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Abstract

Gene expression is controlled by pathways of regulatory factors often involving the activity

of protein kinases on transcription factor proteins. Despite this well established mechanism,

the number of well described pathways that include the regulatory role of protein kinases on

transcription factors is surprisingly scarce in eukaryotes.

To address this, PhosTF was developed to infer functional regulatory interactions and

pathways in both simulated and real biological networks, based on linear cyclic causal mod-

els with latent variables. GeneNetWeaverPhos, an extension of GeneNetWeaver, was

developed to allow the simulation of perturbations in known networks that included the activ-

ity of protein kinases and phosphatases on gene regulation. Over 2000 genome-wide gene

expression profiles, where the loss or gain of regulatory genes could be observed to perturb

gene regulation, were then used to infer the existence of regulatory interactions, and their

mode of regulation in the budding yeast Saccharomyces cerevisiae.

Despite the additional complexity, our inference performed comparably to the best meth-

ods that inferred transcription factor regulation assessed in the DREAM4 challenge on simi-

lar simulated networks. Inference on integrated genome-scale data sets for yeast identified

� 8800 protein kinase/phosphatase-transcription factor interactions and� 6500 interactions

among protein kinases and/or phosphatases. Both types of regulatory predictions captured

statistically significant numbers of known interactions of their type. Surprisingly, kinases and

phosphatases regulated transcription factors by a negative mode or regulation (deactiva-

tion) in over 70% of the predictions.

Author summary

In this work we addressed the challenging problem of inferring indirect (secondary) regu-

lation by protein kinases and phosphatases via their activity on transcription factors.

Although many protein kinase activity predictors have been developed for classes of pro-

tein kinases on specific amino acids within target sequences, our approach (PhosTF) pro-

vides predictions of regulatory activity for specific protein kinases and phosphatases on
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specific transcription factors. Our inference approach achieves this using the functional

output observed in gene expression data of gene knock out strains, along with known

transcription factor regulatory interactions. We formulated and tested a model for infer-

ence of regulation as well as a model for simulation of genes expression, transcription and

translation. The simulation was used for computational validation of the inference

method, which performed comparably to the best performers on a simpler inference

problem in the DREAM4 competition. The inference method was then applied to yeast

expression data, with significant validation by known kinase/phosphatase interactions.

Over 15,000 novel regulatory interactions were predicted, suggesting that kinase activity

provided a surprising level of repression of gene expression, either through the deactiva-

tion of activators or the activation of repressors.

Introduction

Gene regulation is central to a cell’s ability to respond and adapt to changes in its environment.

The control of transcription rates are directly regulated by transcription factors (TFs), and

indirectly by chromatin state, cell signalling and other regulatory factors. Modulation of TF

activity is often achieved through phosphorylation or dephosphorylation by protein kinases

(PKs) or phosphatases (PPs), and TFs represent one of the most phosphorylated classes of pro-

teins [1]. Direct or primary regulation by TFs can be mapped from protein-DNA binding

experiments, e.g. by chromatin immunoprecipitation (ChIP) based methods, while evidence

of indirect or secondary regulation by protein kinase and phosphatase can be observed from

protein-protein binding as measured by yeast two-hybrid, or co-immunoprecipitation and

mass spectrometry-based methods. These technologies suffer from false negatives due to the

transient nature by which kinases and phosphatases bind their targets, as well as false positives

[2]. Online databases containing protein interactions will sometimes report whether the data

is collected from low- or high-throughput experiments, or whether they were observed repro-

ducibly in multiple experiments, but information about data quality or functionality is often

limited [3]. To infer functional regulatory interactions, one can draw from multiple sources of

data, both protein binding data and evidence of regulation from mRNA transcript levels. In

particular, when comparing the transcript levels from mutant strains, e.g. gene deletion

(knock-out) or overexpression strains, to their background strains, the output of regulatory

pathways can be observed by the resulting changes in mRNA levels. The loss or gain of a regu-

latory factor, e.g. a transcription factor or a protein kinase gene, will often generate altered

transcript levels that imply functional regulation or a regulatory dependency between the per-

turbed regulator and the gene with an altered mRNA level [4].

Inference of functional regulation in TF-based regulatory networks were evaluated in the

DREAM4 challenge [5]. A number of ground-truth in silico networks were used to generate

knock-out, knock-down and wildtype gene expression levels that were provided to participants

of the challenge. The ground-truth networks to be inferred were defined by 10 and 100 node

adjacency matrices, originally constructed through sampling known TF regulatory interac-

tions in model organisms. The provided gene expression levels were generated with the soft-

ware GeneNetWeaver, which when given a ground-truth TF network, and a set of genetic

perturbation, will apply differential equations to simulate mRNA and protein concentrations

[6]. In this way, all regulators can be deleted or overexpressed (in silico) in turn and new

steady-state mRNA output can be generated for each. However, GeneNetWeaver does not

take into account phosphorylation or other post-translational modification that may result in
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secondary regulation. The focus of our approach was to extend the inference of TF-based regu-

latory networks to include the activity of such secondary regulators, in this case kinases and

phosphatases, and to apply this method to the model budding yeast Saccharomyces cerevisiae,
which has been extensively mapped for protein interactions. It should be noted that S. cerevi-
siae has primarily serine/threonine kinases and only limited tyrosine kinase activity. Although

the vast majority of phosphorylations are of serine and threonine residues, yeast has tyrosine

kinase SWE1 and limited tyrosine kinase activity through the cross-activity of serine/threonine

kinases YAK1, KNS1, and HRR25.

The majority of efforts to infer direct transcriptional regulation, often referred to as regula-

tory networks, have focused on TFs binding to promoter regions of their target genes. These

networks are often modeled as directed acyclic graphs (DAG) of TF nodes interacting with

nodes representing target genes. Applied in this biological context, each node value represents

a protein’s concentration and each edge the direct regulatory effect, or activity, from node to

node. Modelling regulation as a DAG has limitations on the inference accuracy considering

that regulatory pathways often contain feedback (cycles) when target gene products are regula-

tors themselves and, in turn, act further “upstream” in a regulatory pathway. The linear cyclic
causal models with latent variables approach, otherwise known as Linear, Latent, Cycles (LLC),

was specifically designed to address inference of causality in cyclic graphs [7]. It has been

applied to infer TF regulatory networks in the DREAM4 challenge and was among the best

performing approaches.

LLC describes a graph where node i has a value xi(t) at discreet time step t defined in [8] as

xiðtÞ ¼
X

j

bijxjðt � 1Þ þ ei ð1Þ

where bij is the linear effect of node j onto node i and ei is the latent term for node i. The equiv-

alent expression in vector notation is shown in Eq (2a), and simplifies to Eq (2b) for t!1.

xðtÞ ¼ Bxðt � 1Þ þ e ð2aÞ

x ¼ Bxþ e ð2bÞ

Perturbations to the system can be implemented by fixing the levels of specific regulators at

a negative value in the case of a gene knock-out or a positive value for an overexpressed gene.

