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Three-dimensional computational 
model simulating the fracture 
healing process with both biphasic 
poroelastic finite element analysis 
and fuzzy logic control
Monan Wang & Ning Yang

A dynamic model regulated by both biphasic poroelastic finite element analysis and fuzzy logic control 
was established. Fuzzy logic control was an easy and comprehensive way to simulate the tissue 
differentiation process, and it is convenient for researchers and medical experts to communicate with 
one another to change the fuzzy logic rules and improve the simulation of the tissue differentiation 
process. In this study, a three-dimensional fracture healing model with two different interfragmentary 
movements (case A: 0.25 mm and case B: 1.25 mm) was analysed with the new set-up computational 
model. As the healing process proceeded, both simulated interfragmentary movements predicted a 
decrease and the time that the decrease started for case B was later than that for case A. Compared 
with experimental results, both cases corresponded with experimental data well. The newly established 
dynamic model can simulate the healing process under different mechanical environments and 
has the potential to extend to the multiscale healing model, which is essential for reducing the 
animal experiments and helping to characterise the complex dynamic interaction between tissue 
differentiations within the callus region.

Bones are vital organs in humans. Bones provide structural support, as well as physical protection1. However, 
bone fractures often occur in our daily life, especially for the elderly people. Unfortunately, despite the special 
capacity of self-regeneration and scarless formation of bone, there are still instances in which delayed healing 
or non-unions can happen, such as pathological fractures or fractures with large defects. Traditional treatment 
strategies for fractures are primarily dependent on the experience of the orthopedist. The disadvantage of this 
is that among the many treatment strategies, we cannot predict the treatment effects in advance and choose the 
best strategy for patients. With the help of the simulation of bone fracture healing, different treatment strategies 
can be predicted, and the optimal strategy can be chosen, which then can reduce the healing time and lighten the 
economic burden and pain for the patients.

Over the last several decades, a number of computational simulations of bone fracture healing have emerged. 
To sum up, there are three types of fracture healing models: mechanoregulatory healing models, bioregulatory 
healing models and coupled mechanobioregulatory healing models2. Mechanoregulatory models were first pro-
posed, in which model mechanical stimuli was the main regulator for the tissue differentiation in the callus region 
and finite element analysis was used to calculate the mechanical stimuli. Single finite element models and biphasic 
finite element models were the two primary types used to calculate the mechanical stimuli. In single finite ele-
ment models3–9, tissue differentiation pathways were regulated by mechanical stimuli (Fig. 1a) based on the work 
of Claes and Heigele10 and fuzzy logic control was used to simulate the process of tissue differentiation within 
the callus region, which is an easy way to establish the healing process as linguistic principles. In biphasic finite 
element models11–19, tissue differentiation pathways regulated by mechanical stimuli (Fig. 1b) based on the work 
of Huiskes et al.20 and partial differential equations were used to simulate the healing process by modelling cell 
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activities (proliferation, differentiation). In addition, in the work of Isaksson et al.19, cell migration was modeled 
as a diffusion process.

There are still several bioregulatory healing models and coupled mechanobioregulatory healing models. For 
bioregulatory and coupled mechanobioregulatory models, the healing process was simulated with the activities 
(migration, proliferation, differentiation and death) of different cells participating in the process within the callus 
region. These cell activities were regulated by the corresponding growth factors21–24 and mechanical stimuli25,26. 
Partial differential equations were used to simulate different cell populations during the healing process, and finite 
element analysis was used to calculate the local mechanical stimuli. Carlier and her colleagues made a step further 
in this field, they simulated the healing process with a multiscale modelling method27,28 from the intracellular 
level to the tissue level, which was a more mechanistic modelling method. Although bioregulatory and coupled 
mechanobioregulatory healing models simulated fracture healing in a more mechanistic way, there are still chal-
lenges in this field, such as the transduction of mechanical stimuli from the intracellular level to the tissue level 
and the influence of mechanical stimuli on growth factors.

The aim of this study was to set up a three-dimensional dynamic healing model regulated by both biphasic 
finite element analysis and fuzzy logic control. Unlike previous models, our model has the following advantages:

	 1.	 In our model, we used a three-dimensional transvers fracture model. Compared with two-dimensional 
models, we obtained the three-dimensional space distribution of biophysical stimulus, bone concentration, 
cartilage concentration and blood perfusion with time within the three-dimensional callus region.

