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IL-13 from intraepithelial lymphocytes regulates
tissue homeostasis and protects against
carcinogenesis in the skin

Tim Dalessandri!, Greg Crawford!, Mark Hayes', Rocio Castro Seoane! & Jessica Strid!

The skin is under constant renewal and exposure to environmental challenges. How
homeostasis is maintained alongside protective mechanisms against damage is unclear.
Among the basal epithelial cells (ECs) is a population of resident intraepithelial lymphocytes
(IELs) that provide host-protective immune surveillance. Here we show that IELs
cross-communicate with ECs via the production of IL-13. Skin ECs are activated by IEL-derived
IL-13, enabling a canonical EC stress response. In the absence of IL-13, or canonical IEL, the
skin has decreased ability to repair its barrier and increased susceptibility to cutaneous
carcinogenesis. |L-13 controls the rate of EC movement through the epidermis, which might
explain the importance of IL-13 for epidermal integrity and its suppressive effect on skin
carcinogenesis. These findings show that IL-13 acts as a molecular bridge between IELs and
ECs, and reveal a critical host-defensive role for type-2 immunity in regulating EC tissue
homeostasis and carcinogenesis.
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mmune surveillance refers to the capacity of the immune

system to sense cellular dysregulation and respond to

restore homeostasis. This continued ‘quality control’
mechanism has most commonly been studied in relation to
cancer! ™. However, the concept of immune surveillance can
also be more broadly applied to non-malignant pathologies and
homeostatic tissue control®.

The epithelial barriers of our body surface tissues are
continually exposed to environmental challenges and must
respond appropriately to maintain tissue integrity. Epithelial
cells (ECs), which line body surface tissues, are dynamic and
versatile cells, and evidence indicates that they are important
drivers of immune surveillance®. In close association with ECs
are the specialized tissue-resident T cells known as intraepithelial
lymphocytes (IELs). IELs constitute a large, but somewhat
enigmatic, population of T lymphocytes. They carry
recombination activating gene (RAG)-dependent rearranged
T-cell receptors (TCRs), yet have limited TCR diversity and are
mainly major histocompatibility complex non-restricted cells.
They express innate receptors that enable reaction to stress
antigens with rapid ‘innate-like’ response kinetics’. The murine
skin contains a unique subset of Y3 TCR™ IELs, called dendritic
epidermal T cells, that exclusively carry a Vy5Vél TCR and
constitutively express stress-sensing receptors such as NKG2D.
NKG2D ligands are induced on stressed ECs, are expressed by
most epithelial tumours and the NKG2D pathway is stronglgf
associated with anti-tumour responses in both humans and mice®.
We have previously shown that skin IELs directly recognize and
respond to alterations in autologous stress antigens on local ECs
(keratinocytes (KCs)), including ligands for the NKG2D receptor9.
This rapid afferent sensing of stressed ECs probably has a crucial
role in the early detection of pre-malignant cells and has been
termed ‘lymphoid stress surveillance’ (LSS)1%11 Indeed, the
absence of canonical skin IELs confers a significant increase in
the susceptibility to skin carcinogenesis”. Curiously, when
tumour-protective skin-resident IELs are activated by stressed
ECs in the LSS response, a dominant Th2-biased downstream
response is triggered with large amounts of interleukin (IL)-13 and
IgE being produced. This stress-induced type-2 immune response
is dependent on canonical IEL recognition of stressed ECs via the
NKG2D pathway'2. Although Th2 immunity has traditionally
been thought to impair host tumour eradication, the surprising
association between a stress sensor such as NKG2D and induction
of type-2 immunity necessitates investigation into the role of early
type-2 immunity in cancer immune surveillance.

Stressed ECs promptly release many cytokines; among the
most robustly expressed are IL-25, IL-33 and thymic stromal
lymphopoietin (TSLP), all of which can drive type-2 immune
responses. This propensity of damaged epithelial tissues to induce
type-2 immunity may underlie the high frequency of allergic and
atopic disease at the skin and mucosal surfaces. However, despite
the intense interest in this area, the cellular and molecular basis of
how type-2 immunity is linked with EC dysregulation and barrier
disruption is not fully understood, nor is the functional role of
this type of immunity for EC homeostasis or immune surveillance
fully elucidated. The relationship between allergic disease and
cancer has been long-debated, but the biological nature of this
association is unclear. Overviews of the epidemiology literature
show both potent inverse and positive associations. This
divergence highlights the complexity of the underlying interac-
tions as well as reflects the heterogeneity of these diseases.
Intriguingly, inverse associations are more common for tissues
that interface with the external environment, such as the skin!>14,
Nonetheless, molecular mechanism(s) for how atopy may
translate into a distinct functional advantage against EC
carcinogenesis have not been described.
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Here we investigate the importance of IEL-EC cross-talk and
type-2 immunity in skin homeostasis. We show that an important
part of LSS is rapid IL-13 production by IELs, and that this
provides a molecular bridge between the IELs and ECs.
IEL-derived IL-13 has prominent effects on skin ECs, enabling
a canonical EC response to stress with the release of TSLP and
IL-33, and accelerating the rate of EC movement through
the epidermis. Mice lacking IL-13, or canonical IEL, have
evidence of stress in the skin, with enhanced transepidermal
water loss (TEWL) and defects in the restoration of skin barrier
integrity after insult. In addition, mice lacking IL-13 are more
susceptible to cutaneous carcinogenesis. Hence, LSS-induced
type-2 immunity is part of an early ‘allergic’ host defence
mechanism regulating tissue homeostasis and protecting against
carcinogenesis.