Further details are described in subsection Intervention experiments of the Methods.

Methods have also been proposed for the inference of direct and indirect regulation that

combine multiple likelihood functions for numerous types of evidence [3]. In such cases, max-

imum likelihood ratios can be calculated for each potential regulatory interaction (edge) by

describing the likelihood ratios through factor graphs. Inferring indirect regulation by second-

ary regulators, such as protein kinases and phosphatases, is much more challenging since they

do not regulate mRNA production rates directly, but rather modulate protein activity of other

potential regulators. Although there have been many kinase prediction approaches (NetPhos,

NetPhospan, PhosphoPredict) most have focused on the phosphorylation site prediction often

without the ability to identify which kinase was likely responsible for the phosphorylation.

Recent studies utilizing mass spectrometry based proteomics or phosphoproteomics have

investigated the activity of kinases and phosphatases in knockout studies [9][10]. In addition,

approaches that infer regulation between human protein kinase (PK-substrate regulatory

interactions) have recently revealed extensive circuits of kinases [11]. Their approach was

based on an ensemble method combining multiple kinase-substrate scores and included phos-

phosite data for specific kinases or kinase families measured by phosphoproteomics, and gene

expression data for quantifying co-expression and co-regulation. Although this method
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leveraged the combination of multiple data sources to achieve high performance, the method

is limited to organisms where extensive kinase-phosphosite data is available.

In this paper we have developed PhosTF, which builds on the LLC method. PhosTF can

infer both direct regulation by primary regulators, represented by transcription factors, and

indirect regulation by secondary regulators, represented in this study by protein kinases and

phosphatases. Although secondary regulation by kinases and phosphatases is difficult to infer

from any single knockout, their activities can be inferred in combination with TF knockouts

as illustrated in Fig 1. We extended GeneNetWeaver simulations in GeneNetWeaverPhos to

include regulation by phosphorylation, and describe a new method to infer gene regulatory

networks based on a large compendium of knockout and overexpression transcription profiles,

and an optional set of protein interactions, e.g. regulatory protein-DNA or protein-protein, as

constraints.

Results

The PhosTF method was developed to allow for the inference of direct and indirect regulation

for a comprehensive set of primary regulators (T), potentially consisting all known transcrip-

tion factors, and a large set of secondary regulators (P), in this case consisting of the known

protein kinases and phosphatases. Although genes that affect secondary regulation through

phosphorylation or de-phosphorylation were considered here, genes with other molecular

functions that influence TF activity could also be included in this framework, e.g. ubiquiti-

nases, acetylases, methylases, or sumoylases. The resulting method was capable of inferring

regulation between secondary and primary regulators, and from primary regulators to their

regulatory targets (V) (see Table 1 for full gene set definitions).

PhosTF was applied to both simulated and experimental data sets. Initially, a number of

small- to medium-scale simulated data sets were used to test the inference performance, as

these represented examples where the regulatory interactions were known. Subsequently,

PhosTF was tested on a large compendium of experimental data collected for budding yeast,

S. cerevisiae (see Table 2). An extensive set of regulatory interactions have been measured from

transcription factors (primary regulators) to their regulatory targets in this model organism,

103 − 104 d(T, V) interactions, while only a very limited number of regulatory interactions are

known between secondary and primary regulators,� 102 d(P, T) interactions.

Fig 1. Effects of gene deletion on gene expression. Schematic of gene expression levels for a target gene ‘V’ relative to

wildtype when a gene for either a secondary (P) or a primary regulator (T) is deleted. All combinations of positive

(activating) and negative (repressing) regulation (Pos. or Neg. respectively) are shown. Activating or repressing

phosphorylation (Phos.) are indicated with closed or open circles and regulation by TFs (Reg.) are indicated with

pointed and flat arrowheads.

https://doi.org/10.1371/journal.pcbi.1009414.g001
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Inference on simulated networks

Validation of PhosTF was performed on constructed regulatory networks and their simulated

output in order to allow for inference where the regulation was known and to allow for the

assessment of performance. Inference settings, such as the regularization strength λ was

decided from tests on small archetypal graphs, shown in Figs 1 and 2. λ was tested with values

10, 1, 0.1, 0.01, and 0, where λ = 1 and λ = 0.1 were both found to fully recover the true net-

work (see Regularization strength on 4 type example in S1 Text). This resulted in inference set-

tings with λ = 0.1, that were then applied to 10 networks modified from the DREAM4

challenge to include secondary regulation.

Fig 2A shows a constructed 6-node network along with the resulting simulated levels in the

in silico knock-out of each regulator (Fig 2B–2F). The way in which regulation is inferred is

illustrated in the total effects graph in Fig 2G. The total effects concept is taken from Hyttinen

et al. 2012 [8] where a total effect t(xi⇝ xj) from node xi onto node xj is defined as the sum of

all paths from xi to xj. If there is only a single sample of each knockout experiment, then the

total effect from node i to j is simply tðxi⇝ xjÞ ¼ xðiÞj =x
ðiÞ
i where superscript indicates the

knockout. The log fold-changes shown in Fig 2B–2F were calculated from simulated steady-

state values (after convergence) of the ODE model defined in Eq (9) for the knockout and

wildtype (background) strains.

As illustrated in Fig 2D and 2E, a situation can arise where the total effects from two sec-

ondary regulators (nodes P1 and P2) are very similar. This makes it difficult to infer the exact

regulatory mechanism from perturbation data alone as shown in the inferred network Fig 2H.

Due to the ambiguity of this particular challenging example, two additional edges were given

non-zero weights. However this behaviour was modified by changing the regularization of P
edges, or tuning the hyperparameter of the cost function (see Cost function in Methods).

Performance on simulated networks

PhosTF performance was then assessed on 25 medium-scale simulated regulatory networks

(see Network Construction for Simulation in Methods). These 100-node networks had on

average: 20 Ts and 20 Ps, 13 d(P, T), 13 d(P, P), 25 d(T, P), 21 d(T, T), and 102 d(T, O), where d
(R, V) denotes directed edges from regulator source vj 2 R to target vi 2 V, and where O is the

set of non-regulating nodes. Both primary and secondary regulatory edges were inferred, i.e. d
(T, V) and d(P, R). The only data given to PhosTF were the simulated log fold-change values

and whether each node belonged to P, T or O.

Results of a Receiver Operator Characteristic (ROC) analysis can be seen for the different

types of regulatory interactions in Fig 3A. These curves show the trade off between sensitivity

(True Positive Rate) and specificity (indicated by False Positive Rate) when selecting edges by

Table 1. Node set definitions.

