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Escherichia coli (E. coli) is a Gram-negative bacterium that belongs to the family

Enterobacteriaceae. While E. coli can stay as an innocuous resident in the digestive tract,

it can cause a group of symptoms ranging from diarrhea to live threatening complications.

Due to the increased rate of antibiotic resistance worldwide, the development of an

effective vaccine against E. coli pathotypes is a major health priority. In this study, a

reverse vaccinology approach along with immunoinformatics has been applied for the

detection of potential antigens to develop an effective vaccine. Based on our screening

of 5,155 proteins, we identified lipopolysaccharide assembly protein (LptD) and outer

membrane protein assembly factor (BamA) as vaccine candidates for the current study.

The conservancy of these proteins in the main E. coli pathotypes was assessed through

BLASTp to make sure that the designed vaccine will be protective against major E. coli

pathotypes. The multitope vaccine was constructed using cytotoxic T lymphocyte (CTL),

helper T lymphocyte (HTL), and B cell lymphocyte (BCL) epitopes with suitable linkers

and adjuvant. Following that, it was analyzed computationally where it was found to

be antigenic, soluble, stable, and non-allergen. Additionally, the adopted docking study,

as well as all-atom molecular dynamics simulation, illustrated the promising predicted

affinity and free binding energy of this constructed vaccine against the human Toll-like

receptor-4 (hTLR-4) dimeric state. In this regard, wet lab studies are required to prove the

efficacy of the potential vaccine construct that demonstrated promising results through

computational validation.
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INTRODUCTION

According to its pathogenicity in humans, E. coli can be classified
into an extraintestinal infection-causing E. coli (primarily
uropathogenic E. coli, UPEC, and neonatal meningitis E. coli,
NMEC) and strains that cause enteric infections (divided into 6
pathotypes; enteropathogenic E. coli [EPEC], enterohemorrhagic
E. coli [EHEC], enteroaggregative E. coli [EAEC], enteroinvasive
E. coli [EIEC], enterotoxigenic E. coli [ETEC] and diffusely
adherent E. coli [DAEC]). Additionally, two further pathotypes
have emerged recently; adherent invasive E. coli [AIEC] that is
predicted to be associated with Crohn’s disease and does not
produce any toxins, while the other pathotype, Shiga toxin-
producing enteroaggregative E. coli [STEAEC], causes food
poisoning due to the action of Shiga toxin and was reported to
be the causative agent for the 2011 Germany E. coli outbreak (1).
People can be easily infected with E. coli by swallowing a small
amount of it in water, vegetables, or meat where the fecal-oral
route is the major way of transmission (2). Another common
way of categorizing E. coli is by serotype through detection of
surface antigens O and H. Currently, more than 190 serogroups
have been identified (3).

Currently, pathogenic E. coli is a major public health
concern because of possessing a low infectious dose and simple
transmission through food and water (4). Excessive usage of
different classes of antibiotics, especially in cases that do not
require this form of treatment, contributed largely to the
appearance of antibiotic resistance in bacterial strains that were
previously sensitive even for the traditional classes of antibiotics
(5). Antibiotic resistance of E. coli is extensively studied for
two major reasons; firstly, it represents the most common
infective Gram-negative pathogen for humans (6), secondly,
resistant E. coli can affect other bacteria in the gastrointestinal
tract through transferring antibiotics resistance determinants (7).
The resistance rates are demonstrating continuous inclement
throughout the last few years (8). An alternative solution to fight
against this pathogen is designing an effective vaccine against its
common pathotypes. While this solution was adopted by many
research groups around the world, there is no officially approved
vaccine against pathogenic E. coli in the market (9).

Many trials have been performed to generate an effective
vaccine for various E. coli pathotypes. Regarding intestinal E.
coli, Shiga toxin-based vaccine (10), attenuated bacteria-based
vaccine (11), and polysaccharide-based vaccine (12) have been
proposed for EHEC while autotransporter-based vaccine (13)
and adhesion based vaccine (14) were proposed for ETEC.
Moving to extraintestinal E. coli, capsular-based vaccine (15)
and iron scavenger receptors-based vaccine (16) were designed.
The previous approaches for designing an effective vaccine
are based mainly on studying the virulence properties for
each pathotype of E. coli and as we mentioned above none
of these vaccines have been approved by FDA yet. In the
current study, we planned to merge two advanced approaches,
reverse vaccinology and immunoinformatics for a vaccine design
where these approaches would be applied on conserved protein
candidates in various E. coli pathotypes to generate a vaccine with
possible cross-reactivity.

Reverse vaccinology is a novel approach for vaccine designing
that demonstrated a great development in the last few years
as a result of the revolution in sequencing techniques and the
data availability in highly organized databases. Additionally,
computational tools that can deal with this large amount of
data and translate it to valuable outcomes that can be used in
applied research also showed great progress (17). This approach
for vaccine design has been utilized for a protein-based vaccine
design against viral, bacterial, and fungal infectious agents
(18–20). Moreover, it was also applied to design an effective
vaccine for animals against ETEC, a common pathotype of E.
coli that leads to post-weaning diarrhea in pigs (21). Recent
studies showed that multitope vaccines had superiority over
single-component ones regarding their effectiveness (22). In the
current study, we aim to investigate the whole proteome of E.
coli and select potential protein candidates through the reverse
vaccinology approach. Following that, immunogenic epitopes
from these candidates would bemapped and gathered to initiate a
multitope vaccine that would be assessed computationally for its,
physicochemical, chemical, and immunological characteristics to
be nominated as a potential vaccine candidate against pathogenic
E. coli.

MATERIALS AND METHODS

We divided the current study into two main stages (Figure 1)
wherein the first stage we handled the proteome of E. coli
with successive filtration steps of reverse vaccinology approach
to nominate protein candidates for vaccine design while in
the second stage we constructed, analyzed, and assessed the
multiepitope vaccine that was created based on B and T cell
epitopes of protein candidates from the first stage.

Data Retrieval
The amino acid sequences of the whole proteome of E. coli
O157:H7 str. Sakai was retrieved with Genbank assembly
accession No: GCF_000008865.2. This strain was selected as it
represents the reference pathogenic E. coli strain on NCBI.

Prediction of Essential Exoproteome and
Secretome
Living organisms cannot survive without their essential genes
(23). Therefore, the first filtration step was detecting these
genes using Geptop 2.0, where a list of essential proteins
was detected out of 5,155 proteins (the complete proteome of
the studied strain) (24). The default essentiality score cutoff
(0.24) was used for this process. Following that, PSORTb v3.0.2
online server (25) was employed to predict the subcellular
localization of the filtered genes. The overall result of this
filtration phase was a list of exoproteome and secretome
essential proteins.

Prediction of Virulence Protein
Essential exoproteome and secretome were applied to
virulenpred (26) to estimate the virulence potential.
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FIGURE 1 | Graphical representation of the methodology employed for the multi-epitope vaccine design against E. coli.

Determination of Human Homologs
Protein list from the above stage was analyzed against human
proteome onNCBI using BLASTp to check for human homologs,
and those with ≥35% identity were removed from our list.

Prediction of Transmembrane Helices and
Protein Molecular Weight Estimation
The presence of transmembrane helices and proteins’ molecular
weight estimation were detected through TMHMM (27),

and Expasy tool (28), respectively. Those with molecular
weight <110 kDa and had ≤1 transmembrane helix
were selected for antigenicity assessment in the next
step (29).

Protein Antigenicity Analysis
Protein Antigenicity was detected by Vaxijen V 2.0 (30),
where proteins with antigenicity score more than 0.4 were
considered antigenic.
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Analysis of Protein Conserved Identity With
Various E. coli Pathotypes
Recommended proteins from previous steps were assessed for
their conservation among 10 E. coli strains where BLASTp
analysis was performed for each protein against a representative
strain of each E. coli pathotype to confirm that the designed
vaccine will have the ability to act against any pathogenic E.
coli which is a major aim of this study. Proteins with a sharing
percentage<90%were eliminated and considered not conserved.

