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Abstract
Background: A tremendous amount of efforts have been devoted to identifying genes for
diagnosis and prognosis of diseases using microarray gene expression data. It has been
demonstrated that gene expression data have cluster structure, where the clusters consist of co-
regulated genes which tend to have coordinated functions. However, most available statistical
methods for gene selection do not take into consideration the cluster structure.

Results: We propose a supervised group Lasso approach that takes into account the cluster
structure in gene expression data for gene selection and predictive model building. For gene
expression data without biological cluster information, we first divide genes into clusters using the
K-means approach and determine the optimal number of clusters using the Gap method. The
supervised group Lasso consists of two steps. In the first step, we identify important genes within
each cluster using the Lasso method. In the second step, we select important clusters using the
group Lasso. Tuning parameters are determined using V-fold cross validation at both steps to allow
for further flexibility. Prediction performance is evaluated using leave-one-out cross validation. We
apply the proposed method to disease classification and survival analysis with microarray data.

Conclusion: We analyze four microarray data sets using the proposed approach: two cancer data
sets with binary cancer occurrence as outcomes and two lymphoma data sets with survival
outcomes. The results show that the proposed approach is capable of identifying a small number
of influential gene clusters and important genes within those clusters, and has better prediction
performance than existing methods.

Background
Development in microarray techniques makes it possible
to profile gene expression on a whole genome scale and
study associations between gene expression and occur-
rence or progression of common diseases such as cancer
or heart disease. A large amount of efforts have been
devoted to identifying genes that have influential effects

on diseases. Such studies can lead to better understanding
of the genetic causation of diseases and better predictive
models. Analysis of microarray data is challenging
because of the large number of genes surveyed and small
sample sizes, and presence of cluster structure. Here the
clusters are composed of co-regulated genes with coordi-
nated functions. Without causing confusion, we use the
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phrases "clusters" and "gene groups" interchangeably in
this article.

Available statistical approaches for gene selection and pre-
dictive model building can be roughly classified into two
categories. The first type focuses on selection of individual
genes. Examples of such studies range from early studies
of detecting marginally differentially expressed genes
under different experimental settings [1] to selecting
important genes for prediction of binary disease occur-
rence [2,3] and detecting genes associated with patients'
survival risks [4,5]. Since the dimension of gene expres-
sions measured (~103–4) is much larger than the sample
size (~102), variable selection or model reduction are usu-
ally needed. Previously employed approaches include the
singular value decomposition [6], principal component
analysis [7], partial least squares [3] and Lasso [8], among
others. These approaches aim at identifying a small subset
of genes or linear combinations of genes-often referred as
super genes, that can best explain the phenotype varia-
tions. A limitation of these approaches is that the cluster
structure of gene expression data is not taken into
account.

Biologically speaking, complex diseases such as cancer,
HIV and heart disease, are caused by mutations in gene
pathways, instead of individual genes. Statistically speak-
ing, there exist genes with highly correlated expressions
and should be put into clusters [9]. Although functional
groups and statistical clusters may not match perfectly,
they tend to have certain correspondence [10,11].

The second type of methods focuses on detecting differen-
tial gene clusters. Examples include the global test [12],
the maxmean approach [13] and the gene set enrichment
analysis [14]. In classification and survival analysis, clus-
ter-based approaches have also been considered [5,15].
One approach is to construct gene clusters first, which can
be based on statistical measurements (for example K-
means or Hierarchical methods) or biological knowledge
[16] or both. Then the mean expression levels are used as
covariates in downstream analysis [17]. With the simple
cluster based methods, it is assumed that if a cluster is
strongly associated with the outcome, then all genes
within that cluster are associated with the outcome, which
is not necessarily true. Within cluster gene selection may
still be needed.

Lasso [18] is a popular method for variable selection with
high-dimensional data, since it is capable of producing
sparse models and is computationally feasible. For exam-
ple, this method has been used for correlating survival
with microarray data [8]. Standard Lasso approach carries
out variable selection at the individual gene level. A recent
development of the Lasso is the group Lasso method [19]

(referred as GLasso hereafter). The GLasso is designed for
selecting groups of covariates. In a recent study, [20] pro-
poses logistic classification with the GLasso penalty and
considers its applications in microarray study. Direct
application of the GLasso can identify important gene
groups. However, it is not capable of selecting important
genes within the selected groups. The fitted model may
not be sparse, especially if the clusters are large.

In this article, we propose a supervised group Lasso
(SGLasso) approach, which selects both important gene
clusters and important genes within clusters. Compared
to individual gene based approaches such as Lasso, the
SGLasso takes into consideration the cluster structure and
can lead to better predictions, as shown in our empirical
studies. Compared to cluster based methods such as the
GLasso, the within-cluster gene selection aspect of
SGLasso leads to more parsimonious models and hence
more interpretable gene selection results. The proposed
approach is applicable as long as the objective function is
well defined and locally differentiable. In this article, we
apply the SGLasso to logistic binary classification and Cox
survival analysis problems with microarray gene expres-
sion data.

Results
Binary classification
Colon data
In this dataset, expression levels of 40 tumor and 22 nor-
mal colon tissues for 6500 human genes are measured
using the Affymetrix gene chips. A selection of 2000 genes
with the highest minimal intensity across the samples has
been made by [2], and these data are publicly available at
[21]. The colon data have been analyzed in several previ-
ous studies using other statistical approaches, see for
example [3,22,23].

Nodal data
This dataset was first presented by [24,25]. It includes
expression values of 7129 genes of 49 breast tumor sam-
ples. The expression data were obtained using the Affyme-
trix gene chip technology and are available at [26]. The
response describes the lymph node (LN) status, which is
an indicator for the metastatic spread of the tumor, a very
important risk factor for the disease outcome. Among the
49 samples, 25 are positive (LN+) and 24 are negative
(LN-). We threshold the raw data with a floor of 100 and
a ceiling of 16000. Genes with max(expression)/
min(expression) < 10 and/or max(expression) – min(expres-
sion) < 1000 are also excluded [1]. 3332 (46.7%) genes
pass the first step screening. A base 2 logarithmic transfor-
mation is then applied. The Nodal data have also been
studied by [22].
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Although there is no limitation on the number of genes
that can be used in the proposed approach, we first iden-
tify 500 genes for each dataset based on marginal signifi-
cance to gain further stability as in [23]. Compute the
sample standard errors of the d biomarkers se(1),..., se(d)
and denote their median as med.se. Compute the adjusted
standard errors as 0.5(se(1) + med.se),..., 0.5(se(d) + med.se).
Then the genes are ranked based on the t-statistics com-
puted with the adjusted standard errors. The 500 genes
with the largest absolute values of the adjusted t-statistics
are used for classification. The adjusted t-statistic is similar
to a simple shrinkage method discussed in [27].