Results

Skin IELs are potent producers of IL-13. The importance of
tissue-specific IELs for host protection is evident by the marked
increase in skin tumour susceptibility of mice lacking only
Vy5V381 T skin IELs’. The tumour protection conferred by &
T cells has primarily been attributed to their cytotoxicity
and them being an early source of interferon-y (IFN-y)
(refs 15,16). However, we found that, when skin IELs were
activated in situ by a variety of environmental stressors, their
principal stress response was to produce type-2 cytokines,
primarily IL-13 (Fig. 1). In the resting skin, IELs are
morphologically very dendritic and use these dendrites to form
contact points with the ECs!” (Supplementary Fig. 1). Upon a
mild topical physical insult, or skin exposure to chemicals such as
12-O-tetradecanoylphorbol-13-acetate (TPA) or the carcinogen
7,12-dimethylbenz[a]anthracene (DMBA), IELs retracted their
dendrites and rounded up their cell bodies (Supplementary
Fig. 1), which parallels with IEL activation’. At the same time, IL-
13 was upregulated in the epidermal tissue. This was a conserved
response to stress and was seen both after exposure to physical
stressors, such as tape-stripping and shaving, or following
exposure to ultraviolet irradiation (UV) and chemicals such as
TPA or DMBA (Fig. 1a)—and even after transgenic upregulation
of NKG2D ligands on skin ECs'2. The vast majority of freshly
isolated skin IELs stimulated ex vivo also produced potent
amounts of IL-13 protein within just a few hours, while they did
not produce IFN-y or IL-17 (Fig. 1b,c). Importantly, the IELs
were the only cells in the epidermis to produce IL-13 (Fig. 1d).
This IL-13 signature was unique to the Vy5V31 T skin IELs and
not a universal Y8 T-cell phenomenon, as systemic y0 T cells
isolated from the skin draining lymph node or spleen did not
show this IL-13 bias (Fig. 1e; supplementary Fig. 2). Using IL-13-
egfp reporter mice, we found that Vy5V31 ™ epidermal IELs were
in fact positive for IL-13 already at steady state in the resting skin,
and that IL-13 expression was further upregulated following
in vivo topical exposure to TPA (Fig. 1fg) and other
environmental challenges (Supplementary Fig. 3). In contrast,
Vy5~ dermal v T cells were negative for IL-13-egfp (Fig. 1f,g).
Hence, the epidermal IELs constitutively produce IL-13 at steady
state, show a distinctive and conserved IL-13 signature when
responding to environmental stress and are the only cells in the
epidermis to produce IL-13.

IEL-derived IL-13 activates skin ECs. IL-13 mediates its effects
by interacting with a complex receptor system comprised of
IL-4Ro and two IL-13-binding proteins, IL-13Ral and IL-13Ra2
(ref. 18). At steady state in the resting skin, all the basal keratin 5
KCs expressed the main IL-13Ral (Fig. 2a,b) and IL-4Rol and
IL-13Ro2 were also expressed by KCs (Supplementary Fig. 4).
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Figure 1 | Skin IELs are potent producers of IL-13. (a) Quantitative RT-PCR analysis of IL-13 mRNA in the epidermis isolated 4 h after the indicated topical
stress. Data are expressed as mean + 1 s.e.m. relative to the control gene cyclophylin (n=3-6 per condition). (b-d) Intracellular protein staining in Vy5*
skin IELs following 4 h ex vivo stimulation with PMA/iono of (b-d) IL-13 and (¢) IFN-y and IL-17. In d, CD45M Vy5T skin IELs (red) are shown with CD45mid
Langerin* LCs (blue) and CD45~ KCs (black). Representative FACS plots shown. (e) y3 T cells isolated from the epidermis, LN or spleen compared for
intracellular IL-13 and INFy production following 4 h ex vivo stimulation with PMA/lono (n=3). (a-e) data from WT FVB mice. (f) Vy5* and Vy5~
TCRyS ™ T cells isolated from naive skin of BALB/c mice (grey) and IL-13egfp reporter mice (black lines) and (g) 24 h after topical exposure to TPA.
(F) Shows histograms of the gfp ™ v5 T cells and (g) the MFI of IL-13egfp before and after TPA challenge (n =3 and 4). Statistical significance of difference
was determined using Student's t-test for unpaired data with ***P<0.001 and ****P<0.0001.

An important mechanism of modulating IL-13 responses
may be through the regulation of its receptors, and indeed
following topical skin abrasion (Supplementary Fig. 4A,B) or
exposure to DMBA (Supplementary Fig. 4C,D) both IL-4Ra1 and
IL-13Ral were further upregulated. The regulation of the IL-13
receptors appeared to be independent of IL-13, as a similar
upregulation on stressed KCs in vivo was seen in mice deficient in
IL-13 (Supplementary Fig. 4C,D). The IL-13Rs on KCs were
active as addition of recombinant (r)IL-13 to primary KCs
in vitro induced further upregulation of IL-4Ral and particularly
of the ‘decoy’ receptor IL-13Ra2 (Supplementary Fig. 4E-G), as
well as production of TSLP, IL-1o. and TNFa (Fig. 2c-e). In
parallel, IL-13 was essential for the canonical KC stress response
in vivo, as IL-13-deficient mice exposed topically to the
carcinogen DMBA did not show the induction of TSLP, IL-33 or
caspase-3 seen in wild-type (WT) mice (Fig. 2f-h). To determine
whether IELs were the source of this IL-13, we exploited the fact
that skin IELs are radioresistant (Supplementary Fig. 5) and
generated bone marrow (BM) chimeras, in which IELs were the
only haematopoietic cells in the skin that could produce IL-13.
This was achieved by reconstituting irradiated WT mice with BM
from mice in which both IL-13 alleles had been replaced by egfp

(IL-13¢8P/e8fP _, W'T); for brevity, IL-138/¢8%P mice are termed
IL-13~/~ henceforth. As controls, we generated chimeric mice
in which IELs were IL-13 deficient, but other haematopoietic cells
were IL-13 sufficient, by reconstituting irradiated IL-13 ~/~ mice
with WT BM (WT—IL-137/7), as well as WT mice
reconstituted with WT BM (WT—>WT) and IL-13~/~ mice
reconstituted with IL-13 7/~ BM (IL-13 7/~ »IL-13 /7). The
chimeric mice all had similar numbers of canonical IELs
and these were egfpt in IL-137/~ -IL-137/~ and WT—
IL-13~/~ chimeras in which radioresistant host IELs were
attempting to produce IL-13, but not in chimeras containing WT
IELs (Supplementary Fig. 5D,E). Production of IL-13 was
upregulated further on stimulation of IELs with PMA and
ionomycin (Supplementary Fig. 5E). Conversely, egfp T cells were
only found in other lymphoid tissues in chimeric mice
reconstituted with IL-137/~ BM. Topical exposure of the
chimeric mice to DMBA showed that mice that lacked IL-13 in
the hematopoietic system, but had IL-13-sufficient IELs, had a
normal KC response to stress, as shown by the induction of
TSLP and IL-33. In contrast, KCs from mice with IL-13-deficient
IELs (but IL-13-sufficient hematopoietic cells) did not respond
normally to DMBA-induced stress (Fig. 2i,j). We conclude that
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Figure 2 | IEL-derived IL-13 activates skin EC. (a,b) Epidermal cell suspensions from resting WT skin stained for CD45, keratin 5 and IL-13Ra1.
Representative examples shown. (c-e) Primary neonatal KCs cultured in vitro with/without 20 ngml ~" rIL-13 were assessed for expression of (¢) TSLP,
(d) IL-1o and (e) TNFo (n=6). UT, untreated. (a-e) data from WT FVB mice. (f-h) WTand IL-13 =/~ mice were treated topically in vivo with DMBA once
and freshly isolated epidermis analysed by qRT-PCR 72 h later for expression of the genes (f) TSLP, (g) IL-33 and (h) caspase-3. (i,j) Fully reconstituted BM
chimera mice were treated with a single skin exposure of DMBA (8 weeks after BM transplant) and isolated epidermis analysed for (i) TSLP and (j) IL-33
expression at the indicated time points (n=4 per time point). IL-13 =/~ = WT indicates that the donor is IL-13~/~ and the host WT (IL-13-sufficient
IELs); WT —IL-13 =7~ indicates that the donor is WT and the host IL-13 =/ = (IL-13-deficient |ELs). Data in ¢-j were done by gRT-PCR and are expressed as
mean +1 s.e.m. relative to the control gene cyclophylin. WT mice are shown in black bars and IL-13~/ = mice in orange bars. (f-j) Data from mice on
BALB/c background. Statistical significance of difference between experimental groups was determined using Student's t-test for unpaired data with
*P<0.05, **P<0.01, **P<0.001 and ****P<0.0001.