	 2.	 To verified the predicted results, we made a comparison of our model with experimental data measured by 
Claes et al.29 and computational simulation conducted by Wang et al.9, which simulated the fracture heal-
ing process with linear elastic analysis and fuzzy logic. Through comparison, we can conclude that under 
the condition of large interfragmentary movement (IFM), the predicted IFM curve of our model is closer 
to the average experimental data. In addition, under the same simulation conditions, the computational 
time of our model is faster than that of Wang’s model.

	 3.	 Through combing biphasic finite element model and fuzzy logic control, the model has its advantages in 
model extension and model analysis speed.

Results
In our work, we analyzed fracture healing with two different IFMs with our computational models, which corre-
sponded to two experimental fracture healing cases in sheep29. Case A was defined as the more stable situation, 
whose IFM was 0.25 mm and gap size was 2.1 mm when in the unloaded situation. Case B was defined as the less 
stable situation, whose IFM was 1.25 mm and gap size was 3.1 mm when in the unloaded situation. Then through 
the simulation, we compared the calculated IFM with corresponding weekly measured axial movements from 
previous experiment work29. In addition, to make the tissue differentiation taking place with the callus region, the 
max diameter of the callus was 16 mm, which was according to the work of Claes and Heigele10.

From the simulation results, local biophysical stimulus, blood perfusion, tissue concentrations (cartilage con-
centration and bone concentration) and IFM were predicted over both time and space for both cases A and B at 
intervals of 7 days (Figs 2 and 3). The predicted IFM (Fig. 2) produced good prediction results compared with the 
animal experiments conducted by Claes et al.29.

The simulation results predicted a larger biophysical stimulus in case B than case A due to the lager IFM that 
case B subjected. The highest stimulus was predicted in the interfragmentary gap at the initial healing phases for 
both cases, respectively and the greater values were reached for case B than for case A. As the healing process 
proceeded, the biophysical stimulus decreased gradually to the physiological values that can be observed from 
Fig. 2a. The day that case A decreased to the physiological value was at day 42. And the day that case B decreased 

Figure 1.  Tissue differentiation pathways regulated by mechanical stimuli. (a) Tissue differentiation pathways 
regulated by hydrostatic stress and strain in single finite element analysis10. (b) Tissue differentiation pathways 
regulated by shear strain and fluid flow in biphasic poroelastic finite element analysis20.
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to the physiological value was at day 56. Therefore, it can be concluded that the increase of IFM delays the time of 
biophysical stimulus decreasing to physiological values.

There was a slower process of angiogenesis for case B (Fig. 2b). At the initial phases (before day 14), we could 
see that the angiogenesis was starting at the cortex away from the gap and peripheral side for both cases A and B. 
Next, the angiogenesis grew towards the gap centre and gradually filled the whole callus region. However, because 
the biophysical stimulus that case B subjected was over the range of fuzzy logic value “destructive”, the time of 

Figure 2.  (a) Predicted biophysical stimulus for both cases A and B at an interval of 7 days. (b) Predicted 
perfusion for both cases A and B at an interval of 7 days. (c) Predicted cartilage concentration for both cases A 
and B at an interval of 7 days. (d) Predicted bone concentration for both cases A and B at an interval of 7 days.
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angiogenesis for case B was slower for case A. From Fig. 2b, we can see that the time of angiogenesis for case A was 
at day 42 and for case B, it was ended at day 56.

More cartilage tissue was predicted in case A than in case B (Fig. 2c). In the early phases, cartilage formed 
in both periosteal and endosteal callus for both cases A and B, where there were higher biophysical stimuli and 
fewer blood perfusions, which was called the chondrogenesis process. As the healing process proceeded, because 
the process of endochondral ossification process took place, the formed cartilage differentiated into bone tissue. 
Therefore, cartilage tisssue began to decrease gradually to disappear. From the Fig. 2c, we can observe that the 
duration time of cartilage in case B (day 56) was longer than that in case A (day 42), which is because the lager 
biophysical stimulus experienced by case B was not suitable for the formation of bone.

The new bone formed later in case B than in case A (Fig. 2d). For both cases, intramembranous ossification 
took place at first near the cortex far away from the gap where there were low biophysical stimuli and proper 
blood perfusion. Then when the biophysical stimuli and perfusion were proper, the bone formation grew towards 
the central part of the callus region and the ossification type changed from intramembranous to endochondral 
ossification. From the Fig. 2d, we could see that the time of bone formation in case B (day 56) was later than in 
case A (day 42) due to the large fracture gap that resulted in the larger biophysical stimulus and insufficient blood 
perfusion in case B.