Set Role Molecular function

PK Secondary regulators Protein kinases

PP Secondary regulators Protein phosphatases

P Secondary regulators (PK [ PP) Any PTM

T Primary regulators Transcription factors

R All regulators (P [ T)

O Observed non-regulators

V All vertices (R [ O) All

https://doi.org/10.1371/journal.pcbi.1009414.t001
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Table 2. Yeast perturbation data resources.

Resource Source Tech. Genes Exp.

PK & PP KO Holstege et al. [15] DNA-MA 6109 163

KO Holstege et al. [16] DNA-MA 6170 1484

PK & PP KO Zelezniak et al. [10] SWATH-MS 726 352 (97)

PK & PP KO Fiedler et al. [17] DNA-MA 6184 2

PK & PP KO Hu et al. [18] DNA-MA 6253 5

TF KO Hu et al. [18] DNA-MA 6253 264

TF KO Chua et al. [4] DNA-MA 6222 102

TF OE Chua et al. [4] DNA-MA 6222 110

https://doi.org/10.1371/journal.pcbi.1009414.t002

Fig 2. Small example network with unresolvable ambiguity. The true network (A), KPs (diamonds), TFs (circles) and target gene ‘V1’. The resulting mRNA

outputs from simulated KO experiments are shown in (B-F) and represents the data used for inference. A graph representing the cumulative (total) influence through

all pathways is shown in (G), and the inferred regulatory interactions are shown in (H). The node value color scale applies to (B-F) where colors show mRNA log

fold-change values for each knockout. The Edge value color scale shows the “true” regulatory weights in (B-F) and the inferred values in (H). The knockout protein is

indicated with a red border and strike-through. Dotted edges indicate the direct effects that were removed by the knockout.

https://doi.org/10.1371/journal.pcbi.1009414.g002
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the amplitude of the weights (|wij|). Each ROC curve was generated on a merged list of poten-

tial edges from all 25 networks.

This analysis showed that regulation between secondary and primary regulators could be

more accurately predicted than between two secondary regulators, and, surprisingly, more

accurate than predictions from primary regulators (TFs) to their target genes. These curves

were summarized for comparison by calculating the area under the ROC curves (AUC). It was

not surprising that secondary regulation of TFs was easier to detect than regulation between

two secondary regulators, since the latter are more distant in a regulatory pathway from the

transcriptionally regulated genes. It is less clear why primary regulation achieved a lower AUC

when compared to that for secondary regulation d(P, T) in these networks.

Overall, these results demonstrated a high performances for all types of d(P, T) regulation

where an AUC of 0.89 was achieved. Even higher performances were observed for positive

(d(P, T, +), AUC = 0.94) and negative regulation (d(P, T, −), AUC = 0.90) when assessed sepa-

rately. We observed similar prediction performance for primary regulation by transcription

factors (d(T, V), AUC = 0.84) compared to the methods assessed in the DREAM4 challenge

(TF regulation only), where LLC had an overall AUC = 0.76 [8], and an AUC = 0.83 was

achieved for the best performance on the original 100-node networks by team “ALF” [12].

Unusually, the ROC analysis showed that secondary regulation could be inferred more accu-

rately for positively regulating edges between two secondary regulators, d(P, P, +), when com-

pared to negative regulation, d(P, P, −). A differences in prediction performance was also

observed between positive and negative modes of P regulation of transcription factors, again

where positive regulation was predicted more accurately.

Fig 3. Performance evaluations. Edge inference assessment on simulated networks (A) with complete knowledge of regulatory interactions, and on yeast (B and C)

where very limited examples were known. ROC curves illustrate performance for inferred edges pooled from all 25 simulated networks, each containing 100 nodes.

Different types of regulation were assessed independently as indicated in the legend. Gene set ‘V’ refers to any gene. Area proportional diagrams for yeast inference are

shown in (B). Gray areas represent the proportion of predicted interactions relative to the total possible for each type. Performance on the validation set (Known) are

shown as colored areas representing the proportion of the known interactions that were predicted (or not predicted) for the two types of secondary regulation, d(P, T) in

red and d(P, P) in blue. The counts of each interaction type are also shown next to each of the four areas in the two proportional diagrams. Fisher’s exact test p-values

represent the chance of observing the prediction performance by random chance. Odds ratio for the number of shared GO Biological Process (BP) terms between

interacting genes (C) based on the number of shared GO terms for inferred compared to uninferred edges. Dashed lines show the 95% confidence intervals of the odds

ratios.

https://doi.org/10.1371/journal.pcbi.1009414.g003
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Inference performance on yeast data

Regulatory network inference for yeast was applied to a large curated set of yeast gene expres-

sion studies (transcription profiles) for gene knockout and overexpression strains. Direct mea-

surements of phosphorylation sites on regulators, and other prior knowledge were used to

define validation sets for secondary regulation. The binding of transcription factors to DNA

(see Yeast Data in Methods) and other evidence for direct transcriptional regulation by tran-

scription factors was used to define the set of regulons, i.e. a TF and its regulatory targets.

While the regulation from transcription factors is well studied in S. cerevisiae (>20,000 inter-

actions), the number of known protein kinase and phosphatase regulatory interactions on

transcription factors, or between such P proteins is very small (412 and 694 interactions

respectively).

In an effort to focus on the inference of regulation between secondary and primary regula-

tors, regulatory interactions were only inferred from P regulators to either other P or T regula-

tors. For this reason, only weights for the known T regulatory interactions were estimated,

thus reducing the complexity of the inference problem. By contrast, all possible d(P, T) and d
(P, P) edges were included in the inference. Edge weights were trained (see Network Construc-

tion in Methods) and then separately filtered for d(P, T) and d(P, P) edges with a false discov-

ery rate (FDR) threshold q< 0.05 resulting in�80 substrates per P, which was comparable to

the average number of kinase targets previously reported (47) [1]. In total, 8776 d(P, T) and

6493 d(P, P) were predicted at this FDR threshold for 146 protein kinases and 45 protein

phosphatases.

The two types of inferred P edges were evaluated relative to the limited set of known

interactions (Fig 3B) using Fisher’s exact test. Despite the small size of the validation set

(412 d(P, T) and 694 d(P, P) interactions), representing only 1% of the possible secondary reg-

ulatory interactions, PhosTF predicted 40% of the known d(P, T) and 28% of known d(P, P)

interactions, which was highly significant (p< 10−10) when compared to the rate of predic-

tions overall (20% and 18% respectively). These results were compared to predictions made by

the protein sequence based substrate prediction method NetPhorest [13]. NetPhorest included

33 protein kinases which could be found in the evaluation set (where the source node is

among the 33). The top scoring NetPhorest edges were selected in a number proportional to

the number of inferred edges shown in Fig 3B and resulted in Fisher’s exact test p< 0.05 for

both d(P, T) and d(P, P) NetPhorest predictions. The NetPhorest predictions contained 30% of

the possible known secondary regulatory interactions with transcription factors compared to

the 40% captured by PhosTF.