For the Colon and Nodal data, clusters are constructed
using the K-means approach and the Gap statistic is used
to select the optimal number of clusters. We show in Fig-
ure 1 the Gap statistic as a function of the number of clus-
ters. 9 clusters are constructed for the Colon data and 20
clusters are constructed for the Nodal data. Details of the
clustering information are available upon request. With

the generated clusters, we apply the proposed SGLasso
approach. Tuning parameters are chosen using 3-fold
cross validation. Summary model features are shown in
Table 1. For the Colon data, 22 genes are present in the
final model, representing 8 clusters. For the Nodal data,
66 genes are selected, representing 17 clusters. We list the
identified genes in Tables 2 and 3.

For the Colon data, gene Has.1039 has also been identi-
fied to be associated with Colon cancer in [28,29]. Gene
Hsa.42949 is estrogen sulfotransferase. Research show
that certain compounds, such as soy, have protective effect
for colon cancer. The protective role of these compounds
could be due to an ability to inhibit competitively the acti-
vation of promutagenic estrogen metabolites into carcin-
ogens by estrogen sulfotransferases. The official symbol of
gene Hsa.1454 is CSNK1E. Studies have revealed a nega-
tive regulatory function of CK1 in the Wnt signaling path-
way, where CK1 acts as a negative regulator of the LEF-1/
beta-catenin transcription complex, thereby protecting

Gap statistics as a function of number of clustersFigure 1
Gap statistics as a function of number of clusters. Red solid line: Colon data; Green dashed line: Nodal data.
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Table 2: Colon data: genes with nonzero estimates from SGLasso.

Est. Gene ID Gene Description

0.229 Hsa.1047 Small Nuclear Ribonucleoprotein Associated Protein B/B';
0.385 Hsa.1410 TRANSLATIONAL INITIATION FACTOR 2 BETA SUBUNIT (HUMAN);
-0.058 Hsa.1039 Homo sapiens secretory pancreatic stone protein (PSP-S) mRNA

-0.110 Hsa.1013 PROFILIN I (HUMAN)
-0.018 Hsa.2809 IG MU CHAIN C REGION (HUMAN)
-0.072 Hsa.42949 ESTROGEN SULFOTRANSFERASE (Bos taurus)
-0.155 Hsa.1454 Human gamma amino butyric acid (GABAA) receptor beta-3 subunit mRNA

0.233 Hsa.8214 PUTATIVE SERINE/THREONINE-PROTEIN KINASE B0464.5 I
0.193 Hsa.1209 P14780 92 KD TYPE V COLLAGENASE PRECURSOR

-0.299 Hsa.8147 Human desmin gene, complete cds.
-0.511 Hsa.37937 MYOSIN HEAVY CHAIN, NONMUSCLE (Gallus gallus)

0.181 Hsa.462 Human serine kinase mRNA, complete cds.
0.484 Hsa.627 Human monocyte-derived neutrophil-activating protein (MONAP) mRNA
0.097 Hsa.601 Human aspartyl-tRNA synthetase alpha-2 subunit mRNA
-0.525 Hsa.696 Human cleavage stimulation factor

0.238 Hsa.1682 TRISTETRAPROLINE (HUMAN)
-0.492 Hsa.1832 MYOSIN REGULATORY LIGHT CHAIN 2, SMOOTH MUSCLE ISOFORM

-0.254 Hsa.612 Human beta adaptin mRNA
0.967 Hsa.6814 COLLAGEN ALPHA 2(XI) CHAIN (Homo sapiens)

0.189 Hsa.3306 Human gene for heterogeneous nuclear ribonucleoprotein core protein A1.
0.227 Hsa.3016 S-100P PROTEIN (HUMAN)
0.167 Hsa.2928 H.sapiens mRNA for p cadherin.

Table 1: Comparison of estimation and prediction performance of different approaches. 

Lasso Simple GLasso SGLasso

Colon Nonzero 19 500 500 22
Cluster - 9 9 8
Prediction 0.129 0.226 0.161 0.129

Nodal Nonzero 37 500 233 66
Cluster - 20 9 17
Prediction 0.245 0.163 0.122 0.122

Follicular Nonzero 15 729 233 79
Cluster - 34 2 13
Prediction 5.9 2.3 0.5 6.5

MCL Nonzero 15 834 132 28
Cluster - 30 3 3
Prediction 8.2 6.2 19.3 20.3

Nonzero: number of genes in the final models. Cluster: number of clusters in the final models. Prediction: for Colon and Nodal, Leave-One-Out 
prediction error; For Follicular and MCL, the logrank statistic.
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Table 3: Nodal data: genes with nonzero estimates from SGLasso.

Estimate Gene ID Gene Description

0.008 D63486_at Human mRNA for KIAA0152 gene, complete cds
0.094 X74496_at H.sapiens mRNA for prolyl oligopeptidase
0.014 Y10260_at H.sapiens EYA1 gene

-0.063 U27185_at Human RAR-responsive (TIG1) mRNA, complete cds
-0.062 U69263_at Human matrilin-2 precursor mRNA, partial cds

0.001 D87673_at Human mRNA for heat shock transcription factor 4, complete cds
-0.100 M83233_at Homo sapiens transcription factor (HTF4A) mRNA, complete cds
0.011 U07223_at Human beta2-chimaerin mRNA, complete cds
-0.121 X16354_at Human mRNA for transmembrane carcinoembryonic antigen BGPa

0.451 M59916_at Human acid sphingomyelinase (ASM) mRNA, complete cds
0.047 U88898_r_at Human endogenous retroviral H protease
0.104 X97630_at H.sapiens mRNA for serine/threonine protein kinase EMK

0.001 S83309_s_at germ cell nuclear factor

-0.101 D87071_at Human mRNA for KIAA0233 gene, complete cds
0.013 J00277_at Human c-Ha-ras1 proto-oncogene, complete coding sequence
0.823 J02982_f_at Human glycophorin B mRNA, complete cds
0.001 M69013_at Human guanine nucleotide-binding regulatory protein mRNA
-0.096 X92396_at H.sapiens mRNA for novel gene in Xq28 region
-0.091 Y00815_at Human mRNA for LCA-homolog. LAR protein

-0.116 AB000114_at Human mRNA for osteomodulin
0.016 D50532_at Human mRNA for macrophage lectin 2, complete cds
-0.072 M83221_at Homo sapiens I-Rel mRNA, complete cds
-0.061 X76717_at H.sapiens MT-1l mRNA

0.031 J02645_at Human translational initiation factor (eIF-2), alpha subunit mRNA
-0.070 X53587_at Human mRNA for integrin beta 4

-1.323 AFFX-CreX-3_st X03453 Bacteriophage P1 cre recombinase protein
-0.083 D80009_at Human mRNA for KIAA0187 gene
0.019 J04615_at Human lupus autoantigen mRNA, complete cds
0.009 L20861_at Homo sapiens proto-oncogene (Wnt-5a) mRNA
-0.056 L20971_at Human phosphodiesterase mRNA, complete cds
-0.026 M84820_s_at Human retinoid X receptor beta (RXR-beta) mRNA, complete cds
0.156 U37408_at Human CtBP mRNA, complete cds
0.079 U89336_cds7_at receptor for advanced glycosylation end products gene
0.070 X76059_at H.sapiens mRNA for YRRM1
-0.084 X82207_at H.sapiens mRNA for beta-centractin (PC3)
0.025 X99687_at H.sapiens mRNA for methyl-CpG-binding protein 2