The predicted IFM from the computational simulation is shown in Fig. 3. The IFM curves predicted a decrease 
for both cases A and B. In the earlier days, there were large IFM values and almost no decrease regarding the 
curves because during this period, there is little bone formation within the callus region and the formation of car-
tilage could not provide a stable environment for fracture callus. As the healing proceeded, both curves predicted 
a rapid decrease due to bone formation. However, because of the higher mechanical stimuli suffered for case B, 
the time of IFM reaching the minimum value (day 50) was later than that for case A (day 55). Compared with 
the animal experiments conducted by Claes et al.29, both IFMs had a good correspondence with the measured 
experimental results.

We compared our model with experimental data and the work of Wang et al.9. From Fig. 4, we can concluded 
that the predicted IFM curves of both our model and Wang’s model corresponds trend of experimental data and 
the predicted data is within the error line basically. In Case A (Fig. 4a), the curves decrease at day 21 for both 
our model and Wang’s model. However, our model curve descends faster than Wang’s model curve. In Case B 
(Fig. 4b), both our model and Wang’s model correspond the experimental data well and compared with Wang’s 
model, the predicted data of our model is closer to the average value of experimental data than that of Wang’s 
model. In addition, we can conclude from Fig. 5 that under the same simulation conditions, the computational 
time of our model is faster than that of Wang’s model.

In order to prove that our model is faster than that of Wang’s model, the computational time of both models 
was simulated under different simulation conditions (different element types and different element numbers) at 
the same computer configuration (core: 28, threads: 56 RAM: 112 G). For every simulation condition, we simu-
lated three times and recorded their computational time respectively and their mean values. From Tables 1 and 
2, we can see that under the same element type and element numbers, the computational time of our model is 
faster than that of Wang’s model. Therefore, we can conclude that our model has an advantage in computational 
time that Wang’s model.

Discussion
In this study, we established a dynamic three-dimensional fracture healing model with biphasic poroelastic finite 
element analysis and fuzzy logic control. With this new model, we can predict the local biophysical stimulus and 
different tissue distribution within the callus region. The IFM can also be predicted per day. When compared 
with experimental observations, the model had a good prediction outcome. The newly established model has the 
following strengths, which are shown as follows:

Figure 3.  (a) Predicted IFM over time of case A and weekly measured IFM from experiments conducted by 
Claes et al.29. (b) Predicted IFM over time of case B and weekly measured IFM from experiments conducted by 
Claes et al.29.
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	 1.	 In our work, a three-dimensional computational model was used to simulate the fracture healing. With the 
three-dimensional callus model, we can obtained an intact information of spatial and temporal distribu-
tion for biophysical stimulus, cartilage concentration, bone concentration and blood perfusion.

	 2.	 When compared with Wang’s model9, we can concluded that in Case B (Fig. 4b), our model curve is closer 
to the experimental curve between days 21 and 49, which is the most obvious time for fracture healing. 
This may be due to the different tissue differentiation pathway we chose (our model: Fig. 1a, Wang’s model: 
Fig. 1b). Therefore, under the condition of big IFM, our model is more accurate than Wang’s model. In 
addition, because of the different mechanical stimulus we chose, fuzzy logic rules that was used to simulate 

Figure 4.  Comparison of IFM between average values of experimental data, Wang’s simulated results and our 
simulated results.

Figure 5.  Comparison of computational time between Wang’s model9 and our model for both cases A and B.

Element type Element numbers

Computational time of our model (min) Computational time of Wang’s model (min)

1 2 3 mean 1 2 3 mean

Tetrahedral elements numbers

11642 15 18 18 17 22 24 22 22.7

17952 20 21 20 20.3 25 25 24 24.7

32081 25 25 27 25.7 32 30 30 30.7

43053 28 29 28 28.3 35 35 36 35.3

Tetrahedral elements numbers

10179 16 13 15 14.7 19 19 18 18.7

13688 17 16 15 16 19 21 20 20

16590 19 20 18 19 25 24 26 25

17952 21 19 23 21 28 28 26 27.3

Table 1.  Comparison of computational time between our model and Wang’s model9 under Case A.
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the tissue differentiation process decreased from 21 to 14. The reduction of fuzzy logic rules reduces the 
computational analysis time. Therefore, under the same simulation conditions, the computational time of 
our model is faster than that of Wang’s model.