T-Cell and B-Cell Epitope Prediction
After completing the whole reverse vaccinology filtration steps,
successful candidates were transferred to the epitope mapping
stage where the filtered proteins were submitted to SignalP-
5.0 Server to anticipate the location of signal peptides. Moving
to the next step, the mature polypeptides were mapped for
B and T cell epitopes through the online server of the
Immune Epitope Database (IEBD) (31). The first epitopes to
be predicted were CTLs, which were anticipated against HLA
allele reference set that provided more than 97% in terms of
population coverage (32). Secondly, HTLs were also predicted
against HLA reference set to cover more than 99% in terms of
population coverage (33). Moreover, HTL epitopes were analyzed
for their ability to induce γ-INF vs. other cytokines through
the webserver (http://crdd.osdd.net/raghava/ifnepitope/), IL-4
induction ability was estimated through the webserver (https://
webs.iiitd.edu.in/raghava/il4pred/), while IL-10 induction ability
was assessed through the webserver (https://webs.iiitd.edu.in/
raghava/il10pred/). For both HTLs and CTLs, the affinity of the
filtered peptides toward respective alleles was assessed where the
peptide 3D structure was estimated via PEP FOLD 3 webserver
(34); concurrently, the 3D structure of HLA-B∗44:03 (PDB ID
4JQX) and HLA-DRB1∗04:01 (PDB ID 5JLZ) was retrieved
from the protein data bank to act as receptors for MHC-I
and MHC-II epitopes, respectively, and the docking study was
performed through AutoDock Vina (35). The final assessment
for HTLs and CTLs was the conservancy prediction where the
web-based tool from IEDB analysis resources was employed for
this process (36). The last set of epitopes, BCLs were finally
estimated through IEBD. After prediction, several characteristics
for every single epitope were predicted to nominate the best
candidates that would be used for the multitope construct.
These characteristics were the population coverage, conservancy
profile, antigenicity score, allergenicity, and toxicity probabilities;
where IEDB analysis tools, Vaxijen, AllerTOP, and ToxinPred
were employed, respectively, for these assessments.

Multitope Vaccine Construction
In order to construct a potential multitope vaccine, the best
six candidates of CTL, HTL, and BCL epitopes from the step
of epitope mapping were linked through GGGS, GPGPG, and
KK amino acid linkers, respectively, where these linkers were
incorporated to provide in vivo separation of the assembled
epitopes (37). Apart from the epitopes, PADRE sequence and β

defensin adjuvant were added to finalize the designed vaccine
construct. This potential vaccine construct was assessed for its
immunogenicity score, allergenicity, and toxicity probabilities

through the same servers that were employed previously for
single epitopes estimation.

Physicochemical Features, Protein
Solubility Assessment, and Secondary
Structure Prediction
ProtParam, a tool available on Expasy server (28) was employed
to assess the physicochemical properties of the designed potential
vaccine. The propensity upon overexpression in E. coli and the
protein secondary structure of the multitope construct were
anticipated via SOLpro server (38) and PSIPRED 4.0 webserver
(39) respectively.

Tertiary Structure Prediction, Refinement,
and Validation
It is essential to predict the potential vaccine 3D structure
to be able to assess its binding with a toll-like receptor. The
current study utilized 3Dpro webserver (40) for this purpose.
Computational estimation of a protein tertiary structure is
performed through a molecule bending and twisting to create
a structure with the least possible energy and maximum state
of stability where the employed server runs this process via
an analysis of the structural similarity between the protein
sequence under prediction and the data available on PDB.
Following tertiary structure prediction, GalaxyRefine server (41)
was employed to perform refinement for the generated structure
in terms of stability and protein-energy, and the enhanced
structures vs. the original one were assessed by Ramachandran
plot analysis (42) and ProSA (43).

Conformational B-Cell Epitope Prediction
The conformational B-cell epitopes were analyzed for the
multitope design after 3D structure prediction and refinement.
The ElliPro Server (http://tools.iedb.org/ellipro), which is a
reliable tool for detection of B cell epitopes against a specific
antigen, was employed for this prediction (44).

Disulfide Engineering of the Designed
Vaccine
Prior to initiating a docking study for the constructed potential
vaccine, it was recommended to enhance the stability of the 3D
format of the designed construct. Disulfide bonds were proved
to enhance protein geometric conformation and consequently
elevate its stability. Disulfide by Design 2.0 (45) was assigned for
this process.

Docking of Designed Vaccine With hTLR-4
The current study employed molecular docking as a prediction
tool for assessment of preferred orientation of the ligand, the
current study vaccine construct, to its corresponding receptor
and estimate the binding affinity (46). Inflammations triggered
by E. coli are involved mainly with TLR-4 (47). Hence, the
hTLR-4 (PDB id: 4G8A) was chosen as a receptor for the
potential epitope-based constructed vaccine, the ligand, and
ClusPro 2.0 server (48) was utilized to run this docking study.
This server predicts the best docking models by performing
billions of conformations, clustering of the 1,000 lowest energy
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structures generated and removing steric clashes. The 2 PDB files
were uploaded to ClusPro server and the docking process was
performed using default parameters.

Dihedral Coordinate-Based Normal-Mode
Analyses
The iMODS server was employed to investigate and analyze the
collective flexibility as well as motion functions of the constructed
epitope vaccine in relation to the bound hTLR-4 protein target
since the latter server possesses the advantage of being fast
and efficient (http://www.imods.chaconlab.org/) (49). This server
can predict several values such as eigenvalues which reflected a
harder deformation when this value is high (50). The atoms and
residues of both the bound hTLR-4 protein and epitope vaccine
ligand were continuously indexed where atoms of number range
1–9,567 and 9,568–15,225 were, respectively, assigned for the
epitope-bound hTLR-4 (the initial 27–627 amino acids) and
epitope vaccine itself (the following 1–380 amino acids).

Molecular Dynamics Simulations
The molecular dynamics computational approach was applied
to describe the epitope/hTRL-4 molecular behaviors in addition
to measuring the stability of such protein-protein complex (51).
The hTLR-4 can exist in a monomeric state as well as m-shaped
dimeric architecture where the latter is prior to the initiation of
downstream signal transduction (52, 53). Additionally, reported
crystalline hTLR-4 showed a significant N-glycosylation profile
with several oligosaccharidemoieties being linked to their surface
at conserved residues (54, 55). In these regards, four docked
hTLR-4/epitope vaccine complexes were investigated for the
impact of glycosylation and/or hTLR-4 oligomerization state
on the binding affinity as well as the thermodynamic stability
of the constructed epitope vaccine. Simulated complexes were
dimeric or monomeric hTLR-4 states being either glycosylated
or not (Glycosylated dimer = GlyDim; Sole dimer = SolDim;
Glycosylated monomer = GlyMon, Sole monomer = SolMon).
Each of the latter adopted models were individually subjected
to 100 ns explicit molecular dynamics runs using GROMACS-
2019 (http://www.gromacs.org/) (56) and under CHARMM36m
forcefield for the protein simulations (57–60). Under periodic
boundary conditions, the TIP3P water model 3D-box was used
to solvate the investigated protein-protein complex model with
10 Å marginal distances (61). The standard ionization state
of both protein amino acids was assigned under physiological
pH 7.4, whereas the whole constructed system charge was
via sufficient chloride and potassium ion numbers introduced
through Monte-Carlo ion-placement method (62). The atomic
counts of the four constructed models were 438642, 424612,
242818, and 237898 atoms for GlyDim; SolDim; GlyMon, and
SolMon, respectively.

