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Abstract

We describe a physics-based data compression method inspired by the photonic time
stretch wherein information-rich portions of the data are dilated in a process that emulates
the effect of group velocity dispersion on temporal signals. With this coding operation, the
data can be downsampled at a lower rate than without it. In contrast to previous implemen-
tation of the warped stretch compression, here the decoding can be performed without the
need of phase recovery. We present rate-distortion analysis and show improvement in
PSNR compared to compression via uniform downsampling.

Introduction

Digital image compression is required for practical storage and transfer of digital images. In
addition to conventional photography and online photo sharing applications, it is employed in
astronomy [1-3], remote sensing [4-6], machine vision [7,8], digital pathology and radiology
[9-11], real-time system monitoring [12,13], and particle-tracking velocimetry [14].

Our prior work has considered the potential for image compression of a process whereby
the image is intentionally distorted such that sharp features are self-adaptively expanded before
uniform downsampling. The discrete anamorphic stretch transform (DAST) [15] Is inspired
by the physics of photonic time stretch, an analog signal processing technique which employs a
frequency-dependent all-pass filter with a group delay t(w) = % to slow down fast analog
temporal waveforms so they can be digitized in real time [16-19]. By doing so, photonic time
stretch has led to the discovery of optical rogue waves [20], the creation of a new imaging
modality known as the time stretch camera [21], which has enabled detection of cancer cells in
blood with record sensitivity [11] and a portfolio of other fast real-time measurements, such as
an ultrafast vibrometer [22], the discovery of soliton explosions [23] and the observation of rel-
ativistic electron structures [24]. While time stretch slows down the fast time series so it can be
digitized in real-time, it conserves the time-bandwidth product. Recently, it has been shown
that this product can be reduced or expanded for the information carried by the signal enve-
lope, leading to time-bandwidth engineering [25]. This in turn has led to the concept of the
“information gearbox”, as well as photonic hardware accelerators, for real-time data acquisi-
tion, analytics and high performance computing [26].

In DAST, two dimensional discrete spatial coordinates[x,y], replace one dimensional time

coordinate t. A warped version, E[x, y], of the input image, E[x,y], is generated by applying a
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warp kernel K [u, v] = exp j®[u, v] to the input spectrum E[u, v] = FFT?*{E[x, y]} in the follow-
ing transformation:

Elx,y] = |IFFT*{E[u,v] - K[u,v]}], Eql

where IFFT” is the two-dimensional discrete inverse Fourier transform operator. The warping
kernel preferentially stretches the sharp features so that it can be downsampled at rates much
lower than what was previously possible with naive uniform downsampling. This property is
conducive to image compression and its digital implementation has also led to a new powerful
edge detection algorithm for extracting features from digital images [27].

As seen in Eq (1), the warped mapping is performed in the frequency domain. Image recon-
struction then requires knowledge of the phase of the transformed image. In the previous
work, ideal phase recovery was assumed to show the potential of warped stretch for data com-
pression [15]. The accuracy of phase recovery from intensity (brightness) data is subject to the
signal to noise ratio (SNR) [28-34] and this limits the fidelity of image reconstruction from de-
warping [35].

Here, we report a related approach to warped stretch that does not require phase recovery.
This physics-inspired numerical algorithm is inspired by the recent report of the first demon-
stration of analog image compression [36]. In this technique, a laser pulse is spread out spa-
tially into a one-dimensional rainbow by a diffraction grating, then incident onto a single line
of the input sample. Pixels of the to-be-compressed image are therefore mapped onto this inci-
dent laser pulse rainbow as intensity changes in each wavelength along the 1D rainbow. The
pulse is then time stretched with a fiber Bragg grating with a highly nonlinear group delay pro-
file that imparts warped mapping of spectrum (space) into time. The resulting temporal signal
is digitized followed by reconstruction by performing inverse mapping numerically. Similar to
the previous compression method, the non-linear dispersion relation of the optical fiber func-
tions as the warp kernel. Since the image information is mapped directly onto the signal spec-
trum, no phase recovery is needed.

We are inspired to implement this process in a numerical algorithm and investigate its util-
ity for application to digital image compression. In this technique, the input signal is directly
warped then uniformly sampled. This two-step process achieves context-aware non-uniform
sampling but without the need for Fourier transformation and phase recovery. With proper
design of the warp kernel [37], sharp spatial features are stretched much more than slow-vary-
ing ones in a context-aware manner. The redistribution of the local signal entropy lowers the
overall Nyquist sampling rate and is the basis of the “information gearbox” concept proposed
in [26].

Methods

Fig 1 illustrates how the direct warped stretch transform can be used as a compression codec.
We consider signal-dependent warp kernels that are specifically tailored to the spatial sparsity
patterns in the input signal for optimal non-uniform sampling. Since the warp kernel is signal-
dependent, it must also be sent along with the downsampled image as reconstruction metadata.
The compressed image can then be recovered by de-warping and upsampling.