0.501 L38933_rna1_at the longest open reading frame predicts a protein of 202 amino acids

-0.034 U02493_at Human 54 kDa protein mRNA, complete cds
0.016 U77846_rna1_s_at Human elastin gene, Human elastin gene
-0.102 X07618_s_at Human mRNA for cytochrome P450 db1 variant a
-0.614 X15357_at Human mRNA for natriuretic peptide receptor (ANP-A receptor)
0.033 Y08265_s_at H.sapiens mRNA for DAN26 protein, partial

-0.033 HG3521-HT3715_at Ras-Related Protein Rap1b
-0.078 L33075_at Homo sapiens ras GTPase-activating-like protein (IQGAP1) mRNA
0.011 X66364_at H.sapiens mRNA PSSALRE for serine/threonine protein kinase
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cells from development of cancer. Gene Hsa.8214 has
official symbol DCGR6. It has been shown to be associ-
ated with mammary cancer and tumor cell proliferation in
general. Gene Hsa.462 (official symbol SERPINC1) has
been shown to be related to cancer cell proliferation. Gene
Hsa.627 is also identified as a Colon cancer biomarker in
[28]. Gene Hsa.696 has official symbol BTN1A1. RT-PCR
analysis has revealed strongest expression of BTNL3 in
small intestine, colon, testis, and leukocytes. Tristetrapro-
line (gene Hsa.1682) has been reported to negatively reg-
ulate tumor necrosis factor alpha (TNF-alpha) production
by binding the AU-rich element within the 3' noncoding
sequences of TNF-alpha mRNA. Gene Hsa.3016 is S100P
protein. 100P is expressed in human cancers, including
breast, colon, prostate, and lung. In colon cancer cell
lines, its expression level was correlated with resistance to
chemotherapy.

For the Nodal data, gene U27185_at has official Symbol
RARRES1. Also known as TIG1, the expression of this gene
is upregulated by tazarotene as well as by retinoic acid
receptors. Silencing of TIG1 promoter by hypermethyla-
tion is common in human cancers and may contribute to
the loss of retinoic acid responsiveness in some neoplastic
cells. The role of the matrilins (gene U69263) in tumori-
genesis has not been studied. However, a related family of
proteins (fibulins) has been implicated in cancer.
Increased fibulin expression is seen in breast cancer, lung
adenocarcinoma, colon cancer, and other solid tumors,
suggesting that these proteins might play a role in tumor

formation or progression. Gene U07223 is a member of
the chimerin family and encodes a protein with a phor-
bol-ester/DAG-type zinc finger, a Rho-GAP domain and
an SH2 domain. Decreased expression of this gene is asso-
ciated with high-grade gliomas and breast tumors, and
increased expression of this gene is associated with lym-
phomas. Findings suggest that CEACAM1 (gene X16354)
participates in immune regulation in physiological condi-
tions and in pathological conditions, such as inflamma-
tion, autoimmune disease, and cancer. Gene D87071_at
is a confirmed breast cancer biomarker. Ras (gene J00277)
and c-Myc play important roles in the up-regulation of
nucleophosmin/B23 during proliferation of cells associ-
ated with a high degree of malignancy, thus outlining a
signaling cascade involving these factors in the cancer
cells. GNA11 (gene M69013) is involved in signaling of
gonadotropin-releasing hormone receptor, which nega-
tively regulates cell growth.

Down-regulation is suggested to be involved in human
breast cancers. Gene D59532 encodes a member of the C-
type lectin/C-type lectin-like domain (CTL/CTLD) super-
family. Members of this family share a common protein
fold and have diverse functions, such as cell adhesion,
cell-cell signaling, glycoprotein turnover, and roles in
inflammation and immune response. Gene X53587 is
human mRNA for integrin beta 4. Colonization of the
lungs by human breast cancer cells is correlated with cell
surface expression of the alpha(6)beta(4) integrin and
adhesion to human CLCA2 (hCLCA2), Tumor cell adhe-

-0.094 AF009674_at Homo sapiens axin (AXIN) mRNA, partial cds.
-0.379 AFFX-BioB-3_at J04423 E coli bioB gene biotin synthetase
-0.184 AFFX-BioDn-3_at J04423 E coli bioD gene dethiobiotin synthetase
0.058 HG2465-HT4871_at Dna-Binding Protein Ap-2, Alt. Splice 3

0.017 D00762_at Human mRNA for proteasome subunit HC8
-0.090 HG1612-HT1612_at Macmarcks
-0.062 U09178_s_at Human dihydropyrimidine dehydrogenase mRNA, complete cds
0.017 U29175_at Human transcriptional activator (BRG1) mRNA, complete cds.
-1.184 U39817_at Human Bloom syndrome protein (BLM) mRNA, complete cds
-0.211 U41344_at Human prolargin (PRELP) gene, 5' flanking sequence
-0.080 X16832_at Human mRNA for cathepsin H (EC 3.4.22.16)
0.013 X99226_at H.sapiens mRNA for FAA protein
0.000 Z49878_at H.sapiens mRNA for guanidinoacetate N-methyltransferase

-0.105 X68560_at H.sapiens SPR-2 mRNA for GT box binding protein

0.048 HG3998-HT4268_at L-Glycerol-3-Phosphate:Nad+ Oxidoreductase
0.001 U79285_at Human clone 23828 mRNA sequence
0.003 X79981_at H.sapiens VE-cadherin mRNA
0.024 X98176_at H.sapiens mRNA for MACH-beta-1 protein.
0.001 Z18956_at H.sapiens mRNA for taurine transporter

0.014 U18548_at Human GPR12 G protein coupled-receptor gene, complete cds.
-0.281 Z22536_at Homo sapiens ALK-4 mRNA, complete CDS

