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Objectives: To test whether 3T MRI radiomics of breast malignant lesions improves the
performance of predictive models of complete response to neoadjuvant chemotherapy
when added to other clinical, histological and radiological information.

Methods: Women who consecutively had pre-neoadjuvant chemotherapy (NAC) 3T
DCE-MRI between January 2016 and October 2019 were retrospectively included in the
study. 18F-FDG PET-CT and histological information obtained through lesion biopsy were
also available. All patients underwent surgery and specimens were analyzed. Subjects
were divided between complete responders (Pinder class 1i or 1ii) and non-complete
responders to NAC. Geometric, first order or textural (higher order) radiomic features were
extracted from pre-NACMRI and feature reduction was performed. Five radiomic features
were added to other available information to build predictive models of complete response
to NAC using three different classifiers (logistic regression, support vector machines
regression and random forest) and exploring the whole set of possible feature selections.

Results: The study population consisted of 20 complete responders and 40 non-
complete responders. Models including MRI radiomic features consistently showed
better performance compared to combinations of other clinical, histological and
radiological information. The AUC (ROC analysis) of predictors that did not include
radiomic features reached up to 0.89, while all three classifiers gave AUC higher than
0.90 with the inclusion of radiomic information (range: 0.91-0.98).

Conclusions: Radiomic features extracted from 3T DCE-MRI consistently improved
predictive models of complete response to neo-adjuvant chemotherapy. However, further
investigation is necessary before this information can be used for clinical decision making.
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INTRODUCTION

Neoadjuvant chemotherapy (NAC) is administered in large
operable or locally advanced breast cancers to enable shrinkage
of the tumor and allow breast-conserving surgery to be
performed (1). The ideal goal of NAC is pathologic complete
response (pCR) (2). Prior assessment of patients as potential
complete responders to NAC would be of great clinical
significance. Personalized NAC is widely used to treat triple-
negative and HER2+ subtypes of breast cancer; further
improvement of outcome prediction would allow personalized
treatment to be efficiently administered to a larger group
of patients.

MRI has been used extensively to assess treatment response to
NAC, often in a multi-parametric approach (3). However, the
predictive power of MRI parameters was seldom reported to
improve the information already provided by the status of
hormonal receptors (4). PET-CT has been used occasionally to
monitor the response to NAC in breast cancer, sometimes in
combination with MRI (5–7).

Radiomics consists of large-scale image analysis and
association of “features” to biological or clinical endpoints (8).
MRI radiomics has been used to search for associations between
quantitative metrics and response to NAC. Eun et al. recently
published a study on the association between textural features and
the pathologic complete response to neo-adjuvant chemotherapy
in breast cancer, finding that texture analysis of T1-weighted MRI
at mid-treatment was predictive of complete response (9).

The simultaneous use of all the available information,
including hormonal receptor status, DCE-MRI, DWI, PET-CT
and radiomics features extracted from MRI, might have the
potential to improve the capability of predicting complete
response to NAC.

Machine learning algorithms have been used in breast cancer
imaging for early prediction of response to neoadjuvant
chemotherapy (10, 11). For example, Tahmassebi et al. tested
eight machine learning-based classifiers on several quantitative
and qualitative MRI parameters, which however did not include
radiomic features (12).

The aim of this study was to test whether 3T MRI radiomics
of breast malignant lesions improve the performance of
predictive models of complete response to neoadjuvant
chemotherapy when added to hormonal receptor status, MRI
multi-parametric information and PET-CT.
MATERIALS AND METHODS

Study Population
This retrospective study involved women who consecutively had
pre-NAC dynamic contrast-enhanced 3T MRI (DCE-MRI) and
18F-FDG PET-CT between January 2016 and October 2019. The
study was approved by the institutional review board of the
Hospital. Patients gave consent to processing of their
anonymized data. Patient exclusion criteria were: age<18 years,
history of previous breast surgery, contraindications to
Frontiers in Oncology | www.frontiersin.org 2
performing MRI and/or administration of intravenous contrast
medium, history of previous chemo- and/or radio-therapy.

Before NAC administration, histopathological information
related to the expression of Ki-67, ER (Estrogen receptor), PgR
(Progesterone receptor) and HER2 (Human Epidermal growth
factor Receptor 2) were obtained through lesion biopsy.

