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Objective. The study focused on the features of the convolutional neural networks- (CNN-) processed magnetic resonance imaging
(MRI) images for plastic bronchitis (PB) in children. Methods. 30 PB children were selected as subjects, including 19 boys and 11
girls. They all received the MRI examination for the chest. Then, a CNN-based algorithm was constructed and compared with
Active Appearance Model (AAM) algorithm for segmentation effects of MRI images in 30 PB children, factoring into occurring
simultaneously than (OST), Dice, and Jaccard coeflicient. Results. The maximum Dice coefficient of CNN algorithm reached
0.946, while that of active AAM was 0.843, and the Jaccard coefficient of CNN algorithm was also higher (0.894 vs. 0.758, P < 0.05).
The MRI images showed pulmonary inflammation in all subjects. Of 30 patients, 14 (46.66%) had complicated pulmonary
atelectasis, 9 (30%) had the complicated pleural effusion, 3 (10%) had pneumothorax, 2 (6.67%) had complicated mediastinal
emphysema, and 2 (6.67%) had complicated pneumopericardium. Also, of 30 patients, 19 (63.33%) had lung consolidation and
atelectasis in a single lung lobe and 11 (36.67%) in both two lung lobes. Conclusion. The algorithm based on CNN can significantly
improve the segmentation accuracy of MRI images for plastic bronchitis in children. The pleural effusion was a dangerous factor

for the occurrence and development of PB.

1. Introduction

Plastic bronchitis (PB) is a rare respiratory disease arising
from pathogenic infections. The endogenous foreign matter
produced then leads to bronchial congestion, ventilatory
disorder, and air exchange dysfunction [1]. Clinically, it
manifests as dyspnea, wheezing, chest pain, fever, and even
life-threatening respiratory circulatory failure in severe
cases. Children aged 4-12 are predominantly affected [2].
According to the pathological characteristics, it mainly falls
into type I and type II plastic bronchitis. Type I refers to the
inflammatory type, where fibrous protein and a great
number of inflammatory cells are visible in the bronchus,
thanks to infectious diseases of the respiratory tract. Type II
is cell-free, where the bronchus is mainly blocked with
mucoprotein, without or with just a few infiltration cells, and
a great amount of lymph fluid is visible in the alveolus [3].
The incidence of PB is increasing in China, and it is

associated with the Mycoplasma pneumoniae infection or
virus infection of the respiratory tract [4].

Electronic computed tomography (CT) is a routine
examination to diagnose plastic bronchitis in children. With
the continuous maturity of CT technology, CT has gradually
become the first choice for lung examination and is a
common examination method to determine various dis-
eases. However, the effective radiation dose involved in CT
examination is relatively harmful to children, and CT ex-
amination can only observe the macroscopic signs of the
lesion site, unable to accurately determine the shape, size,
and density, and the conclusion is relatively simple, which
has certain limitations in the diagnosis of plastic bronchitis
in children. Magnetic resonance imaging (MRI) belongs to
positron emission tomography (PET), during which the
radio-frequency pulse at a specific frequency is applied to the
human body in a magnetostatic field, to motivate the hy-
drogen proton in the human body, triggering magnetic
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resonance. Next, the electromagnetic signal of the human
body is used to reconstruct the image [5]. MRI mainly
consists of three systems, namely, the magnet system, the
spectrometer system, and the computer image reconstruc-
tion system [6, 7]. During the examination, the patientisina
magnetic field and the orientation of magnetic moment is
consistent with the direction of magnetic induction line. The
radio-frequency pulses enable the lower-energy-level nuclei
to jump to the higher-energy level by absorbing the radio-
frequency energy and disrupting the proton movement in
the tissue. When the pulses are stopped, the energy level and
phase position of protons return to the premotivated state.
This process is called the relaxation [8]. T1-weighted image
(TIWI) can display the anatomical details, while T2-
weighted image (T2WI) can display lesions. The black-white
contrast of MRI stems from the signal differences in different
tissues. Short T1 presents white, and long T1 presents black;
long T2 presents white, and short T2 presents black. The air
and bone cortex presents black no matter in T1 or T2. The
infarction, inflammation, tumor, and fluid present low-
signal TIWI but high-signal T2WT [9]. MRI can display the
anatomical structure of any section of the human body, with
high resolution. It can clearly display the lesions in the spinal
cord, brainstem, fossa cranii posterior, and bronchi. Ad-
ditionally, MRI is free of ionizing radiation and carcinogenic
risk. It is a very safe examination. However, MRI exami-
nation also has certain limitations, and image artifacts are
often produced by the influence of respiration and blood
flow, which hinder the application of MRI in lung imaging.
High-quality images are beneficial to the diagnosis of lung
diseases, which can fully reflect the details of the image and
significantly improve the diagnostic coincidence rate.