IEL-derived IL-13 is central for a canonical KC stress response,
demonstrating the importance of an integrated local tissue
response to acute environmental challenges.

IEL and IL-13 sustain tissue health and restore integrity. To
determine the relevance of IELs and the role of IL-13 on the
health status of the epithelial tissue, we first looked at the resting
steady-state skin. We found that the ECs appeared more stressed

and had significant aberrant expression of the NKG2D ligand
Rae-1 when canonical IELs were absent. This was evident also in
total IL-13-deficient mice and even in mice where IL-13 was
absent only in the IELs, while ECs in mice with IL-13-sufficent
IELs had no or low expression of Rae-1 in spite of lacking IL-13
in the hematopoietic system (Fig. 3ab). In addition,
quantification of TEWL as a measure of skin integrity showed
that even the resting skin had a small but significantly higher
degree of water loss in the absence of canonical IELs or IL-13
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Figure 3 | IELs and IL-13 maintain tissue health and restore integrity after insult. Rae-1 expression in the epidermis of naive (a) FVB WT (n=05),
FVB Terd =/~ (n=5) and (B) WT BALB/c /IL-13~/~ BM chimeras (n=4 per group) was analysed by qRT-PCR. Data are expressed as mean + 1 s.e.m.
relative to the control gene cyclophilin. In b, IL-13 =/~ donor to WT have IL-13-sufficient IELs; WT donor to IL-13~/~ host have IL-13-deficient IELs.
(c-h) TEWL was analysed as a measure of barrier integrity using a tewameter probe assessing water evaporation rate and reported as ghm =2 (where
g =water loss in grams, h = time in hours, m? = metres squared). TEWL was measured in naive (¢) FVB WTand Terd =/~ mice (n =20 per group) as well
as (d) BALB/c WTand IL-13 7~ mice (n=25-27 per group). (e,f) The dorsal ear skin was abraded by tape-stripping (6 x ) and TEWL measured just after
tape-stripping and at indicated time points the following days in (e) FVB WT and Terd =/~ and (f) BALB/c WT and IL-13~/~ mice (n=10 in all groups).
The data are expressed as % of the max TEWL measured just after tape-stripping. Max TEWL as measured just after tape-stripping is shown for all groups
in the insert graphs. (e,f) were repeated twice with similar results. Black lines show WT groups, red line Terd =/ ~ and orange line IL-13 =/~ mice. (g,h) The
dorsal ear skin was abraded by tape-stripping (6 x ) and TEWL measured as before but (g) Terd =/~ and (h) IL-13 =7/~ mice were treated topically with
50 ng rlL-13 just after tape-stripping and again after 24 h (n=10 in all groups). (g) Red line shows Terd =/~ mice -+ rlL-13 and (h) orange line shows
IL-137/~ mice +rlL-13, WT mice treated with the vehicle, PBS, is shown in black lines. Statistical significance in a-d and inset graphs in e-f were
determined using Student'’s t-test for unpaired data with **P<0.01, ***P<0.001 and ****P<0.0001. In e-h, statistical significance of difference between
experimental groups was assessed over time using linear regression. NS, not significant.

(Fig. 3c,d). Moreover, when the skin of mice lacking canonical
IELs or IL-13 was challenged by removing the stratum corneum
by tape-stripping, an increased degree of water loss was observed,
suggesting a worse barrier function and a poorer tolerance to
damage (Fig. 3ef, inserts). More strikingly, mice deficient in IELs
or IL-13 showed a significantly impaired ability to repair the
integrity of the barrier and re-establishing tissue homeostasis after
the insult. The barrier was repaired much more slowly and even
5-6 days after insult, when WT skin was fully repaired, the
mutants still showed a significant TEWL (Fig. 3e,f). Notably, this
barrier-repair defect could be rectified by adding topically rIL-13
after the insult—both in mice lacking canonical IELs and in mice
lacking IL-13 (Fig. 3g,h). Indeed, even topical application of IL-13
cytokine to WT mice after removal of the stratum corneum

sped-up the recovery of an intact barrier (Supplementary
Fig. 6A,B). However, for deeper skin insults beyond the
epithelium, IL-13 was redundant in the repair of full skin
thickness wounds (Supplementary Fig. 7), although closure of
full-thickness skin wounds are significantly delayed in vd
T-cell-deficient mice!®?°. Thus, skin IELs and their IL-13
production are vital in maintaining a healthy epithelium and
play an important role in restoring epithelial tissue integrity
following insult.

IL-13 protects against cutaneous epithelial carcinogenesis. We
have shown that the same IEL that is host-protective against
inflammation-driven carcinogenesis is also a strong driver of
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type-2 immunity®!'? and local IL-13 responses (Fig. 1). Hence, we

wanted to examine the role of IL-13 in epithelial carcinogenesis.
We assessed skin tumour formation in IL-13-deficient mice using
two different models of spontaneous epithelial carcinogenesis.
First, we evoked ‘DMBA complete’ carcinogenesis by exposing
the back skin once weekly to the carcinogen DMBA. This does
not cause inflammation in the tissue, but the ensuing
accumulation of mutations in the ECs causes the outgrowth of
tumours. Mice lacking IL-13 were significantly more susceptible
to DMBA-induced carcinogenesis and developed both more and
bigger tumours than WT mice (Fig. 4a,b). Mice deficient in
canonical IELs were also highly susceptible to DMBA complete
carcinogenesis, developing tumours earlier, as well as significantly
more and bigger tumours than their WT counterparts (Fig. 4c,d).
Next, we examined the commonly used model of DMBA-TPA
carcinogenesis, where a single subcarcinogenic dose of DMBA,
which causes EC mutations primarily in hras (initiation), is
followed by repeated applications of the inflammatory reagent

ag b 4
3 TWT g —Wr
2 - -
26 IL-13 g 30 IL-13
% 4 4 P=0.0012 g EZO P=0.0027
g 2 2 10
= £
= >S5
0+ T T - 0+ T T
5 10 15 5 10 15
Weeks post initiation Weeks post initiation
c d
10 °
3 W 3 oW
3 81 —= Terd g 100 4 ~ Terd
E 6 - ~
~ mNE
[}
£ 4 P<0.0001 s € 50 4 P<0.0001
o [
=]
- 2 //YH £
= >
0+ T T = 0
5 10 15 5 10 15
Weeks post initiation Weeks post initiation
e f
[0
o 81==WT ] 40 {1 = WT
4 IL-137" o] IL-137"
2 6 E 30
£ o
) 2 20
3 | Peoo00t = P <0.0001
3
g 2 10
= 5
1 = 0
5 10 15 20 5 10 15 20
Weeks post initiation Weeks post initiation
g h
o 2
. 409 __ wr ) 00 - WT+
g 30{™ IL-4 g 150] = IL4
1S P
E 20 g 2100
3 P <0.0001 == P <0.0001
g 10 3 50
= €
04 . : . B 04 . . \
0 5 10 15 0 5 10 15