Table 3: Nodal data: genes with nonzero estimates from SGLasso. (Continued)
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sion to endothelial hCLCA2 is mediated by the beta(4)
integrin, establishing for the first time a cell-cell adhesion
property for this integrin that involves an entirely new
adhesion partner. This adhesion is augmented by an
increased surface expression of the alpha(6) beta(4)
integrin in breast cancer cells selected in vivo for enhanced
lung colonization but abolished by the specific cleavage
of the beta(4) integrin with matrilysin. Wnt-5a (gene
L20861) has been shown to influence the metastatic
behavior of human breast cancer cells, and the loss of
Wnt-5a expression is associated with metastatic disease.
NFAT1, a transcription factor connected with breast can-
cer metastasis, is activated by Wnt-5a through a Ca2+ sig-
naling pathway in human breast epithelial cells.
Endogenous RXR beta (gene M84820) contributes to ERE
binding activity in nuclear extracts of the human breast
cancer cell line MCF-7. Detailed microscopic analysis of
the morphology of MCF7 breast cancer cells lacking CtBPs
(gene U37408) reveals an increase in the number of cells
containing abnormal micronucleated cells and dividing
cells with lagging chromosomes, indicative of aberrant
mitotic chromosomal segregation. Methyl-CpG-binding
domain protein-2 (gene X99687) mediates transcrip-
tional repression associated with hypermethylated GSTP1
CpG islands in MCF-7 breast cancer cells. The nmt55/
p54nrb protein (gene U02493) is post-transcriptionally
regulated in human breast tumors leading to reduced
expression in ER- tumors and the expression of an amino
terminal altered isoform in a subset of ER+ tumors.
Expression of elastin (gene U77846) in breast carcinoma
cells has been demonstrated by immunohistochemistry
and in situ hybridization. Cytochrome P450 1B1
(CYP1B1, gene X07618) is active in the metabolism of
estrogens to reactive catechols and of different procarcino-
gens. The CYP1B1 gene polymorphisms do not influence
breast cancer risk overall but may modify the risk after
long-term menopausal hormone use. Genetic deficiency
of DPYD enzyme (gene U09178) results in an error in
pyrimidine metabolism associated with thymine-uracilu-
ria and an increased risk of toxicity in cancer patients
receiving 5-flourouracil chemotherapy.

We evaluate the prediction performance of the proposed
approach via Leave-One-Out (LOO) cross validation. For
the Colon and Nodal data, we compute the LOO cross val-
idation errors. In this evaluation process, tuning parame-
ters are computed using 3-fold cross validation for each
reduced set. For comparison purposes, we also consider
the following alternative approaches.

1. Lasso: we ignore the clustering structures and apply the
Lasso directly. This approach has been considered in [18]
for Cox survival analysis and [23] for logistic binary clas-
sification.

2. GLasso: we ignore the first step supervised selection and
apply the GLasso directly. For binary classification, the
GLasso has been investigated in [20].

3. Simple clustering: with the generated clusters, we com-
pute the median of the gene expression level for each clus-
ter. The medians are used as covariates. Since the number
of "covariates" is less than the sample size, logistic/Cox
models can be fit directly. This mimics the approach in
[5].

For the alternative approaches, we also compute the LOO
cross validation errors. Tuning parameters when pre-
sented are also chosen via 3-fold cross validation. Com-
parison results are shown in Table 1.

We can see from Table 1 that the SGLasso is capable of fea-
ture selection at both the cluster level and the within clus-
ter gene level. The number of genes selected is much less
than its counterpart from the simple clustering approach
and GLasso. The Lasso is also capable of selecting a small
number of genes. Especially we note that the number of
genes selected by Lasso is smaller than by SGLasso. For
simple data sets such as the Colon data, the Lasso predic-
tion error is the same as the SGLasso. However for data
sets that are more difficult to classify (Nodal), the SGLasso
prediction error is much smaller. Both data sets have also
been analyzed by other approaches. For the Colon data,
ROC based approach has prediction error 0.14 [23]; Log-
itBoost has classification errors 0.145, 0.194 and 0.161
[22]; and classification tree has classification error 0.145
[22]. We note that since different sets of genes are used in
those studies, Table 1 only provides rough comparisons.
For the Nodal data, in [22], LogitBoost yields prediction
error 0.184, 0.265 and 0.184, while classification tree has
prediction error 0.204 and 1-nearest neighbor has predic-
tion error 0.367.

Survival analysis
Follicular lymphoma data
Follicular lymphoma is the second most common form of
non-Hodgkin's lymphoma, accounting for about 22 per-
cent of all cases. A study was conducted to determine
whether the survival probability of patients with follicular
lymphoma can be predicted by the gene-expression pro-
files of the tumors at diagnosis [5]. Fresh-frozen tumor-
biopsy specimens and clinical data from 191 untreated
patients who had received a diagnosis of follicular lym-
phoma between 1974 and 2001 were obtained. The
median age at diagnosis was 51 years (range 23 to 81),
and the median follow up time was 6.6 years (range less
than 1.0 to 28.2). The median follow up time among
patients alive at last follow up was 8.1 years. Eight records
with missing survival information are excluded from the
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downstream analysis. Detailed experimental protocol can
be found in [5].

Affymetrix U133A and U133B microarray genechips were
used to measure gene expression levels from RNA sam-
ples. A log2 transformation was applied to the Affymetrix
measurements. We first filter the 44928 gene measure-
ments with the following criteria: (1) the max expression
value of each gene across 191 samples must be greater
than 9.186 (the median of the maximums of all probes).
(2) the max-min should be greater than 3.874 (the
median of the max-min of all probes). (3) Compute cor-
relation coefficients of the uncensored survival times with
gene expressions. Select the genes whose correlation with
survival time is greater than 0.2. There are 729 genes that
pass this screening process. We normalize genes across
samples to have mean 0 and variance 1.

Mantel cell lymphoma data
[4] reported a study using microarray expression analysis
of mantle cell lymphoma (MCL). The primary goal of this
study was to discover genes that have good predictive
power of patient's survival risk. Among 101 untreated
patients with no history of previous lymphoma included
in this study, 92 were classified as having MCL, based on
established morphologic and immunophenotypic crite-
ria. Survival times of 64 patients were available and other
28 patients were censored. The median survival time was
2.8 years (range 0.02 to 14.05 years). Lymphochip DNA
microarrays [15] were used to quantify mRNA expression
in the lymphoma samples from the 92 patients. The gene
expression data that contain expression values of 8810
cDNA elements are available at [30].

We pre-process the data as follows to exclude noises and
gain further stability: (1) Compute the variances of all
gene expressions; (2) Compute correlation coefficients of
the uncensored survival times with gene expressions; and
(3) Select the genes with variances larger than the first
quartile and with correlation coefficients larger than 0.25.
834 out of 8810 genes (16.5%) pass the above initial
screening. We standardize these genes to have zero mean
and unit variance.

We use the K-means method and Gap statistic in the clus-
ter analysis. 34 (Follicular) and 30 (MCL) clusters are
established. Plot similar to Figure 1 can be obtained and
omitted here. Model estimation and prediction features
are also provided in Table 1. We show in Tables 4 and 5
the genes included in the final models.