	 3.	 In our work, we used biphasic finite element model to obtain shear strain and fluid flow. Then according 
Eq. 1, the biophysical stimulus was calculated. The reason for using biphasic finite element model was that 
in the work of Isaksson et al.16, through the comparison with three mechanoregulatory models10,11,30, there 
researchers concluded that the model regulated by deviatoric strain and fluid velocity was the most pre-
cious, and only this model could predict the healing process under torsional rotation conditions. In these 
researchers’ further study17, they demonstrated that the model regulated by deviatoric strain and fluid flow 
had a good outcome compared with the experiment results. In addition, fluid shear strain was supposed to 
be the mechanical signals that is sensed by bone cells and regulate the cell activities, which is the called the 
mechanotransduction process31. Therefore, with biphasic finite element model, we can model the mech-
anotransduction process and investigate how mechanical signals from tissue level sensed by related cells 
and regulate the cell response. Therefore, from this aspect, these advantages make the model have a good 
extension.

Fuzzy logic and coupled partial differential equations are two ways to simulate tissue differentiation. Since the 
numerical solution of partial differential equations is based on the grid, the increase of the number of meshes can 
increase the time of solving partial differential equations. In addition, the number of equations used to describe 
the process of fracture healing will increase with further study of the simulation of fracture healing process, for 
example the mechanotransduction modeling. This will also increase the analysis time. Therefore, the fuzzy logic 
method is adopted on the premise of ensuring the conditions of the three-dimensional geometric model and the 
appropriate model analysis time. In addition, the fuzzy logic rules can easily integrate the biological acknowledge-
ment into rules that are convenient for those who are not familiar with differential equations. With fuzzy logic 
rules, researchers can easily communicate with medical or biological experts and change the rules conveniently 
making them easy to maintain and change.

Although the dynamic model has its strengths, there are still several limitations that need to be improved in 
the future:

	 1.	 One limitation of this study was the simulation of angiogenesis. Angiogenesis is a key process during the 
healing process. This process is a prerequisite for bone formation32. In this study, we assumed angiogenesis 
as a continuous function. When the simulation of the model finished, perfusion was filled with the whole 
callus region. However, this is not in accordance with the discrete nature of angiogenesis. Therefore, how 
to integrate the discrete nature of angiogenesis was one of the future works in our study. Some previous 
models24,27,28 had tried to add this nature in their studies. However, these models did not take the influ-
ence of mechanical factors into account. Geris et al. considered the influences of both mechanical factors 
and biochemical factors26. However, in their work, the geometry of the callus model was simplified to a 
rectangular region, which cannot reflect the real boundary conditions. In addition, in this study, the rate 
of angiogenesis was constant, which was also not in accordance with real angiogenesis and this also needs 
improvement in the future.

	 2.	 Finite element analysis is one of the most popular methods for predicting the biomechanical properties of 
biological tissues. With the finite element method, a more physically-realistic and accurate solution can 
be provided by using knowledge about the soft tissue or organ (e.g. organ geometry, elastic constants and 
boundary conditions of the problems). Finite element analysis accuracy and calculation time are propor-
tional to the number of nodes. The larger the number of nodes, the more accurate the solution and longer 
the calculation time are. However, as a prediction model that will offer help to doctors, we need the compu-
tational model to have both relatively high accuracy and quick simulation time such that doctors can make 
a quick decision and treat the patients as soon as possible. Therefore, once coming to the clinical applica-
tion, it is limited for the use of finite element analysis. A possible alternative to the finite element method 
for simulating the biomechanical properties for biological tissues is machine learning. Through machine 
learning, a mapping function combining the input variables (e.g. external load applied to tissue, biome-
chanical parameters or elastic constants, and the corresponding geometry of the soft tissue) and output 

Element type Element numbers

Computational time of our model (min) Computational time of Wang’s model (min)

1 2 3 mean 1 2 3 mean

Tetrahedral elements numbers

12056 15 17 16 16 23 23 23 23

16840 19 19 17 18.3 26 28 26 26.7

34988 28 26 28 27.3 32 32 31 31.7

42938 30 32 31 31 38 36 38 37.3

Tetrahedral elements numbers

11853 13 15 13 13.7 19 19 17 18.3

15225 16 18 17 17 22 25 22 23

16830 19 17 19 18.3 25 25 26 25.3

19107 22 21 21 21.3 27 26 28 27

Table 2.  Comparison of computational time between our model and Wang’s9 model under Case B.
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variables (e.g. deformation and local strain) can be estimated. Once the training process is performed, it 
will save more time than finite element analysis.