Weeks post initiation Weeks post initiation

- —_
o &)}

o

0
Donor: WT
Host: WT

Tumours / mouse week 17

IL-137" wT
IL-137 IL-137"

TPA (promotion), which allows for the few mutated clones to
expand and form tumours. y8 T-cell-deficient and Vy5V31 ™
IEL-deficient mice are more susceptible to this form of two-stage
chemical cutaneous carcinogenesis®!>. Consistent with this,
mice lacking IL-13 were also more susceptible to this
inflammation-driven carcinogenesis and developed significantly
more and bigger tumours than WT controls (Fig. 4e,f). This is
specific to IL-13 as mice lacking IL-4 were significantly less
susceptible to tumour development following DMBA-TPA,
suggesting that IL-4 may drive inflammation in this model,
whereas IL-13 works differently (Fig. 4g,h). A constraint on this
interpretation is the caveat that the IL-13 and IL-4 mutant mice
used in this study were on a different background strain.
There are well-known differences in susceptibility to DMBA-
TPA carcinogenesis across different background strains®!,
making direct comparison between mutants challenging. All
experiments on mutant strains were internally controlled with
the appropriate background strain. Furthermore, using BM
chimeric mice, we were additionally able to show that mice
lacking IL-13 only in the IELs (WT—IL-137/7) were as
susceptible to DMBA carcinogenesis as mice completely lacking
IL-13 and both mutants developed more tumours than WT
(Fig. 4i). The increased susceptibility of IL-13 =/~ mice to
DMBA carcinogenesis was not due to an increased absorption of
the carcinogen through the barrier-disrupted skin or an increased
metabolism of DMBA due to differences in LCs or other
skin DC populations (Supplementary Fig. 8), as the level of
double-stranded DNA breaks in ECs caused by the initial DMBA
exposure was similar between WT and IL-137/~ mice
(Supplementary Fig. 9). The tumour-protective effect of IL-13
additionally appears to be restricted to carcinogenesis at the
epithelial skin barrier, as mice lacking IL-13 were not more
susceptible to subcutaneous tumour growth (Supplementary
Fig. 10). Together, this demonstrates that IL-13 is strongly
protective against cutaneous epithelial carcinogenesis.

IL-13 promotes EC maturation and transit through epidermis.
To explore how IL-13 promotes tissue integrity and protects
against carcinogenesis, we studied its effect on epidermal
structure and maintenance. The skin epithelium is under
constant renewal. KCs move from the basal proliferative layer up
through the spinal and granular layers undergoing differentiation

Figure 4 | IELs and IL-13 protect against cutaneous epithelial
carcinogenesis. (a-d) The shaved backs of mice were treated once weekly
with 200 nmol DMBA to evoke ‘complete DMBA' carcinogenesis. Animals
were scored, tumours counted and measured once weekly. Data are
expressed as average number of tumours per (a) BALB/c WT and
IL-13~/~ mouse, and (€) FVB WT and Tcrd —/ — mouse, and average
tumour size per (b) BALB/c WTand IL-13 =/~ mouse, and (d) FVB WTand
Terd =/~ mouse (n=10-14 per group). (e-h) The shaved backs of mice
were treated with a single subcarcinogenic dose of DMBA followed by
twice weekly application of TPA to promote chronic skin inflammation and
outgrowth of tumours. Mice were scored weekly and the data expressed as
(e,g) average tumour number or (fh) tumour size per (ef) BALB/c WT or
IL-137/~ mouse (n=12 per group) or (gh) FVB WT or IL-4 =/~ mouse
(n=10 per group). Statistical significance between groups was assessed
over time using linear regression. (i) BALB/c WT/IL-13~/~ BM chimera
mice were generated as described and 8 weeks later the mice were
subjected to 'DMBA complete’ carcinogenesis. Data show the average
number of tumours per mouse at the end of the experiment, week 17.
WT donor to IL-1377 ~ host have IL-13-deficient IELs (n=8 per group).
Statistical significance of difference between experimental groups was
determined using Student's t-test for unpaired data with *P<0.05 and
**P<0.01. NS, not significant.
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and maturation before entering terminal differentiation and
programmed cell death to form the cornified stratum corneum.
To maintain tissue integrity and stability KCs express a multitude
of structural proteins and complexes of scaffolding and adhesive
proteins, which are tightly regulated during KC differentiation.
In line with the barrier-repair defect that we found in the absence
of IL-13 (Fig. 3), we also consistently found a reduced expression
of tight junction proteins and structural components of the upper
epidermis in IL-13-deficient mice when challenged in vivo to
repair the barrier following tape-stripping (Fig. 5a-d). While
BALB/c WT mice upregulated the expression of claudin-1,
occludin and transglutaminase 1 at 24-48h after the insult, in
accordance with morphological tissue repair, this response was
diminished in the absence of IL-13. FVB mice lacking epidermal
IELs also showed diminished expression of claudin-1 and trans-
glutaminase 1 after insult, but the kinetics of the response was
slightly different on the FVB strain background (Supplementary
Fig. 11). In addition, adding rIL-13 to primary KCs in vitro
strongly downregulated genes associated with basal KCs such as
K5 and K15 (Fig. 5ef), suggesting that IL-13 promotes
upward-moving KC maturation. This was supported by
IL-13-induced expression of products associated with terminal
differentiation such as caspase-3 both in vivo and in vitro (Figs 2h
and 5g)?2. To explore this further, we studied the rate of KC
transit through the epidermis in a bromodeoxyuridine (BrdU)
pulse-chase experiment. BrdU™ cells were counted in the basal
epidermal layer along the basement membrane and compared
with the number of BrdU™ cells in the granular layers; the role of
IL-13 in this KC turnover and migration was evaluated at steady
state and following topical exposure to TPA. In steady-state
resting tissue, there were only few proliferating cells, these were
nearly all in the basal layer—and there was no obvious difference
between WT and IL-13-deficient mice (Fig. 5h). Following topical
TPA application, many more KCs were proliferating and
approximately half of these had moved into the granular layer
in WT. However, in mice lacking IL-13, although more cells were
proliferating than in the resting skin, these were nearly all in the
basal layer and only very few had moved into the granular
layers (Fig. 5i,k). This was particularly evident if the ratio of
granular to basal BrdU T cells was compared (Fig. 5j), illustrating
that the KCs were migrating at a faster rate in IL-13-sufficient
mice. As a result, the epidermis was also thinner in mice lacking
IL-13 (Fig. 5k), consistent with previous reports showing that
transgenic overexpression of IL-13 in basal KCs induces
thickening of the epidermal layer?®. Overall, the thickening
of the total ear skin was reduced following topical TPA in
IL-13-deficent mice (Fig. 51). Together, this shows that the rate of
EC movement from the basal layer is under control of IL-13 and
hence IL-13 contributes to the upwards maturation of skin ECs
and epithelial renewal.