Chemotherapy consisted in the sequential administration of
anthracyclines and cyclophosphamide every three weeks for four
cycles followed by taxanes once a week for twelve weeks. NAC
lasted about 6 months and the therapeutic regimes were: ACx4 +
TXLx12 and ECx4 + TXLx12 associated with Trastuzumab for
one year in case of HER2 positive cancer. Patients underwent
conservative surgery or mastectomy and sentinel lymph node
biopsy or axillary dissection. Specimens were analyzed and
patients were divided between complete responders (Pinder
class 1i or 1ii) and non-complete responders (13). The
distribution of the studied cohort and information on the
receptors’ expression is reported in Table 1.
TABLE 1 | Clinical, histological and radiological characteristics of the patients as
a function of pathologic response.

Responders Non-responders All p-value

Number 20 40 60 —

Age (y) 49.2 (±11.6) 52,8 (±12.2) 51.6 (±12.0) 0.273
ADC (x10^-6
mm^2/s)

842 (±270) 875 (±197) 864 (±222) 0,629

PET SUV Max 8.44 (±5.08) 6.79 (±5.51) 7.34 (±5.39) 0,257
Ki67 (%) 39.7 (±23.0) 20.0 (±11.3) 26.6 (±18.5) 0,0013
PgR (%) 12.3 (±23.9) 34.6 (±33.9) 27.2 (±37.5) 0,0046
ER (%) 34.0 (±40.5) 80.8 (±26.2) 65.2 (±38.4) 0,0001

Grade
2 2 23 25 0,0006
3 18 17 35

HER2
Pos 11 35 46 0,0088
Neg 9 5 14

Shape
I 8 27 35 0,0182
O 6 11 17
R 6 2 8

Margin
I 16 19 35 0,0254
S 4 21 25

IntEnh
E 14 33 47 0,3654
O 1 3 4
RE 5 4 9

Curve
I 0 3 3 0,6565
II 3 6 9
III 17 31 48

Type
MC 6 18 24 0,4543
MF 5 6 11
U 9 16 25
April 2021 | Volu
me 11 | Article
Data are presented either as mean ± sd or number of patients with relative percentage.
Shape: (I)rregular/(O)val/(R)ound; Margin: (I)rregular/(S)piculated; IntEnh: H(e)
terogeneous/H(o)mogeneous/(R)im (E)nhancement; Type: (M)ulti(c)entric/(M)ulti(f)ocal/
(U)nifocal.
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Imaging Protocol
The temporal evolution of the lesions during NAC was
monitored by 3T DCE MRI (Achieva, Philips Medical Systems,
Cleveland, Ohio, USA). The imaging protocol included contrast-
enhanced 3D dynamic acquisition (THRIVE), fat-saturated
(SPAIR) (TE=2ms, TR=shortest) before and after intravenous
injection of 0.2 mL/kg of gadobenate dimeglumine or 0.1 mL/kg
of Gadoteridol (Bracco Imaging, Milan, Italy), followed by a
20 mL saline flush, with a temporal resolution of 90 s; axial
echo-planar (EPI) single-shot diffusion weighted imaging
(TR/TE=shortest) with b-value=0 s/mm2 and 800 s/mm2. MRI
was available at three time-points of therapy, however only the
scans performed before NAC were used in this study.

MRI and PET-CT were performed between 30 and 2
days before NAC start. For PET, patients were injected with
2.5 MBq/Kg of 18F-FDG and scanned an hour after the
administration of the radiopharmaceutical, with a scan time
set to 3 min/bed.

Radiomic Features Extraction and
Reduction
Lesions were contoured in the subtracted image (pre-contrast
image subtracted to the second dynamic image) by means of a
semi-automatic commercial tool (HealthMyne, Madison,
Wisconsin, USA) and verified by two radiologists with 35 and
5 years of experience in breast imaging, respectively. The two
radiologists also evaluated morphologic MRI parameters and
performed apparent diffusion coefficient (ADC) as well as
SUVmax measurements.

Radiomic features were extracted from the VOI in both
the third dynamic and subtracted images through PyRadiomics
v2.2.0 (14). This choice is due to the fact that using only
a subtracted dataset might eliminate relevant information
which is not linked to contrast enhancement (e.g., textural
features of non-enhancing tissue). Following the Image
Biomarker Standardization Initiative (IBSI) guidelines,
MRI gray levels were normalized before feature extraction
(average and standard deviation forced to 0 and 100,
respectively) and a fixed bin count of 8. Voxels were resampled
to 0.90 mm cubes through b-splines interpolation. Before
resampling, the image in-plane spacing, out-plane spacing
and aspect ratio were 0.87±0.03 mm, 0.94±0.07 mm and 0.93±
0.08, respectively.