The constructed system was minimized throughout 5 ps
using a steepest-descent algorithm (63), and subsequently
subjected to double-staged equilibration for 100 ps/stage under
a constant number of particles, Volume, and Temperature
(NVT; 303.15K, Berendsen temperature coupling regulation)
and a constant number of particles, Pressure, and Temperature

(NPT; 303.15K and 1 atm. Pressure, Parrinello-Rahman barostat
regulation) ensembles for the first and second stage, respectively.
Throughout both minimization and equilibration stages, the
original protein foldings were preserved and all heavy atoms
were restrained at 1,000 kJ/mol.nm2 force constant. Finally,
the minimized/equilibrated systems were produced through
100 ns explicit molecular dynamics runs under NPT ensemble
using Particle-Mesh Ewald algorithm for long-range electrostatic
interactions computation. Linear constraint LINCS method
modeled the covalent bond lengths at 2 fs integration time
step sizes (64). van der Waals and Coulomb’s non-bounded
interactions were truncated at 10 Å via Verlet cut-off schemes
(65). The MD simulations were performed using Aziz R©

Supercomputer (King Abdulaziz University’s High-Performance
Computing Center), via 5 nodes with 24 CPUs/node and 8 MPI
processes/node. Adopted nodes run CentOS-6.4 with dual Intel R©

E5-2695v2 (24 cores/node; i.e. 2.4 GHz 12 Cores) offering 96 GB
Memory/node. The MD simulation of the dimer hTLR-4 states
took ∼228 and 218 h for the glycosylated and non-glycosylated
proteins, respectively. While as the monomeric states took
nearly 132 and 128 h for the glycosylated and non-glycosylated
proteins, respectively.

The trajectory-oriented analytical parameters; root-mean-
square deviation (RMSD), RMS-fluctuation (RMSF), radius
of gyration (Rg), and solvent-accessible surface area (SASA)
were computed through molecular dynamics trajectory analysis
using GROMACS built-in analytical scripts. The free binding
energies, as well as residue-wise energy contribution between
hTLR-4 protein target and epitope vaccine ligand, were
estimated via Molecular Mechanics/Poisson-Boltzmann Surface
Area (MM/PBSA) using GROMACS/g_mmpbsa scripts (66).
The SASA-only model of the free-binding energy (1GTotal =

1GMolecularMechanics + 1GPolar + 1GApolar) was used across the
whole 100 ns molecular dynamics runs. Important MM/PBSA
parameters for polar/solvation calculations were set at 1.40 Å
solvent probe radius, 80 pdie solvent dielectric constants, 1
vdie standard vacuume, and 2 pdie solute dielectric constants.
Regarding only-SASA non-polar solvation; 1.40 Å SASA solvent
probe radius, 0.0227 kJ/mol.Å2 solvent surface tension, and
3.8493 kJ/mol offset constant, were used. Finally, parameters for
the continuum-integral-based model were set as 1.25 Å solvent
probe radius, 200 quadrature points/Å2, and 0.0334 Å3 bulk
solvent density. Representing ligand-protein conformations at
specific timeframes was done via Schrödinger-Pymol V.2.0.6
graphical package.

Immune Simulation of the Designed
Vaccine
The C-ImmSim server (67) was employed to predict the
stimulated immune response against the designed vaccine
through a computational approach. We followed the technique
of prime—booster—booster for this investigation and that was
achieved by injecting the designed vaccine three times with 4
weeks intervals. This approach was applied to obtain a long-
lasting immune response.
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FIGURE 2 | A chart summarizing applied filtration steps for the nomination of

potential vaccine candidates by applying in silico reverse vaccinology

technique.

RESULTS

The main output of the filtration steps that have been applied
in the current study to define potential candidates are shown in
Figure 2.

Proteome Analysis for Selection of Vaccine
Candidates
Data within Figure 2 demonstrates the results of filtration steps
of E. coli O157:H7 str. Sakai proteome where three proteins
(lipopolysaccharide assembly protein LptD, outer membrane
protein assembly factor BamA, and lipopolysaccharide assembly
protein LptE) matched all the requirements. We selected the top
2 proteins that passed all the filtration steps and had the highest
antigenicity score to obtain an accepted length of multiepitope
vaccine after connecting the best-predicted T and B cell epitopes
from these 2 proteins so we nominated LptD and BamA as our
final vaccine candidates, characteristics of these candidates are
shown in Supplementary Table 1.

Conservation Analysis of Nominated
Vaccine Candidates Among E. coli

Pathotypes
Conservation analysis of our nominated vaccine candidates
showed that these proteins were found with high conservation
among various E. coli pathotypes (Supplementary Table 2)
which confirmed their ability to protect against different E. coli

infections, therefore we designed the multitope vaccine based on
these 2 proteins.

T Cell Epitopes
In order to select the best T cell epitopes for constructing the
multitope vaccine, the top 100 generated peptides from IEBD
per each protein candidate were estimated for their antigenicity
score, allergenicity, and toxicity probabilities, and the top 10
peptides, which demonstrated the lowest percentile rank, the
highest binding affinity and antigenicity score more than 0.4
were grouped in Table 1 (for MHC-I peptides) and Table 2

(for MHC-II peptides). The binding affinity of the selected
candidates of CTLs and HTLs was assessed through a docking
study where the generated docked complexes for CTLs are
shown in Supplementary Figure 1 and the docked complexes
for HTLs are shown in Supplementary Figure 2. The binding
scores of all complexes are shown in Supplementary Table 3.
These scores ranged between −7.6 and −8.5 for CTLs, and from
−7.1 to−8.1 for HTLs. The receptors of this docking study were
deposited in the protein data bank with docked peptides that
were firstly removed before running the current docking analysis
then docked again separately to their respective receptor to act
as a control for our docking study. The binding score for MHC-I
control was −7.5 and that of MHC-II was −7.6, By comparing
the binding energy score for our candidate list and the controls
we can confirm that these candidates are promising to be selected
for the construction of the multitope vaccine. Another significant
factor that was considered in the selection of the epitopes for
constructing the multitope vaccine was the population coverage.
The IEDB population coverage analysis tool was employed for
this process. The whole list of predicted epitopes for both protein
candidates showed the epitopes arranged in descending way
based on their binding affinity to the different alleles therefore
we selected the top 10%, that would represent the epitopes with
high binding affinity to respective alleles, and collected these
alleles per each epitope to analyze the population coverage for
single epitopes (Supplementary Table 4) then we analyzed the
population coverage for the combined CTLs, combined HTLs
and the multitope vaccine (Supplementary Table 5).

B-Cell Epitope Identification
Bepipred Linear Epitope Prediction 2.0 was used as a prediction
method. It identified 30 and 21 B-cell epitopes for BamA and
LptD proteins, respectively. Peptides with a length between 9:18
amino acids were analyzed for their antigenicity and peptides
with antigenicity score>0.4 were tested for their allergenicity and
toxicity (Table 3).

Construction of Multitope Vaccine
From Tables 1–3, six epitopes per each table (three from
each protein candidate) were chosen based to constitute the
basis of the multitope vaccine (graphical representation for the
constructive components is shown in Supplementary Figure 3).
Moreover, β-defensin and PADRE peptide were also incorporated
to finalize a potential vaccine sequence of 380 amino acids in
length and its sequence was as the following:
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TABLE 1 | Top-ranked T-cell epitopes (MHC-I peptides) of BamA and LptD proteins.