For the Follicular data, gene 23098_x_a is associated with
tumor protein p53. In transfected cells and KSHV-infected
B lymphoma cells, KSHV-encoded latency-associated
nuclear antigen (LANA) expression stimulates degrada-

tion of tumor suppressors von Hippel-Lindau and p53. In
a recent case study with a Japanese girl who had EEC3 and
developed diffuse large B-cell type non-Hodgkin lym-
phoma, researchers identified heterozygosity for a 1079A-
G transition in exon 8 of the TP73L gene, resulting in a
germline asp312-to-gly (D312G) mutation. Gene
223333_s_a is a member of the angiopoietin/angiopoie-
tin-like gene family and encodes a glycosylated, secreted
protein with a fibrinogen C-terminal domain. The
encoded protein may play a role in several cancers and it
also has been shown to prevent the metastatic process by
inhibiting vascular activity as well as tumor cell motility
and invasiveness. Gene 224357_s_a encodes a member of
the membrane-spanning 4A gene family. Members of this
nascent protein family are characterized by common
structural features and similar intron/exon splice bounda-
ries and display unique expression patterns among
hematopoietic cells and nonlymphoid tissues. Chemok-
ines (genes 204470_at, 205114_s_a) are a group of small
(approximately 8 to 14 kD), mostly basic, structurally
related molecules that regulate cell trafficking of various
types of leukocytes through interactions with a subset of
7-transmembrane, G protein-coupled receptors. Chemok-
ines also play fundamental roles in the development,
homeostasis, and function of the immune system, and
they have effects on cells of the central nervous system as
well as on endothelial cells involved in angiogenesis or
angiostasis. Serpin Al (gene 211429_s_a) has an invasion-
promoting effect in anaplastic large cell lymphoma. Gene
216950_s_a has official symbol FCGR1A. Findings
showed that both Fcgamma RIA and FcgammaRIIA medi-
ated enhanced dengue virus immune complex infectivity
but that FcgammaRIIA appeared to do so far more effec-
tively. TRPM4-mediated (gene 219360_s_a) depolariza-
tion modulates Ca2+ oscillations, with downstream
effects on cytokine production in T lymphocytes. The pro-
tein encoded by gene 210973_s_a is a member of the
fibroblast growth factor receptor (FGFR) family, where
amino acid sequence is highly conserved between mem-
bers and throughout evolution. Chromosomal aberra-
tions involving this gene are associated with stem cell
myeloproliferative disorder and stem cell leukemia lym-
phoma syndrome. FGFR-1 is expressed in early hemat-
opoietic/endothelial precursor cells, as well as in a
subpool of endothelial cells in tumor vessels. Gene
227697_at encodes a member of the STAT-induced STAT
inhibitor (SSI), also known as suppressor of cytokine sig-
naling (SOCS), family. Over expression of suppressor of
cytokine signaling 3 is associated with anaplastic large cell
lymphoma.

Genes identified in the MCL study also have sound bio-
logical basis. When the positive cells are treated with
phosphatidylinositol-specific phospholipase C (gene
Hs.522568), a significant decrease in both stain intensity
Page 8 of 17
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Table 4: Follicular data: genes with nonzero estimates from SGLasso.

Estimate Gene ID Gene Description

0.035 227117_at CDNA FLJ40762 fis, clone TRACH2002847
-0.049 228671_at hypothetical protein LOC199953
0.070 228776_at gap junction protein, alpha 7, 45 kDa (connexin 45)
0.055 230448_at hypothetical protein MGC15523
-0.042 230297_x_a synaptic Ras GTPase activating protein 1 homolog
0.091 230938_x_a activating transcription factor 5
0.053 209863_s_a tumor protein p73-like

0.002 224125_at pleckstrin homology domain containing, family N member 1
0.002 230826_at monocyte to macrophage differentiation-associated 2
0.001 238605_at Transcribed locus
0.005 222545_s_a chromosome 10 open reading frame 57

0.062 239565_at CDNA FLJ37010 fis, clone BRACE2009732
0.022 242904_x_a
0.026 222015_at Casein kinase 1, epsilon
0.032 219361_s_a interferon stimulated exonuclease gene 20 kDa-like 1

0.046 223333_s_a angiopoietin-like 4
0.084 224357_s_a membrane-spanning 4-domains, subfamily A, member 4
0.046 204470_at chemokine (C-X-C motif) ligand 1
0.023 205114_s_a chemokine (C-C motif) ligand 3
0.118 208470_s_a haptoglobin

0.058 237542_at Transcribed locus
0.052 202953_at complement component 1, q subcomponent, B chain
0.022 206214_at phospholipase A2, group VII
0.085 210321_at granzyme H (cathepsin G-like 2, protein h-CCPX)
0.054 214038_at chemokine (C-C motif) ligand 8
-0.074 201841_s_a heat shock 27 kDa protein 1
-0.028 211429_s_a serpin peptidase inhibitor, clade A, member 1
-0.120 211470_s_a sulfotransferase family, cytosolic, 1C, member 1
0.081 216950_s_a Fc fragment of IgG, high affnity Ia, receptor (CD64)

-0.056 222694_at hypothetical protein MGC2752
-0.042 232618_at chromosome Y open reading frame 15A
-0.016 232874_at Dedicator of cytokinesis 9
-0.034 237222_at
0.024 240105_at Chromosome 21 open reading frame 66
-0.016 241755_at Ubiquinol-cytochrome c reductase core protein II
-0.032 242306_at TPA regulated locus
-0.040 243705_at DDHD domain containing 1

0.049 237131_at hypothetical protein LOC645469
0.042 238359_at
-0.045 242601_at hypothetical protein LOC253012
0.049 243101_x_a Chromosome 20 open reading frame 160
0.059 219360_s_a transient receptor potential cation channel, subfamily M

-0.006 226665_at AHA1, activator of heat shock 90 kDa protein ATPase homolog 2
-0.007 231852_at
-0.009 241946_at zinc finger, DHHC-type containing 21
-0.009 208067_x_a ubiquitously transcribed tetratricopeptide repeat gene
-0.009 210973_s_a fibroblast growth factor receptor 1
-0.006 220235_s_a chromosome 1 open reading frame 103

-0.001 227697_at suppressor of cytokine signaling 3
-0.006 227404_s_a Early growth response 1
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and percentage of positive cells is demonstrated by
immunofluorescence. The protein encoded by gene Hs.
120949 is the fourth major glycoprotein of the platelet
surface and serves as a receptor for thrombospondin in
platelets and various cell lines. Since thrombospondins
are widely distributed proteins involved in a variety of
adhesive processes, this protein may have important func-
tions as a cell adhesion molecule. Mutations in this gene
cause platelet glycoprotein deficiency. The protein
encoded by gene Hs.84113 belongs to the dual specificity
protein phosphatase family. It was identified as a cyclin-
dependent kinase inhibitor, and has been shown to inter-
act with, and dephosphorylate CDK2 kinase, thus prevent
the activation of CDK2 kinase. This gene was reported to
be deleted, mutated, or overexpressed in several kinds of
cancers. Studies show TOP2A (gene Hs.156346) is a pro-
liferation marker, indicator of drug sensitivity, and prog-
nostic factor in mantle cell lymphoma. This gene encodes
a DNA topoisomerase, an enzyme that controls and alters
the topologic states of DNA during transcription. The gene
encoding this enzyme functions as the target for several

anticancer agents and a variety of mutations in this gene
have been associated with the development of drug resist-
ance. Reduced activity of this enzyme may also play a role
in ataxia-telangiectasia. Gene Hs.497741 encodes a pro-
tein that associates with the centromere-kinetochore com-
plex. Autoantibodies against this protein have been found
in patients with cancer or graft versus host disease. DNA
Pol theta (gene Hs.241517) has a specialized function in
lymphocytes and in tumor progression. Gene Hs.298990
encodes tumor suppressor proteins. The protein encoded
by gene Hs. 105956 catalyzes the transfer of galactose to
lactosylceramide to form globotriaosylceramide, which
has been identified as the P(k) antigen of the P blood
group system. PLG (gene Hs.368912) has the potential to
simultaneously regulate calcium signaling pathways and
regulate pHi via an association with NHE3 linked to DPP
IV, necessary for tumor cell proliferation and invasive-
ness.In the leave-one-out (LOO) based evaluation, denote