	 3.	 The fracture healing process is a complex biological process that is regulated by both mechanical factors 
and biochemical factors. In this study, we only consider the regulatory role of mechanical stimuli on frac-
ture healing. Biochemical factors, such as growth factors, also have an important influence on the healing 
process. Some growth factors, such as transforming growth factor-β (TGF-β), platelet-derived growth 
factors (PDGFs), bone morphogenetic proteins (BMPs) and vascular endothelial growth factors (VEGF), 
have been demonstrated to regulate the production of chondrocytes, osteoblasts and endothelial cells33–41. 
Therefore, it will be an improvement for the current model to take the influence of biomechanical factors 
into account.

In all of the above, the new set-up dynamic fracture healing model allows us to simulate the fracture healing 
process under different IFM conditions resulting in the different mechanical conditions. This model enables us 
to communicate with medical experts or orthopedists easily with the fuzzy logic rules and offer help for them 
to optimize the treatment methods and reduce the need for animal experiments. In addition, the model has the 
potential to extend to a multiscale model, which can simulate the healing process in a more mechanistic way and 
help us understand the complex dynamic interactions between tissue differentiation with the call region.

Methods
The simulation of bone fracture healing can be described as an iterative process that includes biphasic poroelastic 
finite element analysis and fuzzy logic control, as shown in Fig. 6. The following is a detailed description of bipha-
sic finite element analysis and fuzzy logic control, respectively.

Calculation of biophysical stimulus.  A local biophysical stimulus S was used to regulate the tissue differ-
entiation in our work. Following the work of Predergast et al.42, the biophysical stimulus was defined as

γ
= +S

a
v
b (1)

where γ is the octahedral shear strain and v is the fluid velocity; and a and b are empirical constants20. Their values 
are adopted from the work of Lacroix and Prendergast11: a = 3.75% and b = 3 μms−1.

For the calculation of Octahedral shear strain γ and fluid velocity v, a biphasic poroelastic finite element 
method was used. The method was implemented in ABAQUS 6.13–1 (Dassault Syste’mes Simulia Corp., 
Providence, RI, USA). A three-dimensional finite element model of an ovine tibia was modelled based on the 
animal models in the work of Claes et al.29. The geometric model is shown in Fig. 7a including the fracture gap, 
cortical bone and callus around the cortical bone. Due to the symmetrical characteristic of the callus with trans-
verse osteotomy, half of the geometry of the callus was modelled. The finite element model (Fig. 7b) consisted 

Figure 6.  Flow chart of simulation of bone fracture healing.
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of hexahedral elements and wedge elements (Case A: 13,688 elements and Case B: 15,225 elements). The callus 
region was filled with connective tissue at the initial stage.

A custom-designed external fixator was used to stabilize the bone fractures (Fig. 7c). The detailed information 
about the fixator is in the work of Claes et al.43. The nonlinear constitutive behaviour of the fixator is shown in 
Fig. 7d, which was adopted from the work of Simon et al.7. Due to the high bending and torsional stiffness of the 
fixator, the fracture ends can only move axially. Therefore, we used a translational connector in the interaction 
module of the ABAQUS software to model the constitutive behaviour of the fixator. First, two reference points 
(RP-1 and RP-2) were modelled in the top and bottom centre of cortical bone respectively. Then a point-to-point 
wire was established between these two points, which represents the translational connector. Finally, the nonlin-
ear constitutive behaviour of the fixator was assigned to the wire and the modelling of the fixator was completed. 
A 500 N external load was applied on the RP-1 and the full restraint was applied on the RP-2. Through the finite 
element analysis, octahedral shear strain γ and fluid velocity v were calculated.

