, A2 = a02]P(A2 = a02∣A1 =

a1, L2) = E[Ya1 ;a2 ∣L2]
P

a0
2
P(A2 = a02∣A1 = a1, L2) = E[Ya1 ;a2 ∣L2] =

E[Ya1;a2 ∣A1 = a1, L2, A2] (the left-hand side) using E[Ya1;a2 ∣A1, L2,
A2] = E[Ya1 ;a2 ∣L2]. On the other hand, the right-hand side of the
equation E[Ya1;a2 ∣A1] = E[Ya1 ;a2 ] (an equivalent form of (C1)) is
E[Ya1;a2 ] =

P
a0
1
;l2 ;a02

E[Ya1 ;a2 ∣A1 = a01, L2 = l2, A2 = a02]P(A1 = a01,
L2 = l2, A2 = a02) =

P
a0
1
;l2 ;a02

E[Ya1 ;a2 ∣A1 = a1, L2 = l2, A2 = a2]
P(A1 = a01, L2 = l2, A2 = a02) (by conditional exchangeability) =P

l2
E[Ya1 ;a2 ∣A1 = a1, L2 = l2, A2 = a2]P(L2 = l2) =P

l2
E[Ya1 ;a2 ∣A1 = a1, L2 = l2]P(L2 = l2) (using (C2) implied by

conditional exchangeability) but cannot further reduce to
E[Ya1 ;a2 ∣A1]. However, we can see that 1) if A1 is independent of
Ya1 ;a2 (as in Figure 1) or 2) if P(L2 = l2) = P(L2 = l2∣A1), that is,
A1 is independent of L2 in observed data, then (C1) is also implied
by conditional exchangeability. Moreover, if A1 is randomized
(ie, (Ya1 ;a2 , La1

2 ) ?? A1 holds, where “??” means statistical
independence), then the previous independence condition
P(L2 = l2) = P(L2 = l2∣A1) is equivalent to (sharp) null effect of
A1 on L2 by the “g-null” theorem under the faithfulness assump-
tion.36,37 In this case of no-effect of randomized A1 on time-varying
confounders L2, (C2) implies E[Ya1 ;a2 ∣L2] = E[Ya1 ;a2 ∣A1, L2]
(by randomization) = E[Ya1 ;a2 ∣A1, L2, A2]; hence, sequential ex-
changeability also implies conditional exchangeability for joint
exposure.

APPENDIX B. INDEPENDENCY ASSUMPTIONS
ENCODED IN CAUSAL DIAGRAMS AND
IDENTIFIABILITY OF GENERAL INTERVENTION
REGIMES

Sequential exchangeability (C1) and (C2) is insufficient for
identification of the effects of more general exposure interventions
(also known as dynamic regimes or strategies) that may depend on
(time-varying) covariates, say, (L1, L2). That identification is built
on the identification of the distribution f (Ya1;a2 , La1

2 ), or generally,
f(Yg, Lg

2) with the intervention g = (g1(L1), g2(L1, A1, L2)), where
gk(·) corresponds to the intervention on Ak possibly depending on
past A and L values (rather than a prespecified value like ak).
Hence, we need more assumptions to identify the effects of a
dynamic regime g, one of the sufficient conditions is

ðYa1;a2 ; La1
2 Þ ?? A1 and Ya1;a2 ?? A2jA1 ¼ a1; L2; (C3)

where Z1 ?? Z2∣Z3 refers to statistical independence between Z1
and Z2 conditional on Z3.51 However, our example is also com-
patible both with (C3) and the settings with E[La1

2 ∣A1] ≠ E[La1
2 ], in

other words, agnostic about condition (C3). Thus, data in Table 2
themselves are not sufficient for the validity of the g-formula for
effects of a general regime g.

On the contrary, causal diagrams would indicate whether
condition (C3) holds and the assumptions encoded in the
diagrams allow f (Yg, Lg

2) to be identifiable. From the SWIG of
Figure 1(c), we can read the independences (Ya1 ;a2 , La1

2 ) ?? A1

and Ya1;a2 ?? Aa1
2 ∣A1 = a1, L1, which imply (C3) by consistency

under conditioning on A1 = a1 (ie, the “world” represented by the
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SWIG) in the second condition. Thus, the corresponding causal
DAG of Figure 1(a) allows us to identify E[Yg]. However, we
cannot deduce (C3) from Figure 1(d) owing to a d-connected path
between La1

2 and A1; hence, under the corresponding causal DAG
of Figure 1(b), E[Yg] for a general regimes g cannot be identified
even though E[Ya1 ;a2 ] for non-dynamic exposure intervention (a1,
a2) is identified as illustrated in the main text. That is, Figure 1 is
one of the examples of causal diagrams that are compatible with
our example data, where the stronger causal assumptions are
implicitly imposed on. As we have documented earlier,35 causal
diagrams (when tied with underlying causal models) often
represent the “finer” description of causal assumptions than
counterfactual notation.

The difficulty in identification of E[Yg] with g = (g1, g2) =
(g1(L1), g2(L1, A1, L2)) is directly depicted in Appendix
Figure 1(a) and (c), where L1 is suppressed for simplicity but it
can affect any variable in the graphs. A causal DAG of Appendix
Figure 1(a) is the same as Figure 1(b), while the corresponding
SWIGs are different. The structural distinction is the presence
(Appendix Figure 1(c)) or absence (Figure 1(d)) of an arrow from
L2 to hypothetical intervention (g2 or a2, according to the
dependence of intervention on covariates), respectively. We
can easily see that dependence between Yg ¼ Yg1 ;g2 and A1 is
either with or without conditioning on Lg1

2 ¼ L2 in Appendix
Figure 1(c), which suggests that E[Yg] is not identifiable without
referring to condition (C3).