Epitope Protein Antigenicity Allergenicity Toxicity Immunogenicity Conservancy (%)

KTDDFTFNY BamA 1.74 Non Non 0.2750 100

FKTDDFTFNY BamA 1.54 Non Non 0.3020 100

MSAGIALQW BamA 1.41 Non Non 0.1361 100

NVDAGNRFY BamA 0.41 Allergen Non 0.1855 100

AELSVTNPY BamA 0.97 Non Non −0.1052 100

AEIQQINIV BamA 0.78 Non Non 0.0114 100

YANSVRTSF BamA 0.53 Allergen Non −0.1435 100

RMSAGIALQW BamA 1.5 Allergen Non 0.1080 100

QADDADLSDY BamA 0.82 Non Non −0.0478 100

YSDPSNIRM BamA 0.82 Non Non −0.0285 100

RTGDDNITW LptD 1.7 Allergen Non 0.1838 100

FSEQNTSSY LptD 0.43 Non Non −0.2901 100

KLDESVNRV LptD 0.79 Non Non 0.0104 100

RIYGQAVHF LptD 0.66 Non Non 0.0106 100

SPEYIQATL LptD 0.49 Allergen Non 0.1050 100

ATSNSSIEY LptD 1.13 Allergen Non −0.2062 100

KVGPVSIFY LptD 0.71 Non Non 0.0650 100

TLEPRAQYLY LptD 1.04 Non Non −0.0088 100

IYDDAAVERF LptD 0.5 Allergen Non 0.2593 100

KQADSMLGV LptD 0.8 Allergen Non −0.2809 100

TABLE 2 | Top-ranked T-cell epitopes (MHC-II peptides) of BamA and LptD proteins.

Epitope Protein Antigenicity Allergenicity Toxicity INF-γ IL-4 IL-10 Conservancy (%)

DPSNIRMSAGIALQW BamA 1.26 Non-allergenic Non-toxic Positive Inducer Non-inducer 100

PSNIRMSAGIALQWM BamA 1.22 Non-allergenic Non-toxic Positive Non-inducer Non-inducer 100

SNIRMSAGIALQWMS BamA 1.03 Non-allergenic Non-toxic Positive Non-inducer Non-inducer 100

KLAGDLETLRSYYLD BamA 0.66 Allergenic Non-toxic Positive Inducer Non-inducer 100

QKLAGDLETLRSYYL BamA 0.62 Allergenic Non-toxic Positive Inducer Non-inducer 100

NIRMSAGIALQWMSP BamA 1.25 Non-allergenic Non-toxic Positive Non-inducer Non-inducer 100

QRVAVGAALLSMPVR BamA 0.51 Non-allergenic Non-toxic Positive Non-inducer Non-inducer 100

DYTNKSYGTDVTLGF BamA 0.79 Allergenic Non-toxic Positive Inducer Non-inducer 100

NKSYGTDVTLGFPIN BamA 0.99 Non-allergenic Non-toxic Positive Inducer Non-inducer 100

TNKSYGTDVTLGFPI BamA 1.07 Non-allergenic Non-toxic Positive Inducer Non-inducer 100

GPVSIFYSPYLQLPV LptD 0.68 Non-allergenic Non-toxic Positive Non-inducer Non-inducer 100

VQLNYRYASPEYIQA LptD 1.11 Allergenic Non-toxic Positive Inducer Non-inducer 100

VGPVSIFYSPYLQLP LptD 0.69 Allergenic Non-toxic Positive Inducer Inducer 100

VSIFYSPYLQLPVGD LptD 0.45 Allergenic Non-toxic Positive Inducer Inducer 100

LNYRYASPEYIQATL LptD 0.88 Allergenic Non-toxic Positive Inducer Non-inducer 100

KVGPVSIFYSPYLQL LptD 0.88 Non-allergenic Non-toxic Positive Inducer Inducer 100

NYRYASPEYIQATLP LptD 0.66 Allergenic Non-toxic Positive Inducer Non-inducer 100

YLPYYWNIAPNMDAT LptD 1.76 Allergenic Non-toxic Positive Inducer Inducer 100

AKYTTTNYFEFYLPY LptD 1.13 Non-allergenic Non-toxic Positive Inducer Non-inducer 100

SSIEYRRDEDRLVQL LptD 0.81 Non-allergenic Non-toxic Positive Non-inducer Inducer 100

“EAAAKGIINTLQKYYCRVRGGRCAVLSCLPKEEQIGKCS
TRGRKCCRRKKEAAAKAKFVAAWTLKAAAGGGSKTDDFT
FNYGGGSAELSVTNPYGGGSAEIQQINIVGGGSFSEQNTSSY
GGGSRIYGQAVHFGGGSTLEPRAQYLYGPGPGDPSNIRMS
AGIALQWGPGPGQRVAVGAALLSMPVRGPGPGTNKSYGT

DVTLGFPIGPGPGKVGPVSIFYSPYLQLGPGPGAKYTTTNYF
EFYLPYGPGPGSSIEYRRDEDRLVQLKKASGVRVGESLDRTK
KIRFEGNDTSKDAVKKTDTQRVPGSPKKKEAPGQPEPVKK
PSYFNDFDNKYGSSTDGYKKQTNLDWYNSRNTTKLDESKK
AKFVAAWTLKAAAGGGS”.
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TABLE 3 | Predicted B-cell epitopes of BamA and LptD proteins.

BamA LptD

Epitope Antigenicity Allerge-nicity Toxicity Epitope Antigenicity Allerge-nicity Toxicity

PVRTGDTVNDEDIS 1.24 Allergen Non KEAPGQPEPV 0.96 Non Non

ASGVRVGESLDRT 0.97 Non Non DKVYEDEHPNDDSS 0.41 Non Non

IRFEGNDTSKDAV 1.14 Non Non PSYFNDFDNKYGSSTDGY 1.22 Non Non

TDTQRVPGSP 0.49 Non Non QVFSEQNTSSYS 0.42 Non Non

FQADDADLSDYTNK 0.56 Non Non QTNLDWYNSRNTTKLDES 0.75 Non Non

FIGURE 3 | Secondary structure prediction of designed multitope vaccine using PESIPRED server.

This construct was assessed to be non-allergen with an
antigenicity score of 1.07 (estimated by VaxiJen v2.0) and 0.959
(estimated by ANTIGENpro).

Physicochemical Properties Assessment
and Secondary Structure Prediction
The physicochemical properties of the predicted vaccine
construct were detected by using the ProtParam server and
demonstrated in Supplementary Table 6. The designed vaccine
had a SOLpro SVM score of 0.95; therefore it was predicted to
be soluble as SOLpro values > 0.5 are considered as soluble.
Vaccine secondary structure prediction demonstrated the
presence of 14.2% helix, 37.9% strand, and 47.9% coil structure
(Figure 3).

Tertiary Structure Prediction, Refinement,
and Validation
The assessment of the primary 3D structure, through
Ramachandran plot analysis and ProSA online server,
demonstrated that 87.6, 6.3, and 6.1% of residues were
located in favored, allowed, and outlier regions, and the Z-score
−3.45, respectively. While these values may be considered
acceptable for a predicted 3D structure, we continued with
refinement for better structure creation. Protein refinement
occurred through the help of GalaxyRefine web server and
the best model, regarding scores improvement, Figure 4A

demonstrated the following scores’ enhancement, the Z-
score enhanced from −3.45 to −3.9 (Figure 4B) while the
Ramachandran plot analysis scores became 96%, 2.4%, and 1.6%

for residues in favored, allowed, and outlier regions, respectively
(Figure 4C).

Conformational B-Cell Epitope Prediction
The tertiary structure and folding of the designed vaccine
may generate new conformational B-cell epitopes and for this
purpose, we used ElliPro server conformational. In the current
assessment, the server predicts 9 new epitopes and their scores
were between 0.514 and 0.84 (Supplementary Table 7). The
predicted 3D models of the generated epitopes are shown in
Supplementary Figure 4.

Vaccine Disulfide Engineering
Usage of DbD2 server for disulfide bond assign demonstrated
that 26 pairs of amino acids are eligible to make disulfide bonds
while in terms of other parameters such as energy and Chi3 value,
this number reduced to only 2 pairs. Therefore, 4 mutations
were performed at the residues pairs of SER89-ARG187 and
PRO324-PHE330. The followed values of energy and Chi3 to
recommend disulfide engineering were below 2.2 and from −87
to+97, respectively.