(-i) as the LOO estimate of β based on the reduced data

set with the ith subject removed. We then compute the pre-

β̂β

-0.004 235102_x_a GRB2-related adaptor protein
-0.007 209189_at v-fos FBJ murine osteosarcoma viral oncogene homolog
-0.001 213281_at V-jun sarcoma virus 17 oncogene homolog (avian)
-0.008 201694_s_a early growth response 1
-0.003 202672_s_a activating transcription factor 3
0.002 AFFX-r2-Hs

-0.088 223710_at chemokine (C-C motif) ligand 26
-0.091 228844_at solute carrier family 13, member 5
-0.023 233831_at hypothetical protein LOC644752
-0.058 234062_at CDNA FLJ12400 fis, clone MAMMA1002782
0.021 239574_at Enoyl Coenzyme A hydratase domain containing 3
0.044 240142_at
-0.140 215536_at major histocompatibility complex, class II, DQ beta 2
-0.045 218935_at EH-domain containing 3
-0.041 211177_s_a thioredoxin reductase 2

0.014 231119_at replication factor C (activator 1) 3, 38 kDa
0.032 232475_at chromosome 15 open reading frame 42
0.022 237546_at Transcribed locus
0.047 238201_at
0.072 239670_at
0.051 240607_at Hypothetical protein LOC150271
0.039 241411_at weakly similar to NP 055301.1 neuronal thread protein AD7c-NTP

0.002 223745_at F-box protein 31
0.002 230280_at tripartite motif-containing 9

-0.008 226771_at ATPase, Class I, type 8B, member 2
-0.010 226869_at Full length insert cDNA clone ZD77F06
-0.002 203029_s_a protein tyrosine phosphatase, receptor type, N polypeptide 2
-0.005 209459_s_a 4-aminobutyrate aminotransferase
-0.009 221790_s_a low density lipoprotein receptor adaptor protein 1

Table 4: Follicular data: genes with nonzero estimates from SGLasso. (Continued)
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dicted risk score (-i)  for the ith subject. Since the Cox

model is a special form of the transformation model, the

uncensored survival time depends on βZ' via a generalized
linear model. So the prediction evaluation can be based
on comparing the survival functions of groups composed

of different range of βZ'. A simple approach is to first
dichotomize the predicted risk scores at the median to cre-
ate two risk groups with equal sizes. We then compare the
survival functions of the two generated risk groups. A sig-
nificant difference (measured by the logrank test statistic
with degree of freedom 1) indicates satisfactory prediction
performance.

We show the prediction comparison in Table 1. We can
again see that the models obtained under SGLasso are
much smaller than those from the simple cluster
approach and GLasso. However the SGLasso models are
larger than their Lasso counterparts. For both data sets, the
proposed SGLasso has the largest logrank statistics, indi-
cating the best prediction performance. For the Follicular
data, only Lasso and SGLasso have logrank statistics with

p-value less than 0.05. The GLasso and simple approaches
cannot properly predict survival based expressions. For
the MCL data, all approaches have logrank statistics with
p-value less than 0.05, with the largest logrank statistic
from the SGLasso.

Discussion
Remark: clustering method selection
Gene expression clustering can be based on many
approaches including the K-means, hierarchical, self-
organizing map, and model based methods [31], among
many others. Without making specific data assumptions,
there do not exist optimal clustering method. The pro-
posed K-means approach has been extensively used in
microarray study. It is attractive because of its computa-
tional simplicity and optimality under the normal distri-
bution assumption. We have also analyzed the four data
sets using other clustering schemes including Hierarchical
clustering. Our studies show that other approaches gener-
ate comparable or worse prediction results than the K-
means approach. Since the K-means method yields satis-
factory estimation and prediction results for the four data
sets and other data (results not shown), we focus on the

β̂β ′Zi

Table 5: MCL data: genes with nonzero estimates from SGLasso.

Estimate Gene ID Gene Description

0.011 24860 Hs.522568, Phosphatidylinositol-specific phospholipase C
0.005 26556 Hs.173438, Fas apoptotic inhibitory molecule
0.018 28537 Hs.120949, CD36 antigen
0.030 28640 Hs.84113, Cyclin-dependent kinase inhibitor 3
-0.004 28679 Hs.469723, RNA, U17D small nucleolar
0.005 30010 Hs.85137, Cyclin A2
0.009 32690 Hs.3104, Kinesin family member 14
0.010 32973 Hs.58992, SMC4 structural maintenance of chromosomes 4-like 1

0.078 27095 Hs.156346, Topoisomerase (DNA) II alpha 170 kDa
0.094 30157 Hs.497741, Centromere protein F, 350/400 ka
0.100 30898 Hs.532755, Likely ortholog of mouse gene trap locus 3
0.084 31049 Hs.241517, Polymerase (DNA directed), theta
0.080 34771 Hs.524390, Tubulin, alpha, ubiquitous

-0.067 16541 Hs.30054, Coagulation factor V
-0.065 23972 Hs.431009, Zinc finger protein, multitype 2
-0.036 24262
-0.061 24379 Hs.120260, Immunoglobulin superfamily receptor translocation associated 1
-0.056 25058 Hs.298990, actin dependent regulator of chromatin
-0.101 25171 Hs.21388, Zinc finger, DHHC domain containing 21
-0.103 26192 Hs.530274, Aldolase B, fructose-bisphosphate
-0.037 27659 Hs.437336, Hypothetical protein MGC61571
-0.091 29653 Hs.40758, RAB30, member RAS oncogene family
-0.053 31196 Hs.508010, Fibronectin type III domain containing 3
-0.033 32497
-0.076 32947 Hs.522863, Chromosome Y open reading frame 15A
-0.076 33506 Hs.364045, Hypothetical protein LOC92270
-0.059 33892 Hs.105956, Alpha 1,4-galactosyltransferase
-0.060 34438 Hs.368912, Dipeptidylpeptidase 4
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K-means approach only. A comprehensive comparison of
different clustering is interesting but beyond the scope of
this paper.