This effect on EC transit time may possibly contribute to
carcinogenesis susceptibility. In support of this, mice lacking
canonical epidermal IELs had a higher level of mutant hras (A—T
transversion within hras codon 61) in the epidermis following
DMBA exposure but before clinical signs of disease, suggesting that
the mutated cells accumulate in the tissue (Supplementary Fig. 12).

Discussion

Immune surveillance can function by many (non-exclusive)
mechanisms; it can recognize and remove damaged cells, remove
or neutralize potential harmful environmental substances,
facilitate re-establishment of homeostasis by tissue repair and
dampen detrimental inflammation. Tissue-resident immunocytes
are in a unique position to carry out a continued maintenance
function such as immune stress surveillance and tissue-resident

T cells can be direct afferent sensors of EC dysregulation®!2, This
study provides insight into one mechanism, whereby 8 TCR™
IELs contribute to immune surveillance through direct action on
neighbouring ECs, promoting tissue repair and protection against
tumour formation. A general picture of an important role for y3
T cells, which are highly tissue-tropic, in cancer immune
surveillance in both mouse and human is emerging. A recent
large meta-analysis, integrating tumour gene expression with
survival data, revealed the presence of intra-tumoral y3 T cells as
the most significant favourable 4prognostic population of all
leukocytes across human cancers®4,

We show here that skin-resident Y5 TCR™ IELs are potent
producers of IL-13, following a variety of environmental stressors
and this greatly affects EC function with pleiotropic consequences
for tissue health. Human epidermal y8 T cells have likewise been
shown to be high producers of type-2 cytokines—and particularly
IL-13 (ref. 25). While much has been published on the effects of
excessive expression of IL-4/IL-13 on the skin barrier in
inflammatory skin diseases such as atopic dermatitis (AD), the
potential role of constitutive expression of IL-13 has hitherto been
less well understood. Both IELs, resident in the epidermis, and
ILC2s, resident in the dermis, are constitutively positive for IL-13.
ILC2s are increasin%lzf acknowledged to be regulating cutaneous
immune response’®?’; however, they appear redundant in
supporting acute EC responses in the epidermis. ILCs are
ablated by radiation and re-populated by BM cells (data not
shown and refs 26,28), whereas IELs are radioresistant, so by
generating BM chimeras we could reveal the important role of
IEL-derived IL-13 for homeostatic responses in the epithelium.
Overall, our study demonstrates that constitutive presence of
IL-13 in the epidermis promotes barrier integrity and protects
against carcinogenesis.

The regulation and function of type-2 immunity remain
somewhat enigmatic. What is known so far of the physiological
role of type-2 responses is that their host-protection properties
converge in different forms of barrier defences?®. Much of type-2
immunity appears dedicated to tissue repair and promoting
tolerance to damage. Our data on IL-13 in the epidermis fits
with this idea and is consistent with the previous data from 7o
T-cell-deficient mice showing defects in the integrity of the
epidermal barrier as well as a predisposition to develop
spontaneous dermatitis®®3!. A similar protective role for
IL-13Ral signalling in ECs during lung injury and homeostasis
has recently been reported®2. This role for IL-13 in supporting
‘EC health’ contrasts with the prevailing paradigm in AD,
where the over-production of IL-13 is thought partly responsible
for the abnormal epithelial barrier phenotype®*34. Type-2
cytokines are clearly upregulated in the barrier-disrupted skin
in mice and in humans with AD*~37, but whether this is the
cause or effect of skin disease has long been debated. In AD, most
of the type-2 cytokines comes from the inflammatory infiltrate
and it may well be that the ‘over-production’ of IL-13 in this
setting is too much/at the wrong time/from the wrong cells and is
indeed detrimental for epidermal stability as studies from
in vitro grown KC suggest34’38. However, as shown here,
during acute insults, the homeostatic IL-13 response in vivo is
clearly important for pushing basal KCs upwards and thereby
aids the replenishing of the upper mature epidermis (Figs 5 and
3). This role for IL-13 as an ‘epithelial escalator’ has
previously been demonstrated in the gut epithelium, where it is
thought that this is why IL-13 is essential for gut parasite
expulsion®. Indeed, a recent study expands on this, and supports
our described role of IL-13 in controlling EC fate decisions, by
showing how IL-13 from intestinal ILCs regulate the cellular
composition of the gut epithelium by signalling to uncommitted
intestinal ECs*,

| 7:12080 | DOI: 10.1038/ncomms12080 | www.nature.com/naturecommunications 7


http://www.nature.com/naturecommunications

ARTICLE

In terms of early cancer immune surveillance, the role of type-2
immunity has been little explored; the focus having been firmly
on type-1 immunity and cytotoxic mechanisms, both of which
have strong experimental support for playing a role in extrinsic
tumour suppression. Nonetheless, the repair functions of type-2
immune surveillance are clearly important in protection against
carcinogenesis, as illustrated by the link between wounding and

tumour development*!. Tumours can develop at the site of
chronic skin wounds*>*? and patients with epidermolysis bullosa,
who have chronic skin damage, are at increased risk of developing
squamous cell carcinoma»*>. A diminished capacity to repair a
damaged barrier can thus predispose to the development of
cancer. Our data support this link, as deficiency in IL-13 resulted
in both a barrier defect with reduced capacity to restore tissue
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integrity on insult and a significantly higher susceptibility to
cutaneous carcinogenesis (Figs 3 and 4). A protective role for
IL-13 in inflammation-driven skin carcinogenesis has previously
been reported*® and ‘atopic’ mice have likewise been shown to be
protected®. Cipolat et al. showed that mice with a genetic barrier
defect had an exaggerated type-2 response, including IL-13 and
TSLP, and were protected against DMBA-TPA carcinogenesis.
The ‘atog)ic’ phenotype could be inhibited by blocking TSLP or
NKG2D?%, suggesting that LSS responses are induced by
barrier disruption and protect against carcinogenesis also in
this model. A homeostatic IL-13 response thus ensures normal
tissue integrity (Fig. 3), but enhanced responses can induce
hyperplasia and thickening of the epidermis (Fig. 5), which may
primarily be driven by TSLP*. Acute hyperplasia results in
improved resistance to damage and damaging substances at the
body barrier and may therefore be another protective mechanism
against carcinogenesis. The data presented here, showing a
protective role for IL-13 in different models of epithelial
carcinogenesis, provides new perspective to further studies on
the links between atopy and cancer.