Molecular Docking of the Vaccine With
TLR4
The ClusPro 2.0, which was employed for the docking
study, generated 30 models and the model number 0.00
(Figure 5) exhibited the lowest binding energy score of −1420.9
kcal/mol which implicate a good affinity and stability of the
constructed complex.
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FIGURE 4 | Structural analysis of the predicted 3D structure of the vaccine. (A) The three-dimensional structure of vaccine obtained after molecular refinements;

(B) ProSA-web evaluation of the vaccine structure; (C) Ramachandran plot analysis of the protein structure after molecular refinements.

FIGURE 5 | Docked complex of vaccine constructs with human TLR4; vaccine constructs in red color and TLR4 receptor in green and blue colors.

Dihedral Coordinate-Based Normal-Mode
Analyses
Within the iMOS server finding analysis, B-factor correlates
with the relative magnitude of atom displacement around
conformational equilibria. Values were significantly higher
for the epitope vaccine ligand (atom index; 9,568–15,225),
particularly at its respective carboxy terminus, in relation
to that of the hTLR-4 target protein (atom index; 1–9,567)
(Figure 6A). The B-factor results were recapitulated via the
complex deformability index presented in Figure 6B where
each vaccine residue, particularly at the carboxy end, showed
individual distortions being higher than those of the hTLR-4
target protein. The estimated eigenvalue, which represents the
motion stiffness of the complex, was 1.95e−06, where being in
inverse order in relation to variance predicting the significantly

higher mobility of the vaccine as compared to the hTLR-2
complex across collective functional motions (Figures 6C,D).
The iMOS provided the covariance matrix illustrating the
coupled residue pairs demonstrating anti-correlated (blue color),
correlated (red color), or uncorrelated (white color) motions.
The hTLR-4 depicted lower predicted correlated residue-pair
motions than did the epitope vaccine ligand, however, the latter
protein showed less anti-correlated motions (Figure 6E). Finally,
the obtained elastic-network model explains the differential
flexibility patterns among both investigated proteins (Figure 6F).
Represented in different colors, the elastic-network model
describes the atom pairs linked via springs relying on the stiffness
degree between them. Stiffer strings were correlated to dark gray
colors. The target hTLR-4 protein showed continuous dark-gray
bands along the normal distribution of stiffer string, while the
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FIGURE 6 | Dihedral coordinate-based normal-mode analyses of multitope vaccine-hTLR-4 complex; ligand-receptor interaction was assessed throughout

comparative (A) B-factor indices, (B) deformabilities, (C) variance, (D) eigenvalues, (E) covariance of residue indices, and (F) elastic network analysis.

residues of the epitope vaccine illustrated non-continuous gray
bands around the same immobility normal string, particularly for
those residues near the carboxy terminus.

Molecular Dynamics Simulation Analyses
Throughout the 100 ns molecular dynamics runs, each simulated
protein depicted thermodynamic behavior being typical through
molecular dynamics simulations (Figure 7). The monitored
proteins’ RMSD deviations, in relation to corresponding alpha-
carbon (Cα-RMSD) of the reference protein, showed an initial
increase over the initial frames owing to the release of constraints
at the beginning of the simulation stage. Steady RMSD tones
were depicted for almost all protein models beyond the first

30 ns and till the end of the molecular dynamics runs (i.e.,
for >75 ns). The RMSD trajectories for the epitope vaccine
and respective bound hTLR-4 were around two-fold differences
the thing that ensured sufficient protein convergence as well as
significant ligand accommodation at the target pocket. The latter
findings ensured the adequacy of the 100 ns MD simulation
timeline to grasp sufficient thermodynamic information within
efficient computational cost and without the need for more
time extension. Regarding comparative Cα-RMSDs analysis
between the hTLR-4 target proteins and their corresponding in-
bound epitope vaccine ligands, higher RMSD trajectories were
illustrated for the ligand proteins (Figures 7A,B). The latter
was obvious since the obtained average Cα-RMSD values across
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FIGURE 7 | RMSD trajectory analysis for the four investigated epitope vaccine ligand-bound hTLR-4 target models across 100 ns explicit molecular dynamics

simulation runs. Time-evolution of (A) Proteins’ Cα-RMSD, (B) Ligands’ Cα-RMSD, and (C) Complexes’ Cα-RMSD, along molecular dynamics timeframes (ns).

the protein’s trajectory plateau and till MD simulation end
courses were 8.58 ± 0.72 and 15.92 ± 0.32 Å for the hTLR-4
and vaccine ligands, respectively. Concerning the comparative
RMSD analysis for the oligomeric hTLR-4 states, steadier and
lower Cα-RMSD fluctuation were depicted for the dimeric
state as compared to those of the monomer ones. On similar
bases, significantly lower and more steady Cα-RMSD tones were
depicted within models where the hTLR-4 target proteins were
covalently bound to higher oligosaccharides. Except for limited
fluctuations, the monitored Cα-RMSDs of the combined hTLR-
4/epitope proteins showed rapid equilibration plateaus (11.23
± 0.11 Å), beyond 25 ns and till the end of the simulations
runs (Figure 7C). Notably, the least fluctuating complex Cα-
RMSD trajectories (9.30 ± 0.57 Å) were seen for the dimeric
N-glycosylated hTLR-4/vaccine system.

Monitoring the Cα-RMSF tones across the whole simulated
trajectories (100 ns) provided interesting information regarding
the residue-wise fluctuation pattern of each corresponding
simulated protein. Interestingly, typical well-behaved molecular
simulation profiles were depicted for each simulated protein
where terminal residues and their vicinal ranges showed higher
mobility patterns (high Cα-RMSF) as compared to those at the
core regions (Figure 8). As a general observation, the epitope
vaccine ligands showed much higher residue-wise fluctuation
profiles as compared to their corresponding in-bound hTLR-4
target proteins. The latter observation was most recognized for
the vaccines’ respective carboxy end amino acids as well as their
vicinal residues (high residue sequence numbering; from 301 to
380) in relation to those of theN-terminus. Notably, the depicted
vaccine-oriented fluctuation trends were more associated with
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FIGURE 8 | Protein’s residue-wise fluctuation patterns. Monitored Cα-RMSF tones across the whole 100 ns molecular dynamics runs for the investigated hTLR-4

bound epitope vaccine within different oligomeric/saccharide-linked states. (A) glycosylated dimeric, (B) non-glycosylated dimeric, (C) glycosylated monomeric, and

(D) non-glycosylated monomeric states, along the sequence residue numbers (bound TLR-4 protein target = 27–627; epitope vaccine = 1–380 residue ranges).

monomeric/non-N-glycosylated hTLR-4 state (Cα-RMSF up to
35 Å) as compared to other oligomeric models. On similar bases,
the lowest RMSF-based mobility trends were assigned to the N-
glycosylated dimeric hTLR-4 model as compared to any other
simulated model.