All finite elements had poroelastic material properties and the material properties of cortical bone, connective 
tissue, cartilage tissue and woven bone are shown in Table 3. As the healing process proceeded, tissue differentia-
tion occurred within the callus region. Therefore, the callus elements were updated at each time step based on the 
properties of pure tissue and their current concentrations in the same element. For the element’s Young’s modulus 
Eelement, we used a cubic rule of mixture that is based on the experimental relationship from Carter and Hyes44:

= + +E E c E c E c (2)element conn elem conn cart elem cart woven elem woven,
3

,
3

,
3

where Eelement represents element Young’s modulus; Econnrepresents Young’s modulus of connective tissue, celem,conn 
represents the concentration of connective tissue in an element; Ecart represents Young’s modulus of cartilage, 

Figure 7.  (a) Geometry model of bone fracture healing. (b) Finite element model of bone fracture healing. (c) 
Schematic drawing of a fractured bone with a custom-designed external fixator29. With permission from John 
Wiley and Sons. (d) The nonlinear constitutive behavior of fixator under case A and B, respectively.

Tissue
Young’s modulus 
(Mpa) Possion’s ratio Permeability (m4/Ns) Porosity

Connective tissue 3 0.3 1E-14 0.8

Cartilage 200 0.45 5E-15 0.8

Woven bone 4000 0.36 3.7E-13 0.8

Cortical bone 10000 0.36 1E-17 0.04

Table 3.  Material properties of connective tissue, cartilage, woven bone and cortical bone.
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celem,cart represents the concentration of cartilage in an element; Ewoven represents Young’s modulus of woven bone, 
celem,woven represents the concentration of woven bone in an element.

For the element’s Possion’s ratio velement, permeability permelement and porosity poroelement, we used a linear rule 
of mixture:

Figure 8.  (a) Fuzzy logic controller of tissue differentiation within the callus region. The controller has six 
input variables and three output variables. The fuzzification module transforms numerical values to associated 
linguistic values and the defuzzigication module transforms linguistic values to associated numerical values. 
(b) Membership function of biophysical stimulus. (c) Membership functions of perfusion, perfusion in an 
adjacent element, cartilage concentration, bone concentration and bone concentration in an adjacent element. 
(d) Membership function of change in perfusion. (e) Membership function of change in cartilage concentration. 
(f) Membership function of change in bone concentration. Among these membership functions, (b) and (c) 
represent the membership function of input variables. (d), (e) and (f) represent the membership function of 
output variables.
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ν ν ν ν= + +c c c (3)element conn elem conn cart elem cart woven elem woven, , ,

where velement represents element’s Possion’s ratio; vcon represents Possion’s ratio of connective tissue, celam,conn rep-
resents the concentration of connective tissue in an element; vcart represents Possion’s ratio of cartilage, celam,cart 
represents the concentration of cartilage in an element; vwomen represents Possion’s ratio of woven bone, celam,woven 
represents the concentration of woven bone in an element.

= + +perm perm c perm c perm c (4)element conn elem conn cart elem cart woven elem woven, , ,

where permelement represents element permeability; permcorn represents permeability of connective tissue, celem,conn 
represents the concentration of connective tissue in an element; permcart represents permeability of cartilage, 
celem,cart represents the concentration of cartilage in an element; permwoven represents permeability of woven bone, 
celem,woven represents the concentration of woven bone in an element.

= + +poro poro c poro c poro c (5)element conn elem conn cart elem cart woven elem woven, , ,

Rules

Input variables Output variables

S cperfusion candPerfusion ccartilage cbone cadbone Δcperfusion Δccartilage Δcbone

1 Not destruction Low Not low — — — Increase — —

2 Not destruction Medium High — — — Increase — —

3 Not destruction High — — — — Increase — —

4 Low High — Low — High — — Increase

5 High — — Low Not high — — Increase —

6 Low — — Low Not high — — Increase —

7 Medium — — Not low — — — Increase —

8 Low — — Not low — — — Increase —

9 Low Not low — Not low — Not low — Decrease Increase

10 Medium Not low — Not low — Not low — Decrease Increase

11 Low Not low — Not low — High — Decrease Increase

12 Low Not low — Low High High — Decrease Increase

13 Destruction — — — — — Decrease Decrease Decrease

14 Not destruction — — — — — Stay Stay Stay

Table 4.  Fuzzy logic rules for tissue differentiation within callus region. Note: “—” represent the current 
variable doesn’t participate in this rule. S represents the biophysical stimulus of current element. cperfusion 
represents the perfusion concentration of current element. cadPerfusion represents the highest perfusion 
concentration of adjacent elements of current element. ccartilage represents the cartilage concentration of 
current element. cbone represents the bone concentration of current element. cadbone represents the highest 
bone concentration of adjacent elements of current element. Δcperfusion represents the change of perfusion 
concentration of current element. Δccartilage represents the change of cartilage concentration of current element. 
Δcbone represents the change of bone concentration of current element.