The association between defective tissue repair and cancer
development may not only pertain to the lack of repair per se but
also to the detrimental inflammation caused by chronic wounds.
There is a close link between chronic inflammation and cancer,
and once a malignant cell has escaped the early phase of immune
surveillance, inflammation can exert prominent pro-carcinogenic
effects®8. An important component of early tumour surveillance
could hence be the release of anti-inflammatory products in the
tissue. IL-13 can have direct anti-inflammatory effects in
the epithelial tissue as shown in the intestinal epithelium*®, but
recently a lot of focus has been on the more newly discovered EC
cytokines—IL-33, TSLP and IL-25. Skin ECs promptly produce
particularly IL-33 and TSLP upon stress, as when exposed to the
carcinogen DMBA. Interestingly, this canonical EC stress response
is under control of IEL-derived IL-13 (Fig. 2f-j). TSLP has been
implicated in the development and progression of allergic diseases,
in both human and mouse, in many recent studies and is thought

to be a central regulator of atopy in several epithelial tissues’.

TSLP is, however, also emerging as a potent tumour suppressor” ..
In the skin, TSLP is strongly protective against carcinogenesis®>>3
and this is thought to be due to EC-derived TSLP perturbing the
balance of inflammation in the tissue®. Clearly, not all type-2
immunity is anti-inflammatory. In this study, we show an
interesting divergent effect of the type-2 cytokines IL-4 and IL-
13 in inflammation-driven carcinogenesis. While IL-13 is
protective, IL-4 clearly promotes tumour growth in this model
(Fig. 4) and is mainly produced by the inflammatory infiltrate. It is
interesting that, although these cytokines share many regulatory
elements and have partially shared receptors, their expression
pattern is often different>* and they have previously been shown

to play distinct roles in asthma®. Indeed, the spatial and temporal
expression of these divergent cytokines may also be very
important in AD and further mechanistic studies are warranted
to understand the role of type-2 immunity in regulating skin
barrier function.

The fact that IELs and IL-13 protect against epithelial
carcinogenesis, in both mutation- and inflammation-driven
models, suggest that, in contrast to IL-4, this IEL-EC axis of
communication plays a central regulatory role in addition to
suppressing inflammation. This may be due to the role of IELs
and IL-13 in controlling the rate of EC movement through the
epidermis. IL-13 accelerates EC turnover and transit towards the
upper epidermis. An increased ‘transit time’ of skin ECs from the
basal proliferative layer to the outer cell layers have previouslgr
been shown to be tumour suppressive in skin carcinogenesis®.
Similarly, mice lacking the major structural protein keratin 10 in
the upper epidermis have a strongly accelerated EC turnover and
are significantly protected against skin carcinogenesis, suggesting
an increased elimination of initiated KCs”. Conversely, skin cells
resistant to terminal differentiation have since long been
associated with initiation of carcinogenesis°®.

In summary, we demonstrate that IL-13 acts as a molecular
bridge between the skin IELs and ECs. This cross-communication
regulates EC function and promotes skin homeostasis in a manner
that protects against acute challenge and carcinogenesis. LSS is thus
part of an early ‘allergic’ type-2 host-defence mechanism aimed at
protecting body surface tissues. A similar role for IL-13 in EC
protection and homeostasis in the gut*>4? and lung>>*%0 raises the
possibility that this may represent a conserved response against
noxious environmental substances and damage to ECs—with
potential important implications for atopy and cancer.

Methods

Mice. IL-13-egfp reporter mice were generated as described®! and bred to
homozygosity for use as IL-13 ~/~. IL-13-egfp mice were on BALB/c strain
background. Terd =/~ mice®? and IL-4 ~/~ were backcrossed onto FVB/N
background > 10 generations. BALB/c and FVB/N WT mice were purchased from
Charles River and used as controls. For experiments requiring neonatal KCs,
neonatal mice were bred in-house. Mice were bred and maintained in individually
ventilated cages under specific pathogen-free conditions; with food and water
provided ad libitum. Age-matched, female mice were used for all experiments at
>7 weeks of age. All studies were approved by Imperial College AWERB (Animal
Welfare and Ethical Review Body) and the UK Home Office for Laboratory Animal
Care regulations. Experiments involving cancer studies strictly adhered to the
guidelines set out by the National Cancer Research Institute (NCRI) and Workman
et al.®® in ‘Guidelines for the Welfare and Use of Animals in Cancer Research’, and
all studies using animals were conducted following the Animal Research: Reporting
In Vivo Experiments (ARRIVE) guidelines®.

BM chimeras. Mice were sub-lethally irradiated (750 rad) and immediately
reconstituted with 5 x 10® donor BM cells intravenous. Mice were left for 8 weeks,
to fully reconstitute the hematopoietic system, and thereafter the reconstitution was

Figure 5 | IL-13 promotes epithelial maturation and transit through the epidermis. Expression analysis of (a) claudin-1, (b) occludin, (c)
transglutaminase 1 and (d) corneodesmosin in isolated epidermis from BALB/c WT mice (black bars) and IL-13 =7/~ mice (orange bars) at indicated time
points after skin abrasion by tape-stripping (nn =3 per time point). (e-g) Primary neonatal KCs grown in vitro were stimulated with 20 ngml " rIL-13 or left
untreated (UT) and analysed for expression of the basal KC genes (e) Keratin 5 and (f) Keratin 15 as well as (g) caspase-3, which is associated with
terminal KC differentiation (n=6). Data in (a-g) were done by qRT-PCR and are expressed as mean =1 s.e.m. relative to the control gene cyclophylin.
(h-k) BALB/c WT (black bars) and IL-137/~ (orange bars) were treated topically with 10 nmol TPA on the dorsal ear skin or left untreated (n=3 per
group). After 21h, they were injected with 200 pl BrdU solution and 3 h later ear skin was fixed in formalin, embedded in paraffin and BrdU staining
performed on 5 pum sections. BrdU ™ events were counted along the entire length of untreated and treated epidermis. Epidermal BrdU* cells on the basal
membrane were defined as ‘basal’; BrdU T epidermal cells not on the basal membrane were defined as ‘granular’. Three 1-cm sections were counted per
mouse. (h) Number of BrdU ™ cells in the basal and granular epidermis at steady state without treatment and (1) 24 h after topical exposure to TPA. (j) The
ratio of BrdU* epidermal cells in the granular layer compared with the basal layer in BALB/c WTand IL-13 =/~ mice. (k) Representative images of ear skin
24 h after exposure to TPA. Scale bar, 50 um (I) Ear thickness was measured with calipers at 24 h and 72 h after a single skin exposure to 10 nmol TPA on
the ear (n=6 per group). Data are represented as mean * 1 s.e.m. Statistical significance of difference between experimental groups was determined using
Student's t-test for unpaired data with *P<0.05, **P<0.01, ***P<0.001 and ****P<0.0001.
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examined by flow cytometry (Supplementary Fig. 2). Chimeric mice were used for
experiments at >8 weeks after BM reconstitution.