Subsequent analysis of the key alterations within the
conformations of both simulated epitope vaccine and hTLR-4
protein was proceeded throughout examining each simulated
model at the initial and last molecular dynamics timeframes.
Extracted frame lines at 0 and 100 ns were subjected to
1 × 10−3 Kcal/mol.A2 gradient minimization using MOE-
Molecular Operating Environment software. The RMSDs of
the overlaid conformations were 6.645, 9.855, 5.488, and
7.784 Å for the glycosylated dimeric, non-glycosylated dimeric,
glycosylated monomeric, and non-glycosylated monomeric
complexes. Notably, all simulated models illustrated stable
binding states for the epitope vaccine at the hTLR-4 binding

site (Figure 9). Limited conformational changes were assigned
for the hTLR-4 target protein across the four simulated models.
On the contrarily, the simulated epitope vaccines depicted
significant conformational changes causing them to adopt
a more compacted conformation/orientation at the hTLR-4
binding site. Within the four simulated models, the epitope
vaccine showed more profound movement for its carboxy end
and vicinal regions as compared to that of its N-terminus,
the thing that allowed proximity of the vaccine C-terminus
toward the hTLR-4 lateral side and near the hTLR-4 1:1
homodimerization interface. The latter dynamic behavior was
most recognized at the monomeric hTLR-4 states as compared
to the dimeric ones, as well as at the non-glycosylated hTLR-4
state in relation to that bounded to the higher oligosaccharides.
Notably, applying both Rg and SASA analysis for the epitope
vaccine within the four simulated models showed comparable
findings (Supplementary Figure 5). Both analytical parameters
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FIGURE 9 | Conformational changes for the simulated hTLR-4/epitope vaccine complexes. Overlaid snapshots of the 3D-cartoon representation of the;

(A) glycosylated dimeric, (B) non-glycosylated dimeric, (C) glycosylated monomeric, and (D) non-glycosylated monomeric states at 0 ns and 100 ns of the molecular

dynamics runs. The hTLR-4 target proteins (blue/green) and epitope vaccine ligands (red) are colored in respective to the initial or last extracted frames (dark and light

colors are for 0 ns and 100 ns extracted frames, respectively). Moieties of N-glycosylation are presented as spheres and colored in respective to their linked hTLR-4

protomer and extracted frame.

TABLE 4 | Free binding energies (1GTotal binding ) and individual energy terms regarding the designed multitope vaccine at hTLR-4 target protein binding site.

Energy (kJ/mol ± SD) Ligand-receptor complex

Glycosylated dimer Non-glycosylated dimer Glycosylated monomer Non-glycosylated monomer

1Gvan der Waal −732.671 ± 72.004 −780.821 ± 82.502 −782.349 ± 115.500 −932.685 ± 23.538

1GElectrostatic −7954.091 ± 79.714 −7798.818 ± 11.828 −7845.389 ± 86.071 −7710.021 ± 97.634

1GSolvation; Polar 1529.300 ± 11.244 1650.603 ± 18.770 1497.129 ± 39.595 1743.513 ± 12.268

1GSolvation; SASA −98.206 ± 13.476 −106.847 ± 9.345 −97.202 ± 16.784 −111.119 ± 24.432

1GTotal binding −7255.668 ± 73.478 −7035.883 ± 38.444 −7227.811 ± 20.760 −7010.312 ± 11.335

showed high values at the beginning of the MD simulation
runs, yet as the simulation proceeded, the epitope vaccine
attained lower as well as much steady plateaued trajectories
till the end of the MD timeframes. It is worth mentioning
that higher Rg fluctuations tones (around 15-65 ns), as well
as late equilibration plateau (not before 70 ns), were achieved
for the non-glucosylated/monomeric states as compared to the
glycosylated/dimeric ones (Supplementary Figure 5A). Similar
findings were also illustrated with SASA analysis where at non-
glucosylated/monomeric states, the epitope vaccine exhibited
higher fluctuations around 40 ns and till the end of the MD runs
(Supplementary Figure 5B).

The designed epitope vaccine across the simulated models
showed significant free binding energies toward the hTLR-4

binding sites being estimated as kJ/mol ± SD (Table 4).
The highest negative values of binding-free energies were
assigned to the dimeric states of hTLR-4 rather than their
respective monomeric ones. Additionally, the glycosyl-bound
target proteins depicted a higher affinity toward the anchored
epitope vaccine than those being non-glycosylated. Dissecting
the obtained total free binding energies 1GTotal binding showed
a preferential energy contribution for the electrostatic non-
bonded interactions over the van der Waal potentials. Across the
four simulated models, the comparable pattern of energy term
contributions was depicted depending on the glycosylation status
of the target hTLR-4 protein. Differentially higher electrostatic
and lower van der Waal values were depicted for the glycosylated
target protein states over the monomeric ones. Regarding the
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solvation energy term contributions, both non-polar and polar
solvation energies were of higher negative and positive values,
respectively, for the non-glycosylated target proteins over their
respective glycosylated forms. The non-polar solvation energy of
interaction was monitored across the 100 ns of MD simulation
using the SASA-only model calculation for the individual hTLR-
4, epitope vaccine, as well as their respective combination
at each oligomeric/glucosylic state (Supplementary Figure 6).
Almost steady solvation energy terms were depicted for the four
simulated proteins across the whole MD simulation run. On the
other hand, the ligand’s solvation energy of interaction showed
a significant drop to lower values starting from around 40 ns
and till the end of the MD runs achieving the average energy
plateau for more than half the simulation timeframes. Steadier
solvation energy tones were assigned for the dimeric/glycosylated
targets rather than those of the lower simpler states. Notably, the
complex solvation energy patterns were significantly impacted
via the ligand’s values and in turn its respective dynamic behavior
rather with those of the simulated hTLR-4 proteins.

The 1GTotal binding was further decomposed identifying the
residue-wise energy contribution for both the vaccine and
hTLR-4 where the more negative is the better (Figure 10
and Supplementary Figure 7). Findings within the latter figure
showed higher positive-valued energy contributions for the
vaccines in bound to non-glycosylated hTLR-4 states, while the
vaccines of glycosylated forms depicted significant negative-
valued energy contributions with a wider range of contributing
residues. Similar residue-wise energy contribution patterns were
assigned for the hTLR-4 residues.

Immune Simulation of the Designed
Vaccine
The immune response regarding antibody titer, cytokines level,
B and T cells population is shown in Figure 11. The current
study potential vaccine was estimated to stimulate a high level of
IgM+IgG which increases with consecutive doses of the vaccine.
Regarding cytokines level, several classes were stimulated and
INF-γ exhibited the highest level of induced cytokine. Moreover,
the count of stimulated T and B cells demonstrated an increase
with the doses of the vaccine, and the highest level was obtained
as a result of the second booster dose of the vaccine.

DISCUSSION

Manymicroorganisms face difficulty in cultivation or attenuation
leading to undesirable immune response, proving that the
classical approaches for vaccine development against these
pathogens require a technical revolution (68). Therefore, the last
few years witnessed a large turn in the employed approaches
for vaccine development where the multi-omics approaches
stepped forward and preceded the traditional ones (69). Recent
studies that utilized bioinformatics and structural biology tools
for the generation of epitope-based vaccines, that included
the antigenic parts only and demonstrated a promising ability
for fighting against pathogenic microorganisms, represented a

large percentage of the whole studies directed to the vaccine
development (70).