The regulatory interactions inferred by PhosTF were also evaluated with respect to shared

Gene Ontology (GO) terms between regulator-target pairs. Since each gene can be assigned

multiple GO terms, any two genes can be assessed for similarity in biological processes or

molecular functions by the number of GO terms they share in a particular ontology. The odds

ratio of having one or more shared GO slim Biological Process terms (GO(BP)) for the source

and target genes of an inferred edge (compared to an uninferred edge) were 1.52 and 1.20 for

d(P, T) and d(P, P) respectively, see Fig 3C. This odds ratio was observed to increase with

the minimum number of shared GO terms. For example, the odds ratio increased to 2.05 for

d(P, T) and 1.67 for d(P, P) edges when source and target genes shared 4 or more GO terms.

All odds ratio estimates were outside the standard 95% confidence interval (CI), which implied

a biological significance to both types of predictions with respect to capturing regulatory rela-

tionships between proteins functioning together in known biological pathways.

Due to the higher prediction performance of d(P, T) edges relative to d(P, P) edges, further

analyses were performed for predicted regulatory interactions between secondary regulators
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and their targeted transcription factors. Counts for protein kinase (PK) and phosphatase (PP)

edges were summarized in Fig 4A reflecting the combinations in Fig 1 for the positive or nega-

tive regulation of either a positively or negatively regulated TF-regulon. This simplified the

role of a TF to have a single mode of regulation so as to focus on the role of P regulation and to

avoid considering the combinations of paths from P to the TF and from the TF to its multiple

targets. The proportions of these predicted regulatory interactions on TFs was tested relative

to the expected counts in two χ2 tests (separately for d(PK, T) and d(PP, T)). The expected

counts were calculated under the null hypothesis where P and T modes of regulation were

independent. For instance, the expected number of positive d(PK, T) edges onto a TF activator

(Pos.-Pos.) is the fraction of d(PK, T) edges that are positive × the fraction of activating T,

scaled by the total number of d(PK, T) edges. It was found that negative PK-regulation of TFs

that negatively regulate gene expression of their regulons (Neg.-Neg.) were over-represented

by 21% (p< 10−7). The increased number of Neg.-Neg. pathways is contrasted with a relative

under-representation of Pos.-Pos. pathways which were found to be 10% less than expected.

The observed distribution of d(PP, T) edges was not observed to differ from the expectation

based on a similar calculation.

The top positively and negatively regulated P pathways with shared GO terms were selected

as candidates for further investigation and are shown in Fig 4B (see Methods). Of the resulting

16 d(P, T), three were known (in the validation set) and shared at least four GO(BP) terms. Of

the remaining 13, five were found to be directly associated in the STRING database (combined

score > 500), albeit only through types of evidence other than physical interactions. The

remaining eight interactions (50%), indicated with an asterisk in Fig 4B, appear to be novel

predictions.

Methods

PhosTF model definition

The inference is centered around a linear model of the influence nodes have on the values of

other nodes, and how interventions on this graph can be used to infer the presence of edges in

the graph, as well as their mode of regulation (positive or negative).

A number of node (vertex) sets were defined that represent the potential regulatory role of

a gene, or its ability to be modeled by this regulation (Table 1).

Equilibrium equations. The following are the difference equations used to model the

node attributes as a function of discreet time steps.

xiðtÞ ¼
X

j2T

wijajðt � 1Þ þ eðxÞi ð3aÞ

yiðtÞ ¼
X

j2P

wijajðt � 1Þ þ eðyÞi ð3bÞ

xi(t) represent the relative mRNA concentrations, specifically log2 fold-change mRNA concen-

tration for a mutant relative to wildtype. The term yi represents the relative regulatory activity

of node i, and represents an extension of the LLC model when compare to Eq (1). In the con-

text of this study, the unobserved variable yi accounts for the effects of the phosphorylation

state, but could in principle represent any post translational modification. Since phosphoryla-

tion can either activate or deactivate a regulator, it can be influenced by either kinases or

phosphatases.

The edge value, wij, defines the influence from node j to node i in a directed graph that may

have cycles. As in the previous work, self-loops are avoided by enforcing wii = 0. aj(t) is a func-

tion of xj(t) and yj(t), which has to be defined in a meaningful way to combine the node
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Fig 4. Inferred regulatory pathways. A summary of d(P, T) edges is shown in (A). Counts of inferred edges for each

combination of regulation mode for d(PK, T) or d(PP, T) to either a primary transcriptional activator or repressor.

Counts statistically larger than expected are marked with asterisk. The top scoring d(P, T) edges with shared GO terms

are shown in (B). The number of GO terms shared between secondary regulators and TFs are shown next to each edge.

A dashed line indicates the edges was present in the evaluation set, i.e. known interactions. An asterisk on the shared
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concentration and activity attributes. eðxÞi and eðyÞi captures any latent concentration and activity

contributions not explicitly mediated by the nodes in the network. In this study, aj(t) = xj(t)+
yj(t) (see Derivation of Inference Model in S1 Text), and the equilibrium equations simplify to

the formulation in LLC if aj(t) = xj(t).
Eqs (3a and 3b) equivalently expressed in vector notation:

xðtÞ ¼WTaðt � 1Þ þ ex ð4aÞ

yðtÞ ¼WPaðt � 1Þ þ ey ð4bÞ

which for t!1 simplifies to (see S1 Text)

x ¼ Bxþ e ; B ¼WTðI � WPÞ
� 1 ð5Þ

WT = (wT,ij) and WP = (wP,ij) are adjacency matrices containing T edges and P edges respec-

tively. Since T \ P = ;, then WT and WP can be formulated as a single weight matrix W with

WT = WIT and WP = (IT + IP)WIP, where IT and IP are diagonal matrices with ones at indexes

indicating nodes in T and P, and zero otherwise. It has been implemented as WT = W�MT

and WP = W�MP, where MT and MP are indicator matrices, and� is entry-wise

multiplication.

Eq (5) represents the system at equilibrium without perturbation. The inference task is then

to find a solution for WT and WP that satisfies the equality. There are many such solutions,

which are narrowed down by considering the system under perturbation (see Intervention

experiments). The solution space can also be reduced with information about known regula-

tory interactions. MT was used to disallow certain TF edges (d(T, V)), those which lacked evi-

dence, by setting the appropriate elements of MT to zero. This approach was applied for the

large inference performed on yeast data but was not used for the inference on simulated net-

works. Although equivalent operations could be applied to MP, insufficient information was

available for this and was not performed.