Tissue processing. Ears were collected and split into dorsal and ventral sides.
For isolation of intact epidermal sheets, the skin was floated dermal side-down in
0.5M NH,SCN for 40 min, 37 °C, 5% v/v CO,. Epidermal sheets were gently lifted
away from the dermis and washed in PBS. The fixed epidermal sheets were then
processed either for RNA extraction or for microscopy. Reagents and staining
method for epidermal sheets can be found in the Supplementary Information.
For isolation of epidermal single cell suspensions, the skin was floated dermal
side-down in filter-sterilized, TrypLE Express (Life) solution for 2h at 37 °C,
5% v/v CO,. Following digestion, epidermis was separated from the dermis and
further digested in TrypLE Express solution supplemented with 200 ugml ~1
DNAse I (Roche) and 1 x DNAse buffer (1.21 g1~ 1 Tris Base, 0.5 gl™ 1 MgCl, and
0.073 gl’1 CaCl,) on a rotator for 30 min at 37 °C. Cell suspensions were filtered
and washed in PBS before flow cytometry staining.

Flow cytometry staining. Cell suspensions were stained with a fixable, live/dead
discrimination dye (Life) and subsequently blocked for non-specific binding using
antibody against FcyR (2.4G2) and 2% normal rat serum (Sigma). For staining of
cell surface markers, cell suspensions were stained with fluorochrome-conjugated
antibodies and appropriate isotype controls for 40 min and subsequently washed.
For intracellular cytokine staining cells were incubated for 4 h with brefeldin A at
10 pg ml ~ L, with or without PMA and ionomycin (6.25ngml ~! and 3.5 pgml ~ 1,
respectively). Following stimulation, cells were washed in PBS, resuspended and
fixed/permed with Fixation and Permeabilization Buffer Set (Affymetrix, CA, USA)
before antibody labelling. For intranuclear YH2AX staining, cells were fixed/
permed in ice-cold 70% ethanol at — 20 °C for 2 h, then blocked with 2% normal
mouse serum, Fc-block and 2% fetal calf serum for 15 min, followed by 45 min
staining for YH2AX at room temperature. Stained cells were analysed immediately
using a BD FACSVerse (BD Biosciences, NJ, USA) machine. Data analysis was
performed using Flow]Jo 10 for Mac (TreeStar, OR, USA). Antibodies were sourced
from eBioscience unless otherwise stated. The following antibodies were used:
CD45 (30-F11), Cytokeratin 5 (D516B4; Millipore), IFN-y (XMG1.2), IL-13
(eBiol3A), IL-13 Ral / CD21301 (13MOKA), TCR VY5 (536; BioLegend), YH2AX
(JBW301; Millipore), CD64 (X54-5/7.1; BioLegend), CD11c (HL3), CD11b
(M1/70), CD207 (4C7; BioLegend), CD103 (2E7) and XCR1 (ZET; BioLegend).

Epidermal sheet immunofluorescence. Epidermal sheets were fixed in ice-cold
acetone at — 20 °C for 15 min, then rehydrated in PBS and blocked with 2% bovine
serum albumin. Sheets were then stained with a fluorescein isothiocyanate-
conjugated anti-Vy5 or anti-Langerin antibody and subsequently washed
thoroughly in PBS. Sheets were carefully mounted onto slides using anti-fade
mounting medium (Dako) and visualised on a Leica SP5 (Leica) confocal
microscope.

Immunohistochemistry. A 1 x 1-cm skin cut from the centre of the ears were
fixed in formalin, embedded in paraffin and 5-pum sections cut. Slides were de-
waxed, antigen retrieval was performed with pH 6.0 sodium citrate treatment at
95 °C for 15 min, endogenous tissue peroxidase activity was blocked with H,O,
treatment, and non-specific binding was blocked with normal serum and fish skin
gelatin (Sigma). Non-specific avidin and biotin-binding sites were blocked with an
Avidin/Biotin blocking kit (VECTASTAIN). For BrdU detection, slides were
stained with anti-BrdU antibody (clone BU1/75; Abcam) in conjunction with a
three-layer immunohistochemistry kit (VECTASTAIN Elite ABC kit; Vectastain)
as per the manufacturer’s instructions. Staining was visualised with DAB substrate
and brown chromogen precipitation. Slides were counter stained in Harris’
haematoxylin acid solution, dehydrated and mounted with Pertex mouting.
Visual inspection of tissue and counting of BrdU ™ cells were performed while
blinded to the experimental groups.

gRT-PCR and primer sequences. RNA was extracted from ammonium-fixed
epidermis with an RNEasy Mini kit (Qiagen). RNA was dissolved in nuclease-free
water, and yield and purity were determined. Complementary DNA (cDNA) was
synthesised from RNA with a iScript cDNA synthesis kit (Bio-Rad) as per the
manufacturer’s instructions. cDNA was diluted in nuclease-free double-deionized
water for QRT-PCR. All primers were single-stranded DNA oligonucleotides
(Sigma) that were intron-spanning as verified by NCBI Primer-Blast tool.
Real-time PCR product was detected with SYBR Green (Life) measured
continuously with a ViiA 7 Real-Time PCR system (Applied Biosystems, CA,
USA). Ct values for genes of interest were normalised against Ct values of the
housekeeping gene Cyclophilin (Cyc) using the 2 ~ACt method.