For both the third dynamic and the subtracted image, a total
of 107 features were extracted: geometric or zero order (14), first
order (15), higher order or textural (75) (16).

A preliminary feature reduction was performed by combining
LASSO regression analysis (17), logistic generalized linear model
(18) and leave-one-out cross validation (LOOCV) (15).
According to common practice in LASSO regression, all the
covariates were standardized by subtracting their mean and
dividing by their standard deviation. The value of lambda
minimizing the mean LOOCV deviance was identified by
means of the glmnet package for R (19) and used to select the
radiomic features included in the study.
Frontiers in Oncology | www.frontiersin.org 3
Selection of the Most Significant
Covariates
The pool of data was composed of six continuous variables (age,
apparent diffusion coefficient (ADC), PET-CT SUVmax, Ki-67
expression, ER and PgR expression) and seven categorical
variables (lesion grade, HER-2 expression, shape, type of
margin, internal enhancement (IntEnh), type of contrast
enhancement kinetic curve (I=persistently enhancing –
II=plateau – III=rapid wash out), type of lesion). Shape,
margin and IntEnh were classified following the BiRADS
guidelines for MRI in breast cancer whereas Ki-67, ER, PgR
and HER-2 were obtained from the histological biopsy.

The significance test for each covariate was performed by
means of the Welch Two Sample t-test when the variables were
continuous and the Fisher’s Exact Test when the distribution
was categorical.

Correlations between continuous variables were tested by
means of the Spearman correlation coefficient; for categorical
variables with a limited number of events per class the Fisher’s
Exact Test was used.

An exhaustive approach was adopted to select the most
significant covariates, i.e. a different model was built for each
possible subset of covariates. Three classifiers were trained and
tested: Logistic Regression (Logit), linear Support Vector
machines Regression (SVR) and Random Forest (RF). The
optimal hyperparameters (cost for linear SVR and number of
trees for RF) were obtained on the most general LOOCV model
(with all the covariates) and held constant for the entire process.

The AUC of each classifier for each subset of variables was
estimated by averaging the AUCs obtained in both the 60-fold
(leave-one-out) and one 30-fold (leave-two-out) cross validated
models. The use of two different cross-validation schemes
increases the stability of the predicted performances.
Confidence intervals were estimated by using the ci.auc
function of the pROC package (v1.16.2). The significance of
each AUC curve was estimated against the null hypothesis H0:
AUC=0.5 through the Mason-Graham process (20) and all the
obtained p-values were multiplicity-corrected to limit the false-
discovery rates (21).

Predictive Models
The variables were divided into five groups:

• Group_1 (G1={Age, ADC, SUVmax, grade, shape, margin,
IntEnh, type of curve, type of lesion}): variables obtained from
clinical and radiological data, without radiomics or
histological information

• Group_2 (Rad): radiomic features that passed the reduction
process

• Group_3 (Hist={Ki-67, ER, PgR, HER-2}): histological
information

• Group_4 (NoRad={G1, Hist}): whole dataset without
radiomic features

• Group_5 (All={G1, Rad, Hist}): whole dataset including
radiomic features
April 2021 | Volume 11 | Article 630780
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The predictive performance for the classification task for each
one of the classes above was evaluated with the three classifiers
(Logit, SVR, RF). The importance of each feature was assessed as
the frequency with which the same feature was included in the
six models with higher average AUC.
RESULTS

Study Population
An overview of all the available clinical, histological and
radiological information is shown in Table 1, where the
rightmost column shows the p-values resulting from the t-test
or Fischer’s exact test.

Radiomic Features Extraction and
Reduction
The selection process operated by LASSO is represented in
Figure 1. In panel B, the LOOCV deviance is plotted against l;
the value of lambda corresponding to the minimum deviance is
identified in the inset by the dotted vertical line. From the whole
set of 214 radiomic features, 5 passed the pre-selection process:
Sphericity (F1), Kurtosis (F2), Dependence_Variance (F3),
Long_Run_High_Gray_Leve l_Emphas i s (F4 ) , and
High_Gray_Level_Zone_Emphasis (F5). Three of them (F2, F4,
F5) were calculated on the second dynamic image after contrast
medium injection while the remaining (F1, F3) were extracted
from the subtracted image.