Intervention experiments. For the purposes of this work, intervention experiments rep-

resented gene perturbations, where nodes in the model (representing genes and their gene

products) are knocked out or over-expressed by changing their concentration parameter. In

an experiment k, one or more nodes in J k (though typically one) are intervened on by setting

ðxkÞfJ kg
¼ ðckÞfJ kg

where ck is a constant intervention, and this particular subscript notation indicates the subset

of perturbed nodes (only). The combined expression for both intervened and passively

observed nodes becomes:

xk ¼ UkBxk þ Ukek þ ck

xk are node values for experiment k which were defined by a set J k containing indexes of

intervened nodes. Multiple samples can be collected of each experiment k, however data was

often limited to a single sample per gene. A knockout is not affected by transcription regula-

tion so edges in WT onto nodes in J k are removed by Uk = (ukij), which is a diagonal matrix

with ones indicating passively observed nodes, and zeros indicating intervened nodes (ukii = 0

GO term indicates a prediction with no known evidence. Boxes represent regulons for the TFs and are labeled with

representative significant biological process GO terms or the process the TF is known to regulate. The size of the

box represents the number of genes in the regulon.

https://doi.org/10.1371/journal.pcbi.1009414.g004
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for i 2 J k). The intervention term, ck, contains zeros except for ðckÞfJ kg
which are set to the

log fold-change values measured in perturbation data. Again, ek represents noise and other

latent effects.

Cost function. W can be inferred by minimizing ek for all experiments simultaneously

with the L2-norm, i.e. a measure of the Sum of Squared Error (SSE):

SSE ¼ ðk ðI � BÞX � U k2Þ
2 ð6Þ

where column k in X is xk, column k in U is the diagonal of Uk, and the norm is entry-wise.

Minimizing SSE by itself will result in a non-parsimonious solution with many nonzero

weights. Regularization approaches are used to generate fewer non-zero weights (induce

weight sparsity) which is typically achieved by minimizing the L1-norm of the trainable

weights, i.e. the entries (edges) in W. However, doing so assumes all primary and secondary

regulation can be regularized identically. We instead regularize the (absolute) accumulated

effects of weights defined as:

B� ¼W 0
TðI � W 0

PÞ
� 1 ð7Þ

where W 0
T and W 0

P hold absolute elements of WT and WP.

The intuition for this comes from first understanding that B is an adjacency matrix with

entries identical to WT for d(T, V) entries. For d(P, R) entries it holds the accumulated second-

ary regulatory effects. Regularization of B instead of W does not influence d(T, V) edges but

only penalizes d(P, R) on their accumulated effects onto observable node values. However,

accumulation of positive and negative influences through two separate cascades from a given

node 2 P onto a given node 2 R can cancel out, leaving both cascades unrestricted. For this

reason the absolute elements are taken of W resulting in B�.
The solution was then formulated as:

arg min
W

SSEþ l k B� k1 ð8Þ

where the norm is entry-wise. All results were found using AdamW gradient descent [14] and

regularization hyperparameter λ = 0.1.

GeneNetWeaverPhos main equations

Data for benchmarking network inference was generated through numerical simulated with

differential equations describing the concentrations of mRNA ri, protein pi and activated pro-

tein ψi in a cell.

dri
dt

¼ mðRNAÞi fiðψÞ � l
ðRNAÞ
i ri ð9aÞ

dpi

dt
¼ mðProtÞi ri � l

ðProtÞ
i pi ð9bÞ

dci

dt
¼

X

j2P

wþijcj þ l
þ

i

 !

ðpi � ciÞ

�
X

j2P

w�ijcj þ l
�

i

 !

ci ð9cÞ

fi Eq (1) in S1 Text is a nonlinear function modelling transcription regulation taking into

account TF binding cooperation and competition. It holds fi(ψ) 2 [0, 1]. mðRNAÞi and mðProtÞi are
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maximum transcription and translation rates. l
ðRNAÞ
i and l

ðProtÞ
i are decay rates for mRNA and

protein. l
þ

i and l
�

i are the rate of passive activation and deactivation of protein i, i.e. not medi-

ated by a specific regulator. wþij ¼ jwijj if wij> 0, otherwise wþij ¼ 0. Likewise, w�ij ¼ jwijj if

wij< 0, otherwise w�ij ¼ 0.

Parallels can then be drawn between ri here and xi in the inference model (3a), however not-

ing that xi represents log fold-change mRNA concentration while ri has to be simulated for

both mutant and wildtype in silico networks before such value can be calculated from their

comparison. Similarly, a parallel can be drawn between ψi here and ai from the inference

model, however GeneNetWeaverPhos and PhosTF are not designed to correspond to one

another. Instead, the former serves simply as a method to generate artificial data and the latter

to infer an underlying network from any log fold-change data.

Modeling of transcription regulation. For the simulations performed by GeneNetWea-

verPhos, the proportion of maximum transcription was used to model the regulation of a

gene. For gene i, the function fi(ψ) uses the amount of activated regulators to estimate this pro-

portion given the regulatory inputs to gene i defined in the network. The way in which infor-

mation from multiple regulators was integrated is described in detail in Modeling of

transcription regulation in S1 Text. Regulator concentrations for each regulatory module were

combined using a generalization of the Hill equation. In the special case of a module with a

single regulator, the expression for μm from Eq (1) in S1 Text simplifies to a standard Hill

equation for either an activator (10a) or a repressor (10b).

mþðcÞ ¼
c
n

kn þ cn ð10aÞ

m� ðcÞ ¼
1

1þ ðc=kÞn
ð10bÞ

Here, ψ is the concentration of the transcriptional regulator which is able to bind the DNA, k
is a dissociation constant, and ν is a parameter that shapes how binding sites respond to regula-

tor saturation.

Network construction for simulation

Five adjacency matrices from DREAM4 were each used 5 times to create 25 random adjacency

matrices each with 100 nodes (see Generation of random adjacency matrices given to Gene-

NetWeaverPhos in S1 Text). Fully defined networks were then randomly generated with Gen-

eNetWeaverPhos, which could subsequently be used to generate (simulated) log fold-change

values. In the random networks, secondary regulators (protein kinases and phosphatases)

were encoded as P which can both regulate positively and negatively.

TF regulons and their parameters were initialized by the same method as in GeneNetWea-

ver. If we define the decay rate from GeneNetWeaver as λdecay and number of secondary regu-

latory edges onto node i as #wþi and #w�i for positive and negative regulation, then

l
þ

i �

ldecay; if #wþi ¼ #w�i ¼ 0

ldecay
#w�i

#wþi þ #w�i
; otherwise

8
><

>:

l
�

i �

ldecay; if #wþi ¼ #w�i ¼ 0

ldecay
#wþi

#wþi þ #w�i
; otherwise

8
><

>:

ð11Þ
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Edges wþij and w�ij for j 2 P were also sampled from the same distribution. Decay effects

were cancelled by adding l
�

i and l
þ

i , respectively. Lastly, weights were normalized per target.

Yeast data

Many types of data were collected for inferring a regulatory network for yeast and for evaluat-

ing the performance of said inference, in an effort to validate PhosTF.

Gene expression data. Experimental intervention data was represented by curated gene

expression studies of genetic perturbations primarily consisted of gene knockouts and overex-

pression experiments, where (in most cases) a single gene was deleted or over-expressed

(Table 2).