The convolutional neural network (CNN) is a feedfor-
ward neural network. It has a deep structure and contains
convolutional calculation and is representative of deep
learning [10]. In the medical field, the CNN is usually used to
learn original MRI images and then applied in image seg-
mentation and image classification. Sathish et al. (2019) [11]
put forward in their study that the pixel information of
different dimensions can be combined to extract the optimal
size information. Wang et al. (2019) [12] believed that re-
ducing the size of convolution kernels can improve the
operating speed of the neural networks.

In the study, the CNN-based algorithm and Active
Appearance Model- (AAM-) based algorithm were com-
pared for the segmentation results of MRI images in 30 PB
children. The objective of the study was to explore the
features of MRI images for PB patients, expected to provide
reliable reference for its clinical diagnosis.

2. Materials and Methods

2.1. Subjects and Grouping. In the study, 30 PB patients
diagnosed in xx Hospital from Jan. 2019 to Dec. 2020 were
selected as the subjects, including 19 boys and 11 girls, and
they all underwent the MRI examination. They were between
6 and 12 years old, with an average age of 8.21 + 1.25 years
old. The study was approved by the Ethics Committee of xx
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Hospital, and all the subjects had signed an informed
consent form.

Inclusion criteria were as follows: (1) children diag-
nosed with plastic bronchitis by hospital pathological ex-
amination; (2) children with good coordination during the
examination; (3) children with complete general data and
imaging data.

Exclusion criteria were as follows: (1) children with
suspected clinical diagnosis of plastic bronchitis and no
plastic material found in imaging examination; (2) children
who had contraindications; (3) children with mental dis-
eases; (4) children who could not normally cooperate with
the examination.

2.2. Structure of the CNN Model. Figure 1 shows the
structure of the CNN model. LeNet-5 is used in the study.
The input data include a matrix formed by 32 x 32 pixels.
The first feature layer includes 6 feature maps. Aftera5 x5
window is used to convolve the input image, a 28 x 28
feature map can be obtained. Then, downsampling is
performed on the first feature layer to obtain 6 feature maps
with a size of 14 x 14. C stands for the convolution layer,
and S stands for the pooling layer. The C3 layer is a
convolutional layer, and the size of the convolution kernel
is 5 x 5, as with C1. The downsampling is performed again
in S4. The C5 layer performs a convolution operation on the
S4 layer, and each convolution kernel in C5 layer is con-
volved on the basis of the S4 feature map. Then, on the basis
of the C5 layer, through a fully connected network, a result
of 1 x 10 is finally obtained as output. In the vector of the
output result of 1 x 10, the image of the final output model
is classified by ReLu function and the classification result of
the network output is the corresponding position of the
maximum component.

2.3. CNN-Based PB Segmentation Model. The convolutional
neural network is mainly composed of the convolutional
layer, the pooling layer, the fully connected layer, and the
deconvolution layer. The convolutional layer detects the
local features of MRI images, which can be expressed as

follows:
M(-1)
( Z B“-k’+c> (1)

where kfj represents the convolution kernel, i indicates the
feature map in the ] — 1 layer, j represents the feature map in
the I layer, Blj indicates the feature map in the convolutional

1-1 ; !
layer, and B;™" represents the feature map adjacent to Bj.

M (I - 1) indicates the number of feature maps in the I — 1

layer, e indicates the convolution, c? is the bias, and f

represents the nonlinear activation function.