We propose using the Gap statistic for selecting the opti-
mal number of clusters. Empirical studies in [32] and this
paper show that it can lead to satisfactory results. We note
again that there is no best selection method for number of
clusters, unless stronger data assumptions are made. We
refer to [33] for comprehensive discussions of gene clus-
tering.

Remark: prediction evaluation
In our examples, we carry out gene screening before anal-
ysis. The goal of such screening is to remove noisy genes
and obtain more stable models. Gene screening has been
employed in almost all microarray studies. We note that
such screening may lead to bias in the prediction evalua-
tion, since all records have been used in the screening.
However since the number of genes passed screening is
still large, the bias in the prediction is expected to be
small. Especially all four approaches listed in Table 1 use
the same sets of genes. So comparisons in Table 1 should
be fair.

Remark: two-step gene selection
The proposed SGLasso is a two-step approach. Another
two-step gene selection approach is the supervised princi-
pal component analysis (SPCA, [34]). Significant differ-
ences exist between the SGLasso and other two-step
approaches like SPCA. In other two-step approaches, the
first supervised screening step considers all genes simulta-
neously. The cluster structure is ignored, whereas the main
merit of the SGLasso is the usage of the cluster structure.
Moreover, in SPCA, the selected features are the principal
components. Although they may have satisfactory predic-
tion performance, biological interpretations may not be
clear. As a comparison, clear biological interpretations of
gene identification results are available as shown in the
Results section.

Conclusion
Gene selection is essential in classification or survival
analysis using high dimensional microarray data. Such
selection can generate parsimonious, stable models with
interpretable estimates. In this article, we propose the
SGLasso approach. This approach explicitly takes into
account the cluster structure and carries out feature selec-
tion at both the gene and cluster levels. Applications of
this approach to four data sets show that it can produce
parsimonious predictive models with satisfactory predic-
tion performance.

Compared to available approaches, the SGLasso is the first
to consider penalized gene selection at both the cluster

level and the within cluster level. Compared to individual
gene selection methods, the SGLasso is capable of taking
cluster information into consideration. This makes it pos-
sible to reveal the associations between diseases and gene
clusters. With the proposed approach, we can identify co-
regulated genes which are jointly significantly associated
with diseases. Compared to simple cluster based methods,
SGLasso carries out the additional within cluster selection.
This leads to a small number of genes within each cluster.
So beyond identifying influential clusters, the proposed
approach can also identify the genes that actually cause
the association. From a scientific point of view, identify-
ing important genes (beyond identifying important clus-
ters) is critical.

As we point out, gene clusters can also be constructed
based on biological information [16]. We should use such
information whenever available. However we also note
that such pathway information is far from complete or not
available for many genes. In the absence of such informa-
tion, we can use clustering methods to divide genes into
groups. It is of interest to compare results based on statis-
tical clustering with those based on biological clustering,
when full pathway information is available. However,
such empirical studies is beyond the scope of the current
paper and will be pursued in later studies.

Methods
Gene clustering
The proposed SGLasso assumes that the cluster structure
has been well defined. When clusters of genes in the same
function groups can be constructed based on biological
information such as GO [16], such clusters can be used in
the analysis. However it is often the case that gene group
information may only be partially available or even not
available. In this case we propose defining cluster struc-
ture based on statistical measurements [9].

We use the K-means approach in this paper. There exist
many alternative clustering methods, such as the hierar-
chical clustering, self-organizing map, tree-truncated vec-
tor quantization method, among others. For data sets
with unknown data structures, there exists no dominating
approach. We use the K-means approach since it is com-
putationally affordable and relatively robust.

We propose using the Gap statistic [32] to determine the
optimal number of clusters. With the K-means approach,
we first choose M-the largest number of clusters. Then for
m = 1,..., M:

1. Generate m clusters using the K-means approach.
Denote rssm as the total within block sum of squares.
Page 12 of 17
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2. Create a new data set by separately permuting each gene
expression measurements. Apply the K-means method to

the permuted expression data. Let  denote the result-

ing within cluster sum of squares. Repeat this for a

number of times and compute the average ave( ).

3. Compute the Gap statistic as gap(m) = ave( ) - rssm.

Choose the value m that maximizes gap(m). We refer to
[32] for detailed discussions of the Gap statistic.

Data settings

Let Z be a length d vector of gene expressions, and let Y be
the clinical outcome of interest. Assume that n i.i.d. copies
of (Y, Z) are available. We generate m gene clusters using
the K-means approach, where m is chosen using the Gap
statistic. We assume that the clusters have sizes p1,..., pm

with p1 +...+ pm = d. We denote Z = (Z1,...,Zm), where Zi

contains the pi gene expressions in the ith cluster for i = 1,...,

m. We assume that Y is associated with Z through a para-

metric or semiparametric model Y ~ φ(βZ') with a regres-

sion function φ and unknown regression coefficient β,

where β = (β1,..., βm) and βi = (βi1,..., ) for i = 1,..., m.

In this article, we study the binary classification and cen-
sored survival analysis problems because of their wide
applications.

Binary classification

For classification problems, Y is the categorical variable
indicating the disease status, for example occurrence or
stage of cancer. We focus on binary classification only.
Suppose that Y = 1 denotes the presence and Y = 0 indi-
cates the absence of disease. We assume the commonly
used logistic regression model, where the logit of the con-

ditional probability is logit(P(Y = 1|Z)) = α + βZ' and α is
the unknown intercept. Based on a sample of n iid obser-
vations (Y1, Z1),..., (Yn, Zn), the maximum likelihood esti-

mator is defined as ( , ) = argmaxα, β Rn (α, β), where

We always keep the intercept α in the model. For simplic-
ity, we denote Rn (α, β) as Rn (β).

Survival analysis

For right censored survival data, Y = (T, Δ), where T =

min(U, V) and Δ = I(U ≤ V). Here U and V denote the event

time of interest and the random censoring time, respec-
tively. The most widely used model for right censored data
is the Cox proportional hazards model [35] which

assumes that the conditional hazard function λ(u|Z) = λ0

(u) exp(βZ'), where λ0 is the unknown baseline function

and β is the regression coefficient. Based on a sample of n
iid observations Xj = (Yj, Zj), j = 1,..., n, the maximum par-

tial likelihood estimator is defined as the value  that

maximizes

where rj = {k : Tk ≥ Tj} is the risk set at time Tj.

Supervised group Lasso
For the logistic regression and Cox proportional hazards
models, the SGLasso consists of the following steps.