“Tech.” refers to the technology or type of experiment performed to obtain the relative

expression data, either DNA microarray (“DNA-MA”), or Sequential Window Acquisition

of All Theoretical Mass Spectra (“SWATH-MS”). All measurements were log2 fold-change

mRNA expression levels for a mutant relative to wildtype, except for SWATH-MS data

which were protein measurements instead of mRNA. For the data originally published by

[18], values from the reanalysis by [19] were used. “Genes” is the number of measured genes

for each experiment, and “Exp.” is the number of perturbation experiments characterized.

The number of different mutated genes is given in parenthesis if different from the number

of experiments (due to replicates). A total of 6395 different genes were measured over the

1306 experiments. Of these, 173 different secondary regulators (P) were genetically manipu-

lated (knocked out or over expressed) in 828 experiments, and 272 different TFs (T) were

similarly perturbed in 478 experiments.

Edge data. Experimental sources of d(P, R) edge data was used for evaluating inference

performance. The evaluation data was identified from the union of d(P, R) edge data sets

excluding NetPhorest, and filtered for substrates with a recorded phosphorylation site (see

Node Sets in Network Construction). From STRING, validation interactions were only

included where evidence that a kinase phosphorylated a target protein with a protein modifica-

tion (PTMod) score> 250 were included. Other than PTMod, all other lines of evidence from

STRING were ignored. YeastKID was filtered with threshold score > 4.52, corresponding to

p< 0.05, which added> 400 d(P, R) interactions to the validation set. This resulted in valida-

tion sets of sizes |d(P, T)| = 412 and |d(P, P)| = 694.

Edge data for d(T, V) was used in MT (see Equilibrium Equation in Methods) to define the

primary regulation interactions used for the yeast inference problem.

“Value” displays the type of measurement if measurements were provided for the edges in

the data set. Merged edge data was filtered by matching source and target nodes against

mutated and measured genes from the perturbation data. “Entries” shows the number of mea-

surements, and “Edges” is the number of edges after filtering by the sets P, T, and V (see Node

Sets in Network Construction). Predictions scores were collected from NetPhorest using the

provided reference yeast genome. The edge value “binding” refers to published binding evi-

dence and “expression” refers to edges with evidence of expression regulation, where each

edge only has evidence for positive or negative regulation. “Ambiguous regulation” refers to

edges with evidence for both positive and negative regulation. “Score” and “scores” refer to sin-

gle and multiple separate arbitrary scores for each edge measuring different types of interac-

tions, notably a score for post-translational modification. Undirected interactions allowed for

a potential d(T, V) edges in either direction.

The resulting d(P, R) set contained physical interaction data for 1106 of the 85371 potential

edges (1.3%). Based on an integration of TF-binding data, a total of 21895 d(T, V) edges (7% of

the 1467081 possible) were used in the yeast model inference. Briefly, extant data was found
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for 1258143 d(T, V) edges (86%), primarily from ChIP-seq or other TF-binding assays (see

Table 3). If an edge was found multiple times in these data sets, the reported p-values from

binding evidence were combined for each TF edge with Fisher’s method. For some data sets

(e.g. Balaji et al. [24]) an overall p-value threshold was supplied but not individual edge p-val-

ues. In such a case the data-set threshold p-value was assigned to each edge in that data-set

before applying Fisher’s method. Similarly, YEASTRACT binding data had a conservative

p< 0.05 restriction enforced. A False Discovery Rate threshold q< 0.2 was used to filter the

edges for combined significance resulting in final 21895 edges (�95 per TF).

BioGRID contained data for 40000 phosphorylation sites in 3918 proteins and another

table with 111 kinases and 35 phosphatases mapped to 7561 of the sites. The BioGRID edge set

was constructed through the mapping between the two tables.

Table 3. Yeast edge data resources.

Resource Source Value Entries Edges

d(P, R) BioGRID [20] 1433 279

d(P, R) Fasolo et al. [21] 1025 59

d(P, R) Parca et al. [22] 578 120

d(P, R) Fiedler et al. [17] 667 267

d(P, R) Ptacek et al. [1] 4290 341

d(P, R) Yeast KID [23] Score 31155 4364

d(P, R) NetPhorest [13] Prediction 220802 14058

d(T, V) Balaji et al. [24] 12873 12716

d(T, V) Beyer et al. [25] p-value 13198 12707

d(T, V) Lee et al. [26] [27] p-value 2157385 1225212

d(T, V) Horak et al. [28] p-value 59359 51092

d(T, V) YEASTRACT [29] Binding 45206 43518

d(T, V) YEASTRACT [29] Expression 143344 138914

d(T, V) YEASTRACT [29] Ambiguous reg. 18304 18106

d(V, V) STRING [30] Scores 438768

d(P, R) 2142

d(T, V) 2704

V − V STRING [30] Undirected score 1845966

T − V 69808

https://doi.org/10.1371/journal.pcbi.1009414.t003

Table 4. Gene ontology annotation resources.

Resource Class Entries Proteins

TF activator DNA-binding transcription activator activity, RNAP II-specific 68 48

TF activator Positive regulation of transcription by RNAP II 309 223

TF activator Positive regulation of transcription elongation from RNAP II promoter 63 46

TF repressor DNA-binding transcription repressor activity, RNAP II-specific 38 23

TF repressor Negative regulation of transcription by RNAP II 160 123

TF repressor Negative regulation of transcription elongation from RNAP II promoter 4 2

PK Protein kinase activity 256 137

PP Protein phosphatase activity 58 45

Pathway - 16107 6766

https://doi.org/10.1371/journal.pcbi.1009414.t004
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GO data. Gene Ontology data was used for categorizing the d(T, V) mode of regulation,

as well as assisting edge data in assigning proteins to sets P, T, and O (Table 4). GO Biological

Process terms were curated for evaluation purposes.

All GO resources were from AmiGO2 version 2020-01-01 [31] except for pathway

resources retrieved from SGD [32]. The “Resource” column describes the interpretation of

each GO term, and “Class” shows the filtered “GO class (direct)”. In the case of Biological Pro-

cess GO terms, 100 different terms were possible to test. All AmiGO2 annotation queries were

filtered by organism “Saccharomyces cerevisiae S288C”. “Entries” shows the number of entries

for each query and “Proteins” shows the number of proteins with at least one entry.

Modes of regulation for primary regulators were classified according to curated GO evi-

dence. GO evidence based on computational predictions alone was not considered in assign-

ing regulatory modes. Low-throughput and direct experimental evidence was trusted over

high-throughput and indirect evidence. This curation resulted in 191 TF activators, 65 TF

repressors, 146 protein kinases, and 51 protein phosphatases.

Yeast regulatory network construction

The data was processed to create an initial genome-scale regulatory network that was used for

inference of secondary regulation. Subsections were ordered chronologically.