Selection of the Most Significant
Covariates and Predictive Models
Including the 5 radiomic features above, the total number of
covariates was 18 (11 continuous and 7 categorical or
dichotomous, see also Table 1). The correlation matrix
between continuous variables is reported in Figure 2A. The
highest correlation was observed between F3 and F4 (r=0.58),
while all the other coefficients were below 0.5 (in absolute
value). Figure 2B shows the Fisher’s exact test comparison
Frontiers in Oncology | www.frontiersin.org 4
between categorical variables. Low p-values are highlighted.
The strongest correlation was observed between Margin and
Grade. Overall, the continuous variables can be considered
independent variables.

All the 218 possible subsets of variables were tested in the
selection process. The performance of the best 6 models for each
group of variables is shown in Figure 3. The data represented by
the boxplots are the average AUC in the ROC analysis of the 60-
fold and 30-fold validations.

The models including the covariates in the G1 group achieved a
maximum AUC between 0.70 and 0.75. On the other hand,
histological information (Hist) alone provided models with a
maximum AUC spanning from 0.80 to 0.85. The combination of
both G1 andHist classes pushed the performance between 0.85 and
0.90 for the three classifiers analyzed. The addition of the 5 radiomic
features allowed AUC above 0.90 to be reached. In the latter
case, the Logit model provided an AUC of 0.98 (CI=[0.94, 1.00])
for pCR~{F1+F2+F3+F4+Ki67+ER+Grade+HER2+Margin+Type}
and 0.96 (CI=[0.92, 1.00]) for pCR~{F1+F2+F3+F4+ER+PgR+
HER2+Margin+Type}. Overall, the average multiplicity-corrected
p-value for the best 6 models in the All group was an order of
magnitude lower than the others. For instance, pbest6,LogitAll = 4:44  �
 10 − 6, pbest6,LogitNoRad = 3 : 86  �   10 − 4 and pbest6,LogitHist = 1 : 74  �  10 − 4.
The complete list of the average values of p for the best 6 models is
visible in Supplementary Table 1.

Figure 4 reports the selection frequency of the included
variables in the 6 models with the best performance, for
each classifier.

The logistic regression model allows to see if the correlation of
a covariate with pCR is positive or negative. The normalized
regression coefficient mj for covariate j has been computed as its
weighted mean over the 218 tested models:

mj ≡o
i

mi,j

s 2
i,j
=o

i

1
si,j

where mi,j and si,j are the i-th fit regression coefficient and error,
respectively. The resulting values are reported in Table 2. Values
in the interval [-1,1] indicate a non-significant average covariate
A B

FIGURE 1 | LASSO variable selection process. (A) Values of the LASSO regression coefficient as a function of log (Lambda). (B) LOOCV deviance as a function of
log (Lambda) and therefore of the number of selected features.
April 2021 | Volume 11 | Article 630780
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correlation with pCR, whereas values higher than 1 or lower
than -1 represent statistically relevant positive and negative
correlations, respectively. As expected from the low p-values in
Table 1 and the high frequencies in Figure 4, the most correlated
covariates were F2, F3, F4, Ki67, ER, HER2 and irregular shape.
In this case, the categorical covariates have been converted in
their dummy-variable counterparts to allow explicit definition of
the regression coefficient.
DISCUSSION

The relevance of clinical, histological and radiological
information has been evaluated by means of the analysis made
on different groups of variables. The introduction of MRI
radiomic features showed the potential to significantly improve
predictive models of pathologic complete response to
neoadjuvant chemotherapy, as can be seen in fig. 3. This result
stands for the robustness of the additional information provided
by radiomic features, confirmed by the consistent results
obtained through multiple combination of variables. From the
clinical standpoint, this is important as models that include
Frontiers in Oncology | www.frontiersin.org 5
radiomic information may offer a better prediction of complete
response to therapy compared to protocols based on the
hormonal receptor status alone.

These results compare to those of Chamming’s et al. (22), who
obtained an AUC of 0.834 in ROC analysis with a model based
on logistic regression and the inclusion of kurtosis, one of the
radiomic features that resulted significant in our study. Eun et al.
(9) used a model based on random forest on 3T-MRI texture
analysis, after comparison with other 6 machine-learning based
classifiers, and obtained an AUC of 0.82 using metrics calculated
on the mid-treatment contrast-enhanced T1 MRI. Fan et al. (23)
found results comparable to the outcome of this study, with an
AUC reaching up to 0.91 using a subset of 12 radiomic features
selected among 158 metrics for prediction of pathologic
complete response to NAC. Different from our approach, they
included signatures extracted from the background parenchyma
in the predictive model; however, they did not include other MRI
and PET-CT information, nor histological characteristics of the
lesions. Bian et al. (24) analyzed a pool of 152 patients and found
a potential predictive power of T2W MRI radiomic metrics for
NAC treatment outcome. Differently from their study, our
investigation combines multiple information including PET-
CT metrics and hormonal receptor status, in an attempt to
maximize the predictive performance of the models.
Furthermore, though based on a smaller number of patients,
our study included a strong feature reduction strategy in order to
A B