The activation function is to process linear nonseparable
data. The study uses ReLu as the activation function,
expressed as Equation (2), and the relevant derivative
function can be expressed in Equation (3).
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F1GURE 1: Structure of the CNN model.

g(x) = x" = max (0, x), (2)
, | x x>0,
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As for an MRI image A, X is the set of all pixels in image
A: X = (x;,%,,...,x,) and B indicates segmentation cate-
gories (by,b,,...,b,,_;), where m = 4; the probability to
output b; of pixel x; in the j channel is expressed as follows:

Pl =) = exp (b)) @

where v(bj) indicates the value of bj, Z is the regularized
item, the predicted value y; of x; is expressed as
y; = argmax|[p(x; = bj)], and the relevant loss function is
expressed as follows:

1
loss = - Zi:;yij ln[p(x,- = bj)]' (5)

Adam is a commonly used method to optimize neural
networks, and it is employed in the study to optimize the
CNN model. The update parameter W and the offsets S,
and V4, can be expressed as follows:

oP

Vay = Vg + (1= )=, (6)
oP \’
Suu =580+ (1)) )
de
W=Ww-p—d
ﬂ de + & (8)

where P is the circulation number of Adam, «; and «,
indicate the hyperparameters to control average weighted
value of the two coefficients, f3 is the learning efficiency, and e
is a small constant, which is set to avoid that the denomi-
nator is zero. The parameters of the convolutional neural
network are shown in Table 1.

2.4. MRI Images Processed by the CNN-Based Model. The
experimental equipment is a workstation equipped with
Quadro K40c graphics card, 128 G memory, Intel Xeon(R)
CPU E5-2660 V3, and Ubuntu 14.04 LTS (64 bit) system.

TaBLE 1: Convolution neural network parameter configuration
table.

Category Size Number Step size Fill
Convl 5 512 1 2
Poolingl 3 512 1 0
Conv2 5 384 1 1
Pooling2 3 384 2 0
Conv3 3 256 2 0
Pooling3 3 256 1 0
Fully connected 5 1 9216 2 0

The entire training is completed under the Tensorflow
framework. The testing phase can be completed either in the
MATLAB 2015B platform or in the Tensorflow framework.

Occurring simultaneously than (OST) factor is used to
evaluate the quality of MRI image. It is the area of the in-
tersection to the area of the union. A higher OST indicates a
more accurate target detection bounding box.

It is calculated as follows:

_area(S) Narea(P)

T=—"1—
oS area(S) Uarea(P)

(9)
where S represents the standard area segmented by the
doctor and Prepresents the result segmented by the CNN
model. The shape of the bronchus is mostly variable and
irregular, so the Dice coeflicient, precision, and Jaccard
coefficient were used to evaluate the segmentation effects.
The Dice coefficient is a measure of the overlap between the
segmentation result and the gold standard area. It is cal-
culated as follows:

s‘mp_2 TPV
S+P "TPV +FPV + TPV + FN’
(10)

Dice(S,P) =2 x

where S represents the standard area segmented by the
doctor and Prepresents the result segmented by the CNN
model. TPV(true positive) means that the segmentation
result and the gold standard result are both true; P means
that the segmentation result is false and the gold standard
result is true; and FN (false negative) means that the seg-
mentation result and the gold standard result are both false.
A smaller Dice coefficient indicates a larger gap between the
predicted result and the real result.



The precision is calculated as follows:

TPV

aceuracy = o X 100%. (11)

The Jaccard coefficient reflects the difference between the
data, and it is calculated as follows:

F|

e 100% 12
[EUF]| ’ (12)

Jaccard =

where E is the left bronchus predicted by the CNN and F
represents the right bronchus area delineated by the doctor.

2.5. MRI Scanning Method. MR Prisma 3.0 (SIEMENS,
Germany) is used to conduct the scanning of 30 patients.
During the scanning, the child lied on his/her back and was
instructed to breathe steadily. For the child who did not
cooperate, taking chloral hydrate orally was required and the
doctor should inject chlorpromazine and Phenergan in-
tramuscularly to sedate him/her. During examination, it is a
must to ensure that the child maintains one posture all the
time. First, cross-section and sagittal-section scans were
performed to find the tracheal plane. Then, coronal-section
scan was performed with the point lightly above the crotch
of the trachea and bronchus as the central point. Scanning
parameters were as follows: matrix is 251 x251; layer
thickness is 3.5 mm; vision is 25 x 25 cm; the flip angle is 15
and the slice gap is 6.1 mm. After the scan, two experienced
professional physicians in the imaging department per-
formed manual segmentation and analysis of the image.

2.6. Statistical Method. The data were processed by
SPSS20.0. The measurement data were expressed as mean-
+ deviation (X + s), and ¢-test was adopted. The count data
were expressed by percentage, and y” test was used. P < 0.05
was the threshold for significance.