The development of an effective vaccine against the several
pathotypes of E. coli has faced many obstacles. The complex
nature of this bacteria and its genetic plasticity hinders the
trials for vaccine development. Additionally, lack of broadly
applicable testing to assess disease burden, particularly in remote
areas where incidence may be quite high besides the occurrence
of several bacterial pathotypes are another barriers (71). The
current study tried to address these difficulties by analyzing
the complete genome of E. coli to find common conserved
vaccine candidates that cover different pathotypes then assess the
characteristics of this potential vaccine computationally before
moving to the future phase of wet lab validation. In our analysis,
the reverse vaccinology approach was employed to generate
a shortlist of potential vaccine candidates after analysis of E.
coli complete proteome then immunoinformatics computational
tools were applied for designing a multitpe vaccine based on
filtered vaccine candidates. Only two outer membrane proteins
(LptD and BamA) were chosen after applying the filtration steps
on 5,155 proteins. The same approach has been reported to be
successful in protein filtration and potential vaccine candidature
with many pathogens, for instance; Klebsiella Pneumoniae (72),
Staphylococcus aureus (19), Mycobacterium tuberculosis (73),
Shigella flexneri (74), Pseudomonas aeruginosa (75), Moraxella
catarrhalis (76), and Nipah virus (18). In addition to that, E.
coli was one of the main pathogens that were analyzed for
designing a vaccine through a bioinformatics approach in many
previous studies. We can divide these studies into two main
categories, firstly, studies that just predicted single B and T cell
epitopes of protein candidates of certain pathotypes of E. coli
such as Khan and Kumar (77) and Mehla and Ramana (78).
Secondly, more advanced studies that designed and validated a
multitope vaccine through a computational approach such as
(79), where the vaccine was designed based on Intimin, Stx,
Lt, and Cfa proteins and directed against ETEC and EHEC,
Another study (80), the vaccine was designed based on IutA
and FimH proteins and directed against UPEC, a third study
(81), the vaccine was designed based on the bacterial type-3
secretion system and directed against extraintestinal pathogenic
E. coli. In the current study, we followed the approach of the
second group of studies but at the same time, we introduced
two unique points that greatly affect the design and the potential
application. First, of all, unlike mentioned studies that selected
their vaccine candidates based on literature mentioned virulent
proteins of specific E. coli pathotype, we nominated the vaccine
candidates of the current study after a complete filtration of
a reference pathogenic E. coli strain where the filtration steps
represented a basic portion of the study to select proteins that
are antigenic, virulent, with a low similarity percentage with
human proteins, essential, and conserved throughout various
pathotypes of E. coli. Consequently, we came up with two novel
vaccine candidates (BamA and LptD), and therefore the designed
multitope vaccine based on these proteins would have different
sequences and characteristics from previously discussed ones.
The criteria of protein conservation moved us to the second
unique point in the current study which is cross-reactivity. As
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FIGURE 10 | Residue-wise binding-free energy decomposition for the simulated epitope vaccine-hTLR-4 complexes. The energy contributions in kJ/mol within the

total free binding energies for the residues comprising the simulated (A) epitope vaccine; (B) hTLR-4 target proteins. Energy contributions are represented against the

residue number.

mentioned, previous trials targeted only specific E. coli pathotype
in their vaccine design while in this study we targeted essential
proteins with a high percentage of conservation in basic E. coli
pathotypes thus the predicted vaccine would have a potential
activity against different E. coli pathotypes. Based on what
mentioned above, we can choose the steps of common conserved
protein candidates selection for several E. coli pathotypes and
defining the prominent epitopes of these candidates as the most

important steps that shaped the novelty of the current potential
vaccine construct.

Asmentioned above, the process of vaccine design through the
immunoinformatics approach has been applied against several
pathogens with a common methodology. On the other hand,
with the continuous development in computational tools, a
recent study (82) proposed a multitope vaccine against COVID-
19 through the integration of a deep learning approach for
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FIGURE 11 | The predicted immune response after designed vaccine injection. (A,B) shows the population of B and T cells, respectively, while (C,D) demonstrate

antibody and cytokine count in a response to vaccine administration.

prediction and design. In that study, DeepVacPred was employed
to conduct multiple predictions in a time-saving manner. The
current study followed the former methodology, especially that
the designed vaccines by this common methodology showed
promising results during the in-vivo validation (80, 83) and
as mentioned above the main focus of this study was the
development of a potential vaccine that covers most E. coli
pathotypes and deeply investigate the characteristics of this
construct more than developing novel prediction methodologies.

In the current study, several online servers were used to
identify potential vaccine candidates against E. coli pathotypes
where the nominated proteins were found to be highly conserved
in the majority of E. coli pathotypes. In addition to that, they
were outer membrane proteins, essential for bacterial survival,
had a high antigenicity score, and were non-homologous to
human proteins to ensure their safety in clinical trials. Bacterial

outer membrane proteins play an important role in molecule
transporting, membrane integrity maintenance, in addition to
pathogenesis (84). Moreover, their easy accession to the host
immune system gives them the advantage to be highly potential
candidates for vaccine development (85). Lipopolysaccharide
(LPS) is a major structural component in most Gram-negative
bacteria and it is essential for bacterial growth, LptD is one
of eight proteins involved in the proper assembly of LPS after
its biosynthesis in E. coli (86). Regarding BamA, it belongs to
the Omp85 family, which is characterized as a major antigenic
and immunogenic protein expressed by most Gram-negative
pathogenic bacteria (87).

Vaccine construction using mapped epitopes is a sophisticated
strategy to trigger an immune response against infectious agents
(88). On the other hand, reliance on peptide vaccines for human
usage has faced some limitations as single peptide epitopes were
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found to be not strong enough to stimulate a suitable and
prolonged immune response and exhibited low immunogenicity
in comparison with live attenuated vaccines. Additionally, there
are some questions about the stability of these peptides to induce
the immune response before getting lysed by human proteolytic
enzymes (89). To overcome these limitations, the current study
proposed vaccine was constructed based on a combination of
peptides with suitable linkers where those peptides were filtered
through several criteria, and only conserved, highly antigenic,
non-allergen, and non-toxic epitopes were selected to design
the multitope vaccine. multi-epitope vaccines are considered
a better choice than monovalent ones as they can stimulate
efficient humoral as well as cellular immune responses (90). In
addition to these epitopes, other components were added to
the final vaccine construct to improve the immune response for
this potential vaccine. β-defensin adjuvant was incorporated to
create a deposit of the antigenic compound at the site of the
vaccine that is steadily released over time, elongating the robust
immune response and overcoming one of the main peptide
vaccine limitations (91). Moreover, suitable linkers were used to
join the selected epitopes from each candidate protein where they
provide effective separation between the epitopes (92). Firstly,
EAAAK was employed to improve the bi-functional catalytic
activity, give stiffness in addition to enhancing fusion protein
stability (93). The second linker, GPGPG, was selected for its
ability to induce HTL immune response and the ability to break
the junctional immunogenicity, resulting in individual epitopes’
restoration of immunogenicity (94). The final linker, KK, was
employed because of its ability to bring the pH value close
to the physiological range (95). In addition to the epitopes,
linkers, and adjuvant, the PADRE sequence was also added
as it has been revealed that this sequence could minimize
the polymorphism of HLA molecules in the population (96).
Analyzing the results of themultitope vaccine assessment showed
that, the current potential vaccine construct is antigenic with an
antigenicity score of 1.07 which wasmore than the corresponding
scores of the designed multitope vaccines against severe acute
respiratory syndrome coronavirus 2 (97),Marburg virus (94), and
Leptospira (98). Regarding the population coverage, the world
coverage showed 100% for the constructed vaccine and that was
similar to the corresponding coverage reported in (99). For the
binding affinity of the single CTLs to the representative alleles,
the scores ranged between −7.6 and −8.4, which was smaller
than the range reported in (100) but at the same time was
large enough when compared to the control binding score of
the current study. Moving to the binding energy of the whole
multitope vaccine, we reported here a score of−1420.9 kcal/mol,
which was smaller than corresponding scores of vaccines
predicted with a similar approach (18, 69, 76), implying that a
strong binding with TLR would occur. Collectively, The final
construct exhibited promising physicochemical, immunological,
and chemical characteristics when assessed computationally
where molecular dynamics simulation studies were adopted to
give a close view of the behavior of this potential vaccine with the
receptors of the immune system.