Definition of node sets. The P set was curated from the source nodes in P interaction

data as well as the manipulated genes in P perturbation data (mRNA expression profiles). The

T set was curated from the source nodes in TF interaction data filtered for target nodes in V,

where one or more mRNA expression values were observed in perturbation data. O is the set

of non-regulatory genes with at least one regulatory input from a primary regulatory (the sub-

set of V not in P or T). Sizes of the distinct gene sets were |P| = 199, |T| = 231, and |O| = 5922.

Node values. Log2 fold-change (logFC) expression values were averaged across replicated

perturbation experiments. This resulted in matrix X in Eq (6) consisting the logFC (or mean

logFC), while U represented the mapping between manipulated and measured genes. Expres-

sion values for the specific genes that were knocked out (KO) or overexpressed (OE) were then

adjusted by the following approach. The measurements of KO genes were adjusted by −4

logFC, which corresponded to an average KO gene level�100 times less than wildtype. Mea-

surements of OE genes were adjusted by +1 logFC, corresponding to an average expression�4

times wildtype levels. In theory, a knocked out gene would have logFC of −1, although using

such values would not be feasible for inference. Empirical observations of knocked out genes

were strongly influenced by cross-hybridization of other mRNAs and often resulted in only

moderately negative logFC. For these reasons, the perturbation effects were enhanced (see

Enhancing relative expression of genetically perturbed genes in S1 Text).

Initial d(T,V) weights. TF edge weights wij represent the relationship between the log

fold-change value of a source node vj 2 T and target node vi 2 V. wij can be inferred from

logFC values, but it is assumed that the physical binding evidence can adequately categorize

TF-DNA interaction as present or absent.

TFs were categorized as either activators or repressors based on available data. The order of

priority was: GO evidence, YEASTRACT and STRING combined with edge p-values, and

lastly perturbation data. YEASTRACT and STRING described the mode of regulation for indi-

vidual interactions. The p-values for either activating or repressing interactions were com-

bined using Fisher’s method and compared for significance. Remaining unclassified TFs were

categorized based on the average logFC of their targets in experiments where the TF was

deleted, and if no such experiment existed, the classification was based on the sign of correla-

tion between logFC values of the TF and its targets.
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The mode of regulation for each edge was either assigned from the above listed sources, or

inferred from the mode of regulation assigned to the TF. Edge weights were initialized as −1 or

+ 1 depending on mode of regulation. All other weights were set to zero and treated as invari-

ant during training.

Initial d(P,R) weights. The variable (trainable) weights wij for vi 2 R and vj 2 P were ini-

tialized from a normal distribution with a small variance σ2 = 10−4. Initial wij for vi 2 P and

vj 2 P were sampled randomly, however wij for vi 2 T were informed by Wilcoxon rank tests

on P perturbation data. Absolute logFC values for each P with knockout data were compared

for each TF with a one-sided Wilcoxon rank test. The tests compares absolute measurements

from two groups of genes; the TF regulon and remaining genes. Significant p-values from

these tests indicate which secondary regulators had influence on TF regulons. Instead of ran-

dom sampling from a normal distribution, values were selected from a normal distribution for

the quantile of the p-value. As a result, smaller p-values corresponds to larger |wij|.

sgn(wij) for Pj on Ti were initialized from equivalent two-sided Wilcoxon tests.

sgnðwijÞ ¼ � sgnðTiÞ � sgnðM̂ijÞ ð12Þ

sgn(Ti) is the regulation mode of TF i curated from literature. M̂ij is the estimated median of

difference between the two groups.

Parameter estimation. Parameters were inferred with PhosTF for simulated data and

yeast data alike. Initial states were described in Network Construction for Simulation and Net-

work Yeast Regulatory Network Construction. Edge weights (wij 2 R) were trained on simu-

lated data from each 100-node network by minimizing Eq (8) for 15000 epochs. Only 50

epochs of gradient descent were performed in the case of training on the yeast data. Edge pres-

ence was scored as |wij| and the sign was used for interpreting the mode of regulation.

Evaluation of performance

Simulated regulatory networks. Performance for each inference was based on different

edge weight thresholds, θ, where each Boolean classification generated a set of predicted pres-

ent and absent edges. Prediction of an edge was either assessed as wij> θ for d(Sources, Tar-

gets, +), wij< −θ for d(Sources, Targets, −), or |wij|> θ for d(Sources, Targets). When

compared to the ‘true’ network edges (activating, repressing or absent), edge counts for true

and false positives, and true and false negatives could be compiled. Comparing true positive

rates to true negative rates, in an ROC analysis, allowed for the estimation of an area under the

curve (AUC) as a measure of prediction performance.

Yeast regulatory networks. d(T, V) edges were constructed from binding data, so perfor-

mance was not evaluated on the inferred edge weights for these edges. The evaluation of per-

formance on d(P, R) was performed using experimental data since P edges were only inferred

from perturbation data, as well as indirectly implicated through the restrictions applied to d(T,

V) edges. Performance could furthermore be assessed using GO process terms since such data

was also not used in the inference process.

Top scoring pathways were collected using thresholds of� 1 to� 6, where the source and

target of d(P, R) edges shared GO slim biological process terms (“Pathway” in Table 4), are

shown in Fig 4B. The 4 top d(P, T) edges (by wij) were identified for each threshold: top two

edges with highest and lowest edge weights (largest absolute edge weights for positive and neg-

ative regulation). The set of edges found for a particular shared GO term threshold often over-

lapped with those found for the other thresholds, resulting in the 16 shown.
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Discussion

A direct performance comparison for the inference of primary regulation showed that the per-

formance of PhosTF on simulated 100-node networks was either comparable to or better than

that of simpler simulation models applied in the DREAM challenges. Although, it was

expected that primary regulation would be easier to infer than secondary regulation, we

observed higher prediction performance for secondary regulation in these medium-sized sim-

ulated networks (AUC 0.9 for d(P, T) versus AUC 0.84 for d(T, V)). Considering this, PhosTF

should be viewed as an advance due to the accurate prediction performance for secondary reg-

ulation in addition to state-of-the-art performance for prediction of primary regulation.

Inference of secondary regulation in yeast was significantly harder to perform and evaluate.

Performance evaluation was challenged by the small size of the evaluation set compared to the

set of potential edges, as well as the lack of a proper negative set. With so few known examples,

it cannot be assumed that the majority of novel predictions were false positives, and that pre-

diction specificities could not be realistically estimated. Sensitivity estimates were 0.40 for

d(P, T) and 0.28 for d(P, P) predictions meaning that roughly 30–40% of what was known was

inferred from this approach, see Fig 3. Nevertheless, the enrichment of known interactions in

the prediction set was highly significant. Of the predicted 8610 new d(P, T) (secondary to pri-

mary) and 6299 new d(P, P) (secondary to secondary) regulatory interactions, 30–40% of each

type would be expected to be real. PhosTF also outperformed the existing kinase specificity

based predictions of NetPhorest and is sufficiently accurate to provide sets of predictions for

further validation studies.