3. Results

3.1. Analysis of Bronchial Detection Results Based on Con-
volutional Neural Network Algorithm. Figure 2(a) shows the
OST values before and after correction. Before correction,
the mean OST value of target box and real box was 0.658.
After correction, it was 0.921, increasing by 0.263.
Figure 2(b) shows the Euclidean distance between the central
point predicted by the CNN-based model and the real
central point. It was between 0 and 20mm and mainly
ranged from 4 to 10 mm. Further statistics showed that the
Euclidean distance less than 10 mm accounted for 72%
among those ranging from 0 to 20 mm.

3.2. Evaluation of MRI Image Quality of Children Based on
Convolutional Neural Network Processing. AAM is an image
feature extraction method, which can be used to extract
features from target images. Figure 3(a) shows the Dice
coefficients of CNN-processed MRI images and AAM-
processed MRI images under different training cycles. As
the number of training cycles increased, the Dice
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coeflicients of both the two algorithms rose, but the Dice
coefficient of CNN-based algorithm was always higher
than that of AAM model. The maximum Dice coefficient
of CNN-based algorithm reached 0.946, while that of
AAM was 0.843. It indicated that the results predicted by
the CNN model had smaller differences from the real
results versus the AAM.

Figure 3(b) shows the precision and Jaccard coeflicient
under the two algorithms compared. The precision of CNN
algorithm was 0.952, while that of the AAM model was
0.934, showing no obvious difference (P > 0.05). The Jaccard
coefficient of CNN algorithm was 0.894, while that of the
AAM model was 0.758, and the difference was statistically
significant (P <0.05). Figures 3(c) and 3(d) show the seg-
mentation results of the CNN model and AAM model,
respectively.

3.3. General Statistics on Pediatric Patients. Of 30 PB pa-
tients, the boys (19) outnumbered the girls (11) by a wider
margin and the difference was statistically significant
(P <0.05) (Figure 4). The subjects aged from 6 to 12 years,
with an average age of 8.21 + 1.25 years. The onset time of PB
was concentrated in spring and summer, and there were 13
cases in spring (43.33%), 11 cases in summer (36.67%), 4
cases in autumn (13.33%), and 2 cases in winter (6.67%).
Obviously, the incidence in autumn and winter was lower
than in spring (P < 0.05) (Figure 5). The average hospital stay
was 13.2 + 7.6 days. Of the 30 patients, 17 had a hospital stay
of 7-14 days (56.67%), 8 had a hospital stay of 0-6 days
(26.67%), and 5 had a hospital stay of 15-21 days (16.66%)
(Figure 6).

3.4. MRI Images Features Processed by CNN-Based Algorithm.
Figure 7 shows MRI images processed by CNN-based al-
gorithm. Figure 7(a) presents chronic emphysema and
pleural thickening and adhesions; Figure 7(b) presents aortic
dissection; Figure 7(c) presents calcification of the pleura
beside the right upper mediastinum; and Figure 7(d)
presents the double cavities. The MRI images clearly dis-
play the trend of the trachea and bronchus, location,
morphology, size, and density of foreign matters. It man-
ifested that the solidified sticky secretion was tubular in
shape and its density was close to or slightly higher than the
density of liquid. Furthermore, there were high-density dot
or strip shadows.

3.5. MRI Image Manifestations of PB Patients. The pulmo-
nary inflammation was visible in all subjects. Of 30 PB
patients, 14 (46.66%) had complicated pulmonary atel-
ectasis, 9 (30%) had complicated pleural effusion, 3 (10%)
had pneumothorax, 2 (6.67%) had complicated medias-
tinal emphysema, and 2 (6.67%) had complicated pneu-
mopericardium (Figure 8). Also, of 30 patients, 19
(63.33%) had lung consolidation and atelectasis in a single
lung lobe and 11 (36.67%) in both two lung lobes
(Figure 9).
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FiGure 2: Detection results of the bronchus. (a) OST value before and after correction. (b) Euclidean distance.
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F1GURE 3: The CNN-processed MRI image. (a) Dice coeflicient of two algorithms in different cycles. (b) Precision and Jaccard coefficient of

the two algorithms. (c) Segmentation result of the CNN model. (d) Segmentation result of the AAM model. *A statistically significant
difference versus CNN, P < 0.05.