The following primers were used. F denotes forward primer (5'-3') and R
denotes reverse primer (3/-5'). ll13 (F: 5'-GCTTATTGAGGAGCTGAGCAAC
A-3', R: 5-GCCAGGTCCACACTCCATA-3'); Ildral (F: 5'-CCAATCAGACAG
ATACCAGATG-3/, R: 5-CCAGGTCAGCAGCCATTC-3'); Il13ral (F: 5-AGAG
GTTGAAGAGGACAAATGCC-3/, R: 5'-GCGACAAAGACTGGAATGGTGA
G-3'); ll13ra2 (F: 5'-CCGAAATGTTGATAGCGACAGC-3/, R: 5'-CCAAGCCCT

10

CATACCAGAAAAAC-3'); Tslp (F: 5'-TCGAGGACTGTGAGAGCAAG-3/, R:
5'-TGTTTTGTCGGGGAGTGAA-3'); Iila (F: 5-TTGGTTAAATGACCTGCAA
CA-3, R: 5-GAGCGCTCACGAACAGTTG-3'); Tnfa (F: 5-ACTGGAGTTGTA
CGGCAGTG-3, R: 5'-GGCTGATCCCGTTGATTTCC-3'); Casp3 (F: 5'-GAGCT
TGGAACGGTACGCTA-3, R: 5'-5-GCGAGATGACATTCCAGTGC-3'); 1I33
(F: 5'-CACATTGAGCATCCAAGGAA-3, R: 5'-AACAGATTGGTCATTGTA
TGTACTCAG-3'); Rael (F: 5-TGGACACTCACAAGACCAATG-3, R: 5'-CCC
AGGTGGCACTAGGAGT-3'); Claudinl (F: 5'-5'-GCCATCTACGAGGGA
CTGTG-3, R: 5'-5'-CACTAATGTCGCCAGACCTGAA-3); Occludin (F: 5'-
TTGAACTGTGGATTGGCAGC-3, R: 5'-CAAGATAAGCGAACCTTGGCG-3');
Tgml (F: 5'-CCTTGAGCTCCTCATTGGAA-3/, R: 5'-CCCTTACCCACTGGGA
TGAT-3'); Cdsn (F: 5-AATGTCCAGCCCGGCATAAA-3, R: 5'-CAAGATTCC
TGGCAGAATAAGACC-3); K5 (F: 5'-CATGTCTCGCCAGTCCAGTG-3/, R:
5'-GGAACCGCACCTTGTCGATG-3'); K15 (F: 5'-5'-GGAAGAGATCCGGG
ACAAA-3', R: 5-TGTCAATCTCCAGGACAACG-3'); and Cyc (F: 5'-CAAAT
GCTGGACCAAACACAA-3/, R: 5'-CCATCCAGCCATTCAGTCTTG-3).
DMBA-induced transversion mutation in hras (codon 61, CAA — CTA) was
quantified with a forward primer, mutant-specific reverse primer and a custom
generated TagMan 6'-FAM-conjugated probe for visualizing product: hras
C61CAA~CTA (R, 5/ CTAAGCCTGTTGTTTTGCAGGAC-3/, R: 5'-CATGGCA
CTATACTCTTCTA-3'; Probe: 5'-6FAM-CGGAAACAGGTGGTCAT-MGB-3').

Primary neonatal KC cultures. Body wall skin from neonatal mice was incubated
overnight at 4°C in 5Uml ™! Dispase (BD) solution supplemented with 1 x
antibiotic and antimycotic solution (Sigma). The epidermis was isolated and
further digested in TrypLE Express solution supplemented with 200 g ml !
DNAse I and DNAse buffer. Cell suspensions were filtered, resuspended in defined
KC serum-free medium with supplements (Life) 4 1 x antibiotic-antimycotic
solution. KCs were seeded at an appropriate cell density onto tissue culture vessels
coated with rat-tail-derived-collagen I (Sigma). Culture vessels were washed with
PBS 24h following seeding to remove unattached cells, and provided with fresh
medium * 20 ng ml ~! recombinant IL-13 (R&D). For extraction of KCs, cell
culture vessels were treated with trypsin and KC RNA was subsequently extracted
using the RNEasy Mini kit (Qiagen).

Tape-stripping and TEWL. The stratum corneum was removed from the ear skin
by application and removal of cellophane tape (Scotch) six times per ear. For
measurement of TEWL, a tewameter probe (Tewameter TM300; Ck Electronic,
Germany) was placed directly onto the ear skin of anaesthetized mice in a
temperature- and humidity-controlled facility. Probe readings were analysed and
water evaporation rate was reported using the MPA software (MPA software; Ck
Electronic, Germany) as ghm ~ 2 (where g = water loss in grams, h = time in hours,
m? = metres squared). For some experiments, mice were treated topically on the
ear skin with 50 ng rIL-13 (R&D), or vehicle control, immediately following tape-
stripping, and again 24 h later.

Chemical cutaneous carcinogenesis. The dorsal back area was shaved with a
surgical blade and mice rested for 1 week. Applications of chemicals and tumour
monitoring were performed as previously described!® . Chemicals, in a 100 pl
volume, were carefully and slowly applied by pipette to the entire shaved skin area.
For ‘DMBA complete’ carcinogenesis, mice were treated once weekly with

200 nmol DMBA. For two-stage DMBA + TPA’ carcinogenesis, mice were
initiated with 200 nmol DMBA followed by twice weekly application of 10 nmol
(FVB background) or 20 nmol (BALB/c background) TPA. A slightly different
dosage between the background strains was chosen due to the well-known
difference in susceptibility to chemical skin carcinogenesis across strains?!. Despite
this, the FVB background remained far more susceptible and developed a higher
tumour load. All experiments on mutant mice were controlled with the appropriate
background strain. Hair regrowth during experiments was gently removed by
clipping with trimmers. Mice were monitored daily and cutaneous tumours were
counted and measured with a caliper once weekly. Back skin and tumours were
evaluated by visual inspection by an observer blinded to the experimental groups.

Full skin thickness wounding. Mice were anaesthetized with inhalation isoflurane
and transferred onto a heat block with an anaesthetic nose-cone to maintain
anaesthesia throughout the procedure. Buprenorphine local analgesic (Vetergesic)
was administered subcutaneously around the area to be wounded. A single,
full-thickness 5-mm wound was made at the midline of the lower back using a
disposable sterile punch biopsy tool. Sterile paper bedding and wet food were
provided for 7 days following wounding. Wound size was measured daily with
calipers for the first 2 days, and then once every 2 days until complete wound
closure. The wound sagittal (x) and transverse (y) plane were measured and
these were applied to the ellipse area formula to calculate wound area:

(area =7 (radius x)(radius y)).

Subcutaneous tumour inoculation. The right flank of mice was shaved and
1 x 10* CT26 cells injected subcutaneously into the flank in 100 ul sterile PBS. The
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mice were inspected daily, the flank was palpated and the tumour mass was
measured with calipers.

Statistical evaluation. The statistical significance of difference between experi-
mental groups was determined using two-tailed Student’s ¢-test for unpaired data
or linear regression, where appropriate, with results deemed significant at P<0.05.
Stars of significance correlate to: *P<0.05; **P<0.01; **P<0.001; ****P<0.0001.
No mice were excluded from analysis. Statistics was performed with GraphPad
Prism 6.00 for Mac (GraphPad; La Jolla, CA, USA).

Data availability. The data that support the findings of this study are available
from the corresponding author upon request.
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