Figure 9.  Mesh convergence analysis for case A and case B. Influence of number of finite elements on predicted 
healing days for both cases A and B.
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where poroelement represents element porosity; poroconn represents porosity of connective tissue, celem,conn represents 
the concentration of connective tissue in an element; porocart represents porosity of cartilage, celem,cart represents 
the concentration of cartilage in an element; porowoven represents porosity of woven bone, celem,woven represents the 
concentration of woven bone in an element.

Connective tissue concentration, cartilage concentration and bone concentration in the callus region has the 
following relationship:

+ + =c c c 1 (6)conn cart woven

where conn represents connective tissue concentration in an element; ccart represents cartilage concentration in an 
element; cwoven represents woven bone concentration in an element.

Simulation of tissue differentiation.  Fuzzy logic control was used to simulate the process of tissue dif-
ferentiation inside the fracture callus. In our work, the Fuzzy Inference Engine that is provided by the Fuzzy 
Toolbox in MATLAB R2011A (The MathWorks, Inc., Natick, MA, USA) was employed to simulate biological 
processes. The Mamdani-type fuzzy logic controller was used to predict the changes of blood perfusion, cartilage 
concentration and bone concentration. The controller consisted of six input variables and three output variables 
(Fig. 8a). The input variables included biophysical stimulus, perfusion, perfusion in an adjacent element, cartilage 
concentration, bone concentration and bone concentration in an adjacent element. The output variables included 
change of perfusion, change of cartilage concentration and change of bone concentration.

The fuzzy controller consisted of 14 linguistic if-then rules that described the processes of angiogenesis, 
intramembranous ossification, chondrogenesis, endochodral ossification and tissue destruction (Table 4). Rules 
no. 1–3 described the process of angiogenesis, which depended on the local biophysical stimulus and perfusion 
conditions of adjacent elements. The moderate biophysical stimulus and higher perfusion in at least one adjacent 
element increased the perfusion of the current element. Rule no. 4 described the process of intramembranous 
ossification. The bone concentration increased when the biophysical stimulus was low, perfusion was high, car-
tilage was low and bone concentration was high in at least one adjacent element. Rules no. 5–8 described the 
process of chondrogenesis, which depends on the local biophysical stimulus and current cartilage concentration. 
Rules no. 9–12 described the process of endochodral ossification. When the local biophysical stimulus was appro-
priate and the perfusion was sufficient, this process was active, which led to the increase of bone concentration 
and decrease of cartilage concentration. Rule no.13 modelled the overloading conditions during fracture healing. 
When active, there was a decrease in perfusion, cartilage concentration and bone concentration. To make the 
fuzzy logic rules work, rule no. 14 was added.

Membership functions of the six input variables and three output variables were defined as trapezoidal func-
tions (Fig. 8b–f). Through the membership functions, the quantitative values (biophysical stimulus, tissue con-
centrations and perfusion) were switched to linguistic values (e.g. low, medium, high, increase and decrease). 
The centroid method was used for the fuzzy inference procedure, which calculated the final output prediction 
as an average sum of the weighted single outputs of the active rules. The results of cell culture experiments from 
the work of Kaspar et al.45 served as the basis for defining the membership functions of tissue concentrations and 
perfusion (Fig. 8c–f). Following the work of Lacroix and Prendergast11, the membership function of biophysical 
stimulus was defined (Fig. 8b).

The initial conditions for perfusion were defined according to the work of Simon et al.7. At the initial stage, 
the perfusion in the callus region was set to 0%. At the peripheral boundary of the callus, the perfusion was set to 
30%, which represented blood supply from adjacent soft tissues46. After ten days, the perfusion in the medullary 
channel was set to 30%, which represented a revascularisation from the marrow46.

Mesh convergence study.  To test whether the mesh size affect the results of fracture healing simulation 
results (healing days), we conducted a mesh convergence study, which is shown in Fig. 9. From the Fig. 9, we can 
concluded that with the increase of element numbers, there is a small influence on the healing days, which is 
acceptable. Therefore, for the computation model, we thick that the element size has no relationship with healing 
simulation.

Data availability.  The datasets generated during and/or analysed during the current study are available from 
the corresponding author on reasonable request.
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