FIGURE 2 | (A) Spearman correlation matrix between real variables and (B) Fisher’s p-values matrix between categorical variables.
FIGURE 3 | Average AUC of the best 6 models as a function of the class of
variables (G1, Rad, Hist, NoRad and All) and classifier (RF, random forest;
SVR, Support Vector machines Regression; Logit, Logistic regression).
Boxplots represent the median value, interquartile range and extremes.
TABLE 2 | Regression correlation coefficients of the single covariates in the Logit
model.

F1 F2 F3 F4 F5 Age Ki67

0,9 1,8 -1,5 -2,0 0,8 -0,7 1,9

ER ADC PgR PET_SUV Grade_3 HER2 Shape_I
-2,5 0,2 -0,7 -0,6 1,4 2,2 -1,5

Shape_O Margin_I IntEnh_E IntEnh_O Curve_III Type_MC Type_MF
-1,2 1,0 -0,3 -0,2 0,3 0,1 0,6
April 20
21 | Volum
e 11 | Artic
Values higher than 1 and lower than -1 represent statistically relevant positive and negative
correlation of predictors, respectively.
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reduce overfitting, with final models based on five out of the total
214 initial radiomic features compared to 18-20 out of more than
7000 features in the cited investigation. Sutton et al. (25)
performed an extensive investigation on 273 patients, showing
that MRI radiomic features combined to information on the
molecular subtype allows an accurate classification of pCR, an
approach similar to our study. That work, however, did not
include other MRI parameters such as ADC or PET-CT metrics;
furthermore, it was based on mixed 1.5T and 3.0T MRI. Zhou
et al. (26) published a study on 55 patients based on 3.0T MRI
only, showing the potential of radiomic features to predict NAC
outcome; however, similarly to several other studies, they did not
include additional non-radiomics and non-MRI-based
information in their models.

Radiomic signatures that passed the feature selection process
included sphericity and kurtosis. The latter was found to be a
significant covariate also by Chamming’s et al. In the logit model,
sphericity was positively correlated to pCR. This may be explained
by the tendency of triple negative tumors – that generally respond
better to NAC compared to other molecular subtypes – to present
with round or oval shapes (27). The other three radiomic features
used in the models are higher-order metrics associated with
micro-inhomogeneities within the tumor.

From the results reported in figure 4 it can be seen that ER and
HER2 are always contained in the best-performing models, due to
their strong predictive power also shown by the low p-values in
Table 1. This was expected as the estrogen andHER2 status are well
known predictors of the response to therapy (28). Their negative
(ER) and positive (HER2) correlations to pCR in the logit model,
visible in Table 2, are also consistent with current knowledge.

F2, F3 and F4 were also consistently observed in the models
that showed high predictive power. F2 corresponds to the
kurtosis, already observed to be correlated to pCR (23).
Frontiers in Oncology | www.frontiersin.org 6
Table 2 shows that the observed correlation in the logit model
was positive, meaning that higher kurtosis correlates to better
outcome. F3 and F4 are the Dependence Variance and Long Run
High Gray Level Emphasis, respectively, and their negative
correlation to pCR (Table 2) does not have an obvious
interpretation, though their connection to tissue heterogeneity
might suggest a characterization of the tumor microenvironment
compared to the surrounding parenchyma.

This study has limitations. Firstly, it was a single-institution
study, and the number of complete responders was limited.
Furthermore, the retrospective nature of the investigation
might have caused selection bias. Tumor segmentation was
standardized by the use of a semi-automatic tool, however two
radiologists reviewed and, in some instances, had to modify
lesion contours in order to adjust initial mismatch. Finally,
radiomic features were extracted from visible lesions only,
while the surrounding parenchyma, possibly offering additional
hidden information, was not included in the analysis.

In conclusion, radiomic features extracted from pre-NAC
contrast-enhanced 3T MRI consistently improved the
performance of predictive models when added to other clinical,
histological and radiological data. However, further investigation is
necessary before this information can be used for clinical decision
making, especially due to the limited cases/variable ratio (6 for the
model with 10 variables). If validated on a larger, independent,
multi-institutional study, this analysis may become an important
tool for predicting response to NAC for breast cancer.
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