Finally, we show a slightly modified causal DAG of Figure 1(b)
in Appendix Figure 1(b), in which L2 that is affected by A1

also affects Y. The corresponding SWIG, Appendix Figure 1(d),
reveals that Ya1 ;a2 is d-connected either with or without condi-
tioning on La1

2 ¼ L2; hence, the effects of dynamic regimes g and
non-dynamic exposure intervention (a1, a2) is unidentifiable if the
association between exposure and its effect lying on a path to the
outcome is confounded by unobservables. Of course, our example
data in Table 2 is incompatible with Appendix Figure 1(b) and (d)
because of independence between A and Ya1 ;a2 .

APPENDIX C. SAS CODE FOR HYPOTHETICAL
DATA ANALYSIS

+ Create a dataset;
data MSM;

input A1 L2 A2 N N1;
cumA = A1 + A2;
do i = 1 to N1; Y = 1; ID + 1; output; end;
do i = N1 + 1 to N; Y = 0; ID + 1; output; end;
drop i N N1;

cards;
1 1 1 720 576
1 1 0 180 108
1 0 1 1800 720
1 0 0 1800 900
0 1 1 5670 4536
0 1 0 630 567
0 0 1 840 294
0 0 0 3360 1008
;
+ Estimate sequential exposure probabilities;
proc logistic data = MSM desc;

model A1 = ;
output out = MSM p = P1;

run;
proc logistic data = MSM desc;
=+ Use either of the following two commands +=

model A2 = A1 L2 A1+L2; +Fitting correct exposure
probability model for Table 5;
+model A2 = A1 L2; + Fitting misspecified exposure
probability model for Table 6;
output out = MSM p = P2;

run;
+ Calculate inverse probability weights;
data MSM;

set MSM;
IPW = (A1=P1 + (1 − A1)=(1 − P1))+(A2=P2 + (1 − A2)=

A1 A2L2 Y

UW

A1|g1(L1) A2
g1 |g2(L1, L2

g1)L2
g1 Y g1,g2

UW

a

c

A1 A2L2 Y

UW

A1|a1 A2
a1 |a2L2

a1 Y a1,a2

UW

b

d

Appendix Figure 1. Causal DAGs and SWIGs for dynamic regimes and without identifiability conditions: (a) causal DAG identical
to Figure 1(b); (b) causal DAG with the arrow from L2 on Y, in which L2 is affected by A1, and the A1–L2

association is confounded by unobservedW ; (c) a “template” under intervention g = (g1, g2) = (g1(L1), g2(L1,
A1, L2)) of SWIG that corresponds to causal DAG (a); (d) a “template” under intervention (a1, a2) of SWIG that
corresponds to causal DAG (b).
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(1 − P2));
run;
+ Fit marginal structural model (3): Correct specification;
proc genmod data = MSM;

class ID;
model Y = A1 A2 =dist = normal;
weight IPW;
repeated sub = ID;
estimate "E[Y00]" int 1 A1 0 A2 0;
estimate "E[Y01]" int 1 A1 0 A2 1;
estimate "E[Y10]" int 1 A1 1 A2 0;
estimate "E[Y11]" int 1 A1 1 A2 1;

run;
+ Fit marginal structural model (4): Misspecification;
proc genmod data = MSM;

class ID;
model Y = cumA =dist = normal;
weight IPW;
repeated sub = ID;
estimate "E[Y00]" int 1 cumA 0;
estimate "E[Y01]" int 1 cumA 1;
estimate "E[Y10]" int 1 cumA 1;
estimate "E[Y11]" int 1 cumA 2;

run;
+ Fit marginal structural model (5): Misspecification;
proc genmod data = MSM;

class ID;
model Y = A1 A2 =dist = Poisson;
weight IPW;
repeated sub = ID;
estimate "A1" A1 1 = exp;
estimate "A2" A2 1 = exp;
estimate "E[Y00]" int 1 A1 0 A2 0;
estimate "E[Y01]" int 1 A1 0 A2 1;
estimate "E[Y10]" int 1 A1 1 A2 0;
estimate "E[Y11]" int 1 A1 1 A2 1;

run;
+ Fit marginal structural model (6): Correct specification;
proc genmod data = MSM;

class ID;
model Y = A1 A2 A1+A2 =dist = Poisson;
weight IPW;
repeated sub = ID;
estimate "A1" A1 1 = exp;
estimate "A2" A2 1 = exp;
estimate "A1A2" A1+A2 1 = exp;
estimate "E[Y00]" int 1 A1 0 A2 0 A1+A2 0;
estimate "E[Y01]" int 1 A1 0 A2 1 A1+A2 0;
estimate "E[Y10]" int 1 A1 1 A2 0 A1+A2 0;
estimate "E[Y11]" int 1 A1 1 A2 1 A1+A2 1;

run;

APPENDIX D. SUPPLEMENTARY DATA

Supplementary data related to this article can be found at https:==
doi.org=10.2188=jea.JE20200226.
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