4. Discussion

PB arises from the block of bronchus, leading to abnormal
ventilation of the lung tissue and even acute dyspnea in
severe cases. Generally, foreign matters are in a tree-like
shape [13]. PB may occur at any stages, but children are
predominantly affected, especially those aged 4-12years
63.33% [14]. The PB subjects in the study were from 6 to 12 years old,
with an average age of 8.21 +1.25 years. Of 30 PB patients,
boys outnumbered girls and the difference was statistically

36.67%

Bovs significant (P < 0.05), which was consistent with the research
i G‘}I results of Xiong et al. (2019) [15]. The outset time was
1ris

concentrated in spring and summer, suggesting that the
FIGURE 4: Gender distribution of PB patients. onset of PB is seasonal.
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FiGure 5: Distribution of onset time. *A statistically significant difference versus spring, P <0.05.
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FIGURE 6: Hospital stay of PB patients. *A statistically significant difference versus the hospital stay of 7-14 days, P <0.05.
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F1GUre 7: MRI images for PB patients. (a) MRI image of a 7-year-old male patient with chronic emphysema and pleural thickening and
adhesion. (b) MRI image of a 10-year-old child with aortic dissection. (c¢) MRI image of an 11-year-old child with pleural calcification near
the right upper mediastinum. (d) MRI image of a 10-year-old male child with double-cavity signs.
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Ficure 8: MRI imaging manifestations of PB patients. (a) Pul-
monary atelectasis. (b) Pleural effusion. (c) Mediastinal emphy-
sema. (d) Pneumothorax. (¢) Pneumopericardium.

Before correction, the average OST value of target box
and real box was 0.658. After correction, it was 0.921. The
Euclidean distance from the predicted central point to the
real central point ranged from 0 to 20 mm and the Euclidean
distance less than 10 mm accounted for 72.5%. It indicated
that the CNN-based algorithm can accurately segment MRI
images for PB. The Dice coefficient has been widely applied
in the verification of the segmentation effects [16]. Under
different number of training cycles, the maximum Dice
coefficient of CNN-based algorithm reached 0.946, while
that of AAM algorithm was 0.843. It indicated that the
algorithm of the study had better segmentation effects,
which was in line with the research results of Fujioka et al.
(2021) [17].

Clinically, PB mainly manifests as fever and cough
(18, 19]. A majority of subjects included had fever. The
average hospital stay was 13.2+7.6 days. Of the 30

0 10 20 30 40
Proportion (%)

F1Gure 9: Distribution of lung consolidation and atelectasis. 1: left
upper lobe; 2: left middle lobe; 3: left lower lobe; 4: right upper lobe;
5: right middle lobe; 6: right lower lobe; 7: bilateral lobes.

patients, 17 had a hospital stay of 7-14 days (56.67%), 8
had a hospital stay of 0-6 days (26.67%), and 5 had a
hospital stay of 15-21 days (16.66%). The MRI images for
PB presented chronic emphysema, pleural thickening and
adhesions, aortic dissection, calcification of the pleura
beside the right upper mediastinum, and double-cavity
signs. MRI can clearly display the trend of the trachea and
bronchus, location, morphology, size, and density of
foreign matters. It manifested that the solidified sticky
secretion was tubular in shape and its density was close to
or slightly higher than the density of liquid. Furthermore,
there were high-density dot or strip shadows.

Of 30 patients, 19 (63.33%) had lung consolidation
and atelectasis in a single lung lobe and 11 (36.67%) in
both two lung lobes, which was aligned with the research
results of Lee et al. (2018) [20]. Also, of 30 PB patients, 14
(46.66%) had complicated pulmonary atelectasis, 9 (30%)
had complicated pleural effusion, 3 (10%) had



pneumothorax, 2 (6.67%) had complicated mediastinal
emphysema, and 2 (6.67%) had complicated pneumo-
pericardium. It prompted that the pleural effusion may be
a dangerous factor in the occurrence and development of
PB.

5. Conclusion

In this study, a CNN-based algorithm was constructed and
applied to segment MRI images for 30 PB patients, to explore
the imaging features of PB patients. The algorithm based on
CNN can significantly improve the segmentation accuracy
of MRI images for plastic bronchitis in children. MRI images
prompted that pleural effusion was a dangerous factor in the
occurrence and development of PB. However, the short-
comings of this study are that the sample size is small, the
MRI examination time is long, and the cost is high, which is
limited in the actual operation. In short, the CNN-based
MRI image segmentation model greatly raises the seg-
mentation accuracy of the bronchus, providing a theoretical
basis for the diagnosis of PB.

Data Availability

The data used to support the findings of this study are
available from the corresponding author upon request.
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