Approximately 70% of secondary regulatory interactions on transcription factors in yeast

appeared to be negatively regulating (deactivating) their targeted transcription factors. This

bias was observed to be even stronger for the predicted weights of the 166 d(P, T) edges that

were in the validation set. In this case, 85% of the already known d(P, T) edges were estimated

to have deactivating effects. Despite this surprising predominance of negative regulation by

secondary regulators, the higher than expected prediction of de-repression pathways (Neg.-

Neg.) suggests selection of indirect transcriptional activation by protein kinases through the

negative regulation of repressors. When considering the net regulatory effects, the overall pro-

portion of repressing pathways was 62% when summing Pos.-Neg. and Neg.-Pos. (Fig 1A).

We investigated whether the bias of negative secondary regulation was due to systematic

aspects of the gene expression data for the various knock outs used for inference. Such biases

could arise, for example, if large numbers of differentially expressed genes were non-specifi-

cally affected by different gene deletions. Importantly, non-specific deletion effects would only

be expected to increase the two cases where secondary regulation of TFs was positive, i.e. Pos.-

Pos. and Pos.-Neg. (Fig 1A), because these two type of pathways induce the same type of KO-

affect on the targeted genes. Conversely, negative regulation of transcription factors requires

that the transcriptionally regulated target genes change from up-regulation to down-regulation

(or vice versa) between knock outs of secondary and primary regulators. Therefore, non-spe-

cific or consistent KO effects would only be expected to implicate positive secondary regula-

tion. As a further check, the signs of differential expression for all perturbation measurements

were compared between secondary and primary regulator perturbations for each predicted

d(P, T) edge. The comparisons of signs across knockout profiles did not reveal systematic anti-

correlation of transcriptional responses either, which additionally suggested that the negative

secondary regulation bias was not expected by random chance.

One possible explanation for the over representation of negative secondary regulation

could relate to the nucleocytoplasmic trafficking of TFs as a function of their phosphorylation

state. Protein phosphorylation is known to regulate trafficking of proteins in and out of the
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nucleus, and is particularly relevant for TFs as this is where their primary mode of action takes

place. The trafficking hypothesis would imply that phosphorylation more often facilitates

retention of TFs in the cytoplasm, effectively deactivating them. This bias is not well supported

by our current, albeit incomplete, knowledge of nucleocytoplasmic trafficking. There are as

many or more anecdotal examples that describe phosphorylation promoting nuclear import

than describe cytoplasmic retention [33]. Despite the inconclusive evidence, many examples

are known where phosphorylation of TFs either facilitates cytoplasmic retention or nuclear

export, e.g. Pho4p, Mig1p and Crz1p [34]. Considering that this bias for negative secondary

regulation was also observed for phosphatases, nucleocytoplasmic trafficking alone will not be

sufficient to explain this phenomenon.

Despite the relatively large number of regulatory interactions that could be predicted from

our approach, a number of possible inference challenges were identified. Ambiguous solutions

can arise even in simple network models using simulated perturbations. It was observed for

inference on some small networks that if two secondary regulators were similar in their regula-

tory roles, it could become impossible to distinguish between one regulating the other, or both

regulating the same target. The small example shown in Fig 2A, with 3 Pi, 2 Tj, 1 target gene V,

and 6 regulatory interactions, illustrates an example where two secondary regulators have a

similar role. Despite the ambiguity between P1 and P2, all 6 known regulatory interactions

were correctly predicted along with two extraneous edges (false positives). These extra edges

give P1 and P2 the same regulatory interactions in the network, both regulating each other and

T1.

As PhosTF minimizes the cost function to provide a single inferred WT and WP, it can in

general be said that it provides a single parsimonious solution, with potential for random vari-

ation for repeated runs on complicated challenges. However, as presented in Fig 2 it is possible

to balance regularization to let alternative inference pathways simultaneously appear.

Since ambiguous regulation or feedback cycles can result in prediction of false positive

interactions, it was important to implement further regularization approaches in PhosTF to

ensure sparsity in the inferred interaction network. To induce sparsity, approaches are typi-

cally applied to penalize edges, e.g. on W. From testing on small simulated networks, it was

found that PhosTF performs much better when the regularization was applied to B� instead of

W, where regularization is typically performed. This is likely because L1 regularization of W
unevenly penalizes d(P, P) edges compared to d(P, T) and d(T, R) edges (R = P [ T). This

improvement alone is likely why our prediction performance compares favorably to previous

DREAM winners despite the additional challenges imposed by indirect regulation.

Other inference challenges could not be addressed by improved regularization approaches.

For example, some regulatory effects can be silent due to the presence of compensatory path-

ways. Compensating signal transduction cascades are difficult to infer from perturbation data

if only a single gene has been deleted from either cascade. This limitation can only be over-

come with multiple knockouts in the same experiment. Environmental conditions may also

prevent the observation of KO effects if secondary regulators are inactive under such condi-

tions. This type of silent regulation can be observed in simulations when edge weights (activi-

ties) are initially set too close to zero. In these cases, the deactivation of a node with activity 0

will not be detected. Conversely, simulating the overexpression of a node with the maximum

activity will also not be detected. Some steps were taken to avoid silent regulation in the simu-

lations, e.g. setting the magnitudes lower for edges sharing the same target (see Generation of

random adjacency matrices given to GeneNetWeaverPhos in S1 Text). Despite this, silent reg-

ulation present in experimental data cannot always be avoided, which means some regulation

cannot be inferred. Extensions of the method may be required to better suit modeling of

PLOS COMPUTATIONAL BIOLOGY Systematic inference of regulation by protein kinases

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009414 June 22, 2022 19 / 22

https://doi.org/10.1371/journal.pcbi.1009414


holoenzymes, as currently each node represents a single gene product. Such an extension

could represent protein complexes as nodes in the network.

This study presented a novel regulatory inference method PhosTF as well as an extension of

the GeneNetWeaver simulation tool, GeneNetWeaverPhos, which shows potential future use

in inference approaches. Given enough computational resources, GeneNetWeaverPhos could

be iteratively run with variations to the network structure, to minimize the difference between

simulated and experimental gene expression levels. This could be accomplished with a Markov

chain Monte Carlo approach such as the Metropolis-Hastings algorithm. PhosTF was demon-

strated to infer secondary regulation in both small and large networks containing many hun-

dreds of regulators. In addition to gaining a systems-wide understanding of how transcription

factor activity is modulated by specific classes of secondary regulators (protein kinases and

phosphatases), the inferred regulatory networks can be used to predict the effects of gene

mutation, or the over- or underexpression of regulators. It is hoped that these extended regula-

tory networks can provide engineering targets for improved control of gene expression in bio-

process strains.
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