1. For cluster i = 1,..., m, compute i-the cluster-wise

Lasso estimate of βi. Especially,

i = argmax Rn (βi) subject to |βi1| + ... + | | ≤ ui,

where ui is the data-dependent tuning parameter and

for binary classification and

for Cox survival analysis. That is for cluster i, we only use
genes within that cluster to construct predictive models.
Gene selection within that cluster is achieved with the
Lasso. Sparse models are achieved when ui → 0. We pro-
pose selection of ui using V-fold cross validation [36].
Especially we note that tuning parameters ui are selected
for each cluster separately. So we allow different tuning
parameters, hence different degrees of regularization for
different clusters. This flexibility allows us to detect more
subtle structures that cannot be detected by applying the
Lasso method to all the genes/clusters at the same time.
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2. For each cluster, the Lasso models have only a small

number of nonzero coefficients. For cluster i, denote i as
the reduced covariate vector composed of covariates with
nonzero estimated coefficients in Step 1 cluster-wise mod-

els. Denote i as the corresponding reduced unknown

coefficient. We note that the dimension of the genes may
be greatly reduced via Step 1. For example in the exam-
ples, a cluster with size ~20 may only have 2 ~ 5 genes pre-
sented in the reduced data.

3. Construct the joint predictive model under the GLasso
constraint. Especially,

where n ( ) is Rn (β) with β replaced by  and Z

replaced by . u is also chosen via V-fold cross validation.

With u → 0, estimates of some components of ( 1,...,

m) can be exactly zero. Selection of important clusters

can then be achieved.

In our examples, the objective functions Rn are continu-
ously differentiable and depend only on data and the
unknown regression coefficient β. Other smooth objective
functions, for example the log-binomial likelihood for
binary classification or the least square type estimating
equation for the AFT survival model [37], can also be con-
sidered. The SGLasso only needs to assume that the expec-
tation of the objective function has well-separated
maximum. However for the proposed computational
algorithms to work, we need to assume that the objective
function is locally differentiable, i.e, it can be locally
approximated by a smooth function.

Computational algorithms
Since the Lasso constraint is not differentiable, standard
derivative based maximization approaches, such as the
Newton-Raphson, cannot be used to obtain the Lasso esti-
mate. In most previous studies, the maximization relies
on the quadratic programming (QP) or general non-linear
programming which are known to be computationally
intensive. Moreover, the quadratic programming cannot
be applied directly to the settings where the sample size
may be smaller than the number of predictors. The
L1boosting based approach proposed by [38] provides a
computationally feasible solution for high dimensional
cases.

Algorithm I: L1 boosting Lasso
For the ith cluster:

1. Initialize βi = 0 and s = 0.

2. With the current estimate of βi = (βi1,..., ), compute

φ (βi) = ∂Rn (βi)/∂βi. Denote the kth component of φ as φk.

3. Find k* that minimizes min(φk (β), - φk (β)). If  (β)

= 0, then stop the iteration.

4. Otherwise denote γ = -sign(  (β)). Find  that

 = argmaxπ ∈ [0,1] Rn ((l - π) β + π ui γ ),

where  has the k*th element equals to 1 and the rest

equal to 0.

5. Let βik = (1 - ) βik for k ≠ k* and  = (1 - )  +

γu . Let s = s + 1.

6. Repeat steps 2–5 until convergence or a fixed number
of iterations S has been reached.

The βi at convergence is the Lasso estimate. We conclude

convergence if the absolute value of  (β) computed in

step 3 is less than a pre-defined criteria, and/or if Rn (β) is

larger than a pre-defined threshold. Alternative algorithm
can be LARS based. Since it is not the focus of this study,
we omit discussions of other computational algorithms.

For the GLasso, a LARS based approach is proposed in
[19]. With high dimensional cases, a computationally
more affordable approach is proposed in [39]. This
approach shares the same spirit as the L1 boosting Lasso
and they are both special cases of the gradient-based con-
straint maximization discussed in [40]. This boosting
based algorithm can be summarized into the following
iterations.

Algorithm II: boosting group Lasso

1. Initialize  = 0. Set Δ as a sufficiently small positive

scalar.

2. With the current estimate of β, calculate the gradient

∂Rn ( )/∂ .
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� � � � … �ˆ argmax ,ββ ββ ββ ββ= ( ) + + ≤R un
m subject to 1
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3. Set b =  - ∂ n ( )/∂  and τ = {1,..., m}. Denote the

pth component of b as bp.

4. Start Loop.

(a) Calculate the projection up = I (p ∈ τ) × (||bp|| + {u -
∑p∈τ ||bp||}/|τ|) for p = 1,..., m, where τ is the cardinality of
τ.

(b) If (up ≥ 0) for all p, then abort the loop.

(c) Else update the active set τ = {p : up > 0}.

5. End Loop.

6. Get a new estimate p = bp up/||bp|| for p = 1,..., m.

�ββ �R �ββ �ββ

�ββ

Paths of parameter estimates for Lasso, GLasso and SGLassoFigure 2
Paths of parameter estimates for Lasso, GLasso and SGLasso. Red lines, cluster 1; Blue lines, cluster 2; Green lines, 
cluster 3. Solid lines, β1, β4 and β7; Dashed lines, β2, β5, and β8; Dashed-Dotted lines, β3, β6, and β9. The grey lines show the 
selected tuning parameters. C1, C2 and C3 in the lower-left panel denote clusters 1, 2 and 3, respectively.
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7. Repeat steps 2–6 until convergence or a fixed number
of iterations has been reached.

A graphic presentation
We use the following numerical example to graphically
demonstrate the parameter path of the proposed
approach. For a better resolution, we only consider a
small study with nine covariates (genes) and three clus-
ters. Since the proposed approach does not depend on the
special format of the objective function, we consider a
simple linear regression model and use the least squares
loss function.

Consider the linear model y = β1 z1 + ... ... + β9 z9 + ε, where
β = (β1,..., β9) is the vector of regression coefficients and ε
is the random error. We assume that there are three clus-
ters, where (z1, z2, z3) form cluster 1, (z4, z5, z6) form clus-
ter 2 and the rest belong to cluster 3. We assume that all z
are marginally N (0, 1) distributed; the pairwise correla-
tion coefficients are 0.4, 0.4 and 0.2 for covariates in clus-
ters 1, 2, and 3, respectively; and different clusters are
independent. Moreover, we set β = (-1, -1, 0, -1, -1, 0, 0, 0,
0). In this simulated dataset, we have three clusters, two of
which are associated with the outcome. Within the first
two clusters, two out of three covariates contribute to the
outcome.

We generate 100 random data points from the above
model. The regression parameters are estimated using the
Lasso, GLasso and SGLasso. Tuning parameters are
selected using 3-fold cross validation. In Figure 2, we
show the parameter path as a function of the tuning
parameter u. In the upper panels, we show the parameter
paths for Lasso (left) and GLasso (right). In the lower-left
panel, we show parameter paths for the first step estimates
using the SGLasso. We see that the within-cluster Lasso
has paths close to those in the upper-left panel. The
parameter paths for the second step SGLasso (lower-right
panel) are similar to those in the upper-right panel, with
simpler structures due to the reduced number of covari-
ates. The SGLasso selects (z1, z2, z4, z5, z6) with nonzero
estimates, while the Lasso selects the covariates (z1,..., z6,
z8), and the GLasso selects all covariates.
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