Finally, the designed epitope vaccine showed significant
confinement and stability within the hTLR-4 binding site

throughout the conducted 100 ns explicit molecular dynamic
runs. With preferentiality for the dimeric glycosylated target
protein, the designed vaccine exhibited steady conventional
thermodynamic behavior with Cα-RMSDs leveling up for more
than 70 ns. The adopted Cα-RMSD analytical tool allows
the estimation of molecular deviation from the designated
original/reference structure, the thing that can be used for
ensuring ligand-target stability/confinement as well as the
validity of the MD protocol (101). Obtaining Cα-RMSD
at low values as well as being rapidly equilibrated has
been correlated with the strong affinity of the designed
vaccine ligand against target protein as well as the successful
convergence of the simulated models requiring no further
molecular dynamics simulation runs (102). This Cα-RMSD-
based vaccine-hTLR-4 stability was comparable to the stability
of several reported proteinaceous multitope vaccines targeting
different microorganisms TLRs (103, 104). Regarding the
obtained residue-wise fluctuation analysis, the higher Cα-
RMSF values of the epitope vaccine as compared to hTLR-
4 can be reasonably correlated to their differential tertiary
structure folding and/or packing. Generally, the Cα-RMSF
flexibility analysis tool estimates the averaged deviations of
protein’s residues in relation to their reference positions, the
thing that would provide a valuable evaluation of protein’s
residues regarding their respective dynamic behavior being
represented through flexibility and fluctuation (105). In these
regards, the incorporation of long α-helices with flexible β-
loop connections within the vaccine’s designed structures would
rationalize the initial relaxation and significant convergence into
more stable compacted conformations. On the other hand, hTLR-
4 exhibited densely packed shoe-like architecture with plenty
of highly ordered parallel β-sheets. This differential inherited
flexibility was also highlighted through the 3D-conformational
analysis between initial and last frames as well as the adopted
dihedral coordinate-based normal mode analysis. Having non-
uniform stiffness/immobility profiles, as well as high B-factor,
deformability, and mobility indices, conferred the profound
flexibility being assigned for the vaccine (50). The assigned high
immobility profiles for the epitope vaccine were most recognized
through its carboxy-terminal amino acids and vicinal residues as
being clearly demonstrated through the conformational analysis
as well as RMSF, Rg, and SASA findings.

It is worth mentioning that the high RMSF flexibility of
the 301–380 residue range was highly reasoned since these
residues started the MD simulation being apart from the hTLR-
4 interface and then ended being near the hTLR-4 lateral side.
Nevertheless, the epitope vaccine rapidly attained a more stable
compacted conformation/orientation in relation to the bound
hTLR-4 as the MD runs proceeded. The latter more profoundly
stable conformation/orientation of the vaccine wasmostly related
to the movement of this residue range toward hTLR-4 lateral
side representing the dimerization interface. This was confirmed
through the Rg and SASA analysis where values significantly
dropped as the MD simulation proceeded reaching to lower
steady trajectories for more than half of the MD simulation
timeframes. Generally, Rg accounts for the global stability of
either ligand/protein ternary structures, where such stability
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parameter is defined as the mass-weighted RMSD for atom
groups in relation to their respective common center of mass
(106). Thus, the depicted dynamic behavior of simulated vaccine
to exhbit low Rgs maintaining a plateau around an average
value conferred significant stability/compactness at the hTLR-
4 binding. Notably, the Rg finding further highlighted the
preferential vaccine anchoring at the dimeric and/or glycosylated
hTLR-4 states since themonomeric and/or non-glycosylated ones
achieved higher fluctuations and late Rg equilibration trajectories
(not before 70ns) suggesting non-optimal compactness and
intermolecular binding around these timeframes. Findings from
the ligand’s SASA analysis came in good agreement with the
above preferential complex stability since the simulated vaccine
showed steadier SASA tone along the average equilibration
plateau around 40 ns and till the simulation end. Since SASA is
a quantitative measurement about the extent of protein/solvent
interaction correlating for molecular surface area assessable to
solvent, thus, low SASA tones imply relative structural shrinkage
under the impact of the solvent surface charges yielding more
compact and stable conformations (107). The latter findings
were also consistent with the vaccine’s non-polar solvation
energy (only SASA-model) across the MD simulation runs. It
is worth mentioning that all above epitope-hTLR-4 flexibility
patterns were also similarly depicted within several reported
studies investigating the potential binding affinity of peptide-
based vaccines toward microbial TLRs (103, 104).

The presented study further highlights the impact of
hTLR-4 oligomerization as well as oligosaccharide states on
vaccine binding. Depicting lower Cα-RMSD and RMSF values
with more steady tones at glycosylated dimeric model raised
the suggestion that N-glycosylation and hTLR-4 dimerization
were beneficial for vaccine anchoring at the target binding
site. Accumulated evidence has illustrated the importance
of TLR ectodomains’ N-glycosylation for orchestrating the
localization and signaling capacity (108). Additionally, N-
linked glycosylation (sialylation) of hTLR-4 and its coreceptor,
MD-2, enhances the lipoprotein-driven nuclear factor kappa-
B activation, cytokine expressions, and, as well as regulates
hTLR-2 and hTLR-3 signaling pathway (109–111). Furthermore,
sialylated residues are important for mediating the association
between hTLR-4 and MD-2, enhancing hTLR-4 dimerization,
as well as the assembly of complete TLRs signaling complexes
(108, 112). Thus, having the importance in enhancing ligand
anchoring at TLRs’ binding sites as well as facilitating TLRs
dimerization it was highly reasoned why highly stabilized/steady
thermodynamic behaviors, as well as less fluctuating/, mobilized
residues were assigned for both glycosylated dimeric hTLR-
4/vaccine complex. The MM/PBSA-driven free binding energy
calculations also highlighted the higher affinity of the simulated
vaccine toward the glycosylated hTLR-4 in relation to those
being non-glycosylated. Depicting higher negative total free
binding energies as well as more pronounced Coloumb’s
electrostatic energy contributions were highlighted for the
more favored vaccine anchoring/affinity toward the glycosylated
target proteins. Binding to the N-glycosylation chains was also
found satisfactory to counterbalance the predicted electrostatic
penalties and solvation energies during epitope vaccine ligand

binding since lower polar solvation energy terms (1GSolvation)
were depicted at the glycosylated models. This was also
confirmed through monitoring the non-polar solvation energy
via the only SASA-model across the MD simulation runs.

Generally, solvation energy terms represent significant
repulsive forces against the ligand-binding since binding is a
solvent displacement process. It was depicted that these large
repulsive forces were mediated majorly by the hTLR-4 residues
rather than by the vaccine amino acids as being depicted within
the residue-wise energy contributions the thing that could be
related to the high ordered water molecules at the hydrophobic
surface of the TLR-2 ligand-binding site. Thus, the presence of
N-linked glycosylation chains would minimize such repulsive
penalties against the vaccine binding. On the other hand, the
total non-polar interactions (1Gvan der Waal plus 1GSASA) were
shown to be higher at the non-glycosylated models conferring
their respective larger surface area as well as higher hydrophobic
potentialities toward vaccine binding. The latter was rationalized
since accumulated evidence has considered the general TLRs
binding site to be extended andmore hydrophobic in nature (52–
55, 113–115). Based on the above evidence, it was satisfactory that
the designed epitope vaccine depicted significant binding affinity
toward the hTLR-4 binding pocket with higher preferentiality
toward the glycosylated dimeric state.

CONCLUSION

The current study aimed to demonstrate the role of modern
approaches for vaccine development as a potential solution to
fight resistant pathogens. Here, we reported two proteins namely
BamA and LptD, after the filtration of the whole proteome of
E. coli reference strain, to act as a base for multitope vaccine
construct against E. coli pathotypes. The multitope construct
included top-ranked epitopes of the filtered proteins in addition
to beta-defensin and PADRE peptide. The molecular modeling
simulation studies illustrated relevant affinity/binding of the
designed epitope vaccine toward the hTLR-4 binding pocket,
yet with higher preferentiality toward the glycosylated dimeric
state. Finally, The predicted physicochemical and immunological
characteristics of the constructed vaccine nominated it as
a potential solution against several E. coli pathotypes and
recommended its movement to wet lab validation.
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Supplementary Figure 7 | Residue-wise binding-free energy decomposition for

the simulated epitope vaccine-hTLR-4 complexes. 3D-representation (Cartoon) for
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vaccine/hTLR-4 complex. Glycosylated dimeric, non-glycosylated dimeric,
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dark blue (negative-valued 1G kJ/mol conferring highly favored attractive binding
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repulsive binding forces).
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