Traditional non-uniform sampling avoids the overhead associated with the metadata by
considering irregularly spaced samples in 2D space (such as 2D contours [38,39]), by requiring
strong statistical assumptions on the input [40], or by ignoring the need to know the positions
of the non-uniform samples [41]. The overhead associated with knowing the sample positions
in conventional non-uniform sampling is equivalent to the metadata that contains the warp
kernel in our approach.
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Fig 1. Overview schematic for image compression codec with warped stretch. The input is split into two components: i) the downsampled warped
image and ii) the metadata, which contains a compressed version of the warp kernel. These two components are jointly used for recovering the original input.
Since the warp kernel is image-dependent, we must send it as part of the compressed file, which creates extra overhead relative to an image-independent
compression technique, such as uniform sampling. However, if the metadata can be compressed extremely compactly, the overall compression ratio can still
be significant.

doi:10.1371/journal.pone.0158201.g001

In traditional non-uniform sampling, the information about sample position is often non-
sparse and thus the overall compression from non-uniformly sampling will be limited by the
compressibility of the sample position metadata. This important problem is mitigated in our
approach because the warp kernel only specifies the recommended local sampling density of
the image, not the exact sampling locations. This results in a more compact metadata albeit at
the cost of a marginally lower SNR.

Additionally, separating the warping information from both the downsampling stage and the
exact image pixel locations frees us to re-use the warp kernel elsewhere. For example, in the situa-
tion where one wants to compress the same file at a different quality, the same warp kernel design
can be re-used at different downsampling rates (i.e. compression ratios), thus reducing the overall
pre-processing burden. Alternatively, one can consider simultaneously compressing any set of
inputs that share similar sparsity statistics (e.g. different colour channels, passport photo librar-
ies) together, by generating a single warp kernel tailored to warp the “average” of the input set.

As a proof-of-concept demonstration, we show the performance of warped stretch compres-
sion using piecewise decomposition of the warp kernel. Fig 2 shows this implementation. We
emphasize that this is just one instantiation of the general compression scheme shown in Fig 2;
other implementation schemes are possible with potentially better performance.
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Fig 2. Flowchart for warped stretch compression using piecewise decomposition. (A) A separate warp kernel is generated for each row of the image.
The warp is based on the local row bandwidth, i.e. the derivative of the image intensity. The input image is then warped by the kernel and downsampled at a
uniform rate. The compressed image is then saved into a custom binary file format (WST), along with the warp kernel, which itself is compressed via
piecewise decomposition. To reconstruct the image, we decompress the piecewise-decomposed warp kernel and use it to perform non-uniform upsampling

on the reloaded compressed image. (B) For comparison purposes, we also uniformly downsample the input image in 1D with a lower downsampling rate that
accounts for the warp kernel overhead saved in the WST binary format.

doi:10.1371/journal.pone.0158201.9002

The optimal warp kernel is designed according to the methodology adapted from [37]. In
[37], the short-time Fourier transform (STFT) was employed to evaluate the relative local
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bandwidth B, (w) of the input spectrum (called the “frequency of spectrum”). When hardware
bandwidth limitations do not exist, the required bandwidth to capture the stretched signal can
be expressed as:

1 dt (o) ‘
B = g Eq2
[0} ((’U) 4 \/E d W q
This relates the ideal 1D warp kernel 7,(w) to the local bandwidth via its derivative:
ot (w
() = / %‘dw Eq3

The method in [36,37] guarantees a warp kernel that is ideal for minimizing the time-band-
width product of the signal envelope in 1D. In terms of compression, the ideal warping kernel
for image compression should minimize the Nyquist sampling rate after stretching. Given a
discrete bandwidth measure B,[x] and barring any additional constraints imposed by the com-
pression itself (e.g. kernel overhead constraints), the ideal sampling locations after warping
X[x] are those which reshape the bandwidth of the warped output B, [X] to be as close as possi-
ble to the average original bandwidth (B,[x]) across the image row:

argminy [|By[X] — (B,[x])l, Eq4

We will limit our consideration to kernels that provide ideal one-to-one warp mapping, as
defined by the warp kernel t, = X[x]. Note that while we have borrowed the mathematical nota-
tion used in [36,37,42], here original and warped sampling locations x and X[x] both denote pixel
locations and no longer carry physical meaning. A kernel bandwidth measure By [X] that simulta-
neously minimizes Eq (4) and provides one-to-one mapping is possible for an STFT window size

of 2 pixels, in which case the STFT reduces to the magnitude of the discrete signal derivative | & |:

-1

AE|x]
’ Eq 5

X = 3xp

_ ‘AE [x]
Ax

‘AX[x]
Ax

where Ax = x; — x;_, is the original (uniform) sample spacing, and AX[x,] = X[x,] — X[x,_,] is the
non-uniform sample spacing. Due to the differing objectives of optimization, we see that the deriva-
tive of the kernel is now inversely proportional to the bandwidth measure, instead of having a qua-
dratic dependence, as shown in Eq (2). Using the same bandwidth measure for the original signal,
i.e. the magnitude of the signal derivative, we find that the expression in Eq (4) can be minimized

with:
> Eq6

Using Eqs (3), (5) and (6), we then arrive at our expression for the optimal kernel:

B.[¥] = <Bx[x}>é<\Af—fj‘]

- [AB]| AK] -~ IAE()
=2 g <Bx[x]>z,-:<%> Eq7

To compress the input image, the kernel is applied via cubic interpolation, and the warped
output is uniformly downsampled. Because of the redistribution in local entropy, this down-
sampling rate is in general greater than a uniform downsampling rate that achieves the same
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resultant image quality. It should also be noted that Eq (6) implies that images with high aver-
age bandwidth (B, [x]) will also have limited compressibility.

Representing the metadata, the kernel itself is compressed via piecewise decomposition:
compression is achieved by saving only the positions of the turning points of each kernel row,
which are identified by placing an energy threshold on the discrete derivative of the local band-
width B,[x]. Alternatively, STFT with a larger window size can be used, but this will be compu-
tationally more expensive.

As an initial demonstration, we used an 8-bit 1672x2800-pixel image of a grayscale fractal
clock and performed compression on each row. The compressed image (saved with 8-bit preci-
sion) was saved along with the metadata kernel (saved in single precision) in a custom binary
file format, identified with extension WST. To reconstruct the input image, the sampling posi-
tions of the compressed image were regenerated by the piecewise-decomposed warp kernel by
cubic interpolation, then used to perform non-uniform upsampling on the reloaded com-
pressed image (again by cubic interpolation).

To benchmark our results, we created a similar binary file containing the uniformly down-
sampled image (saved at a bit depth of 8 bits). To normalize our compression performance
over file size, we decreased the uniform downsampling rate such that the resultant file size was
equal to the file size of the WST binary file, which contains the metadata kernel in addition to
the compressed image. The reconstructed images were then compared in terms of the peak sig-
nal-to-noise ratio (PSNR) relative to the original input image.

Results and Discussion

Fig 3 shows the warping / de-warping process for one row of the fractal clock image at 6X
compression. The waveform is first rescaled using non-uniform cubic interpolation as
defined by the warp kernel generated for this row. In this warped state, the signal can now be
downsampled at a uniform rate that is lower than what is possible using uniform downsam-
pling, with equivalent reconstruction quality. Both the warping and the downsampling oper-
ations can be reversed to reconstruct the original line signal, and can be seen as abstractions
of the analog spectrotemporal reshaping operations, fulfilling the role of an information
gearbox [26].

In principle, the warping process redistributes the signal, such that the local entropy
becomes uniformly distributed as shown in Fig 4. However, as mentioned in the previous sec-
tion, the ideal warp kernel is overly complex (i.e. as complex as the input itself) and thus merits
compression. In the present case, this was achieved by piecewise decomposition. Compressing
the warp kernel results in some loss of information in the overall compression; this is reflected
in the non-ideal allocation of points in Fig 4B.

Fig 5 compares the reconstructed fractal clock images from the warped stretch compression
and the uniformly downsampled compression methods at an overall compression ratio of 4X
and 5.3X compression, respectively. Even after the rate in the uniform downsampling case was
decreased to account for not having to save any kernel (which improved its output quality), the
warped stretch image (Fig 5H) still significantly outperforms the uniformly downsampled
image (Fig 5E). This is confirmed by an overall PSNR improvement of 6.32 dB.

We also performed warped stretch compression on a 3-channel RGB colour portrait image.
Fig 6 shows the comparison in compression performance between uniform downsampling and
warped stretch compression at 8X and 10X compression, respectively. All three channels here are
able to share the same warp kernel, which reduces the metadata overhead. The warp kernel was
generated using only the blue channel as it was the most feature-dense. The reconstruction per-
formance exceeds the uniform downsampling case by approximately 3 dB at 10X compression.
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Fig 3. Results for row 838 (out of 1672) of the fractal clock image at 6X warped stretch compression with overhead compensation. The line
signal (A) is first rescaled using non-uniform cubic interpolation as defined by the warp kernel, generated according to Eq (7). In this warped space (B),
the signal can now be downsampled at a uniform rate (indicated by the red circles) that is lower than what is possible using uniform downsampling, at a
given reconstruction quality. The number of downsampled points is less than 1/8™ of the number of pixels in the original line signal so that the
compression ratio becomes 8X after taking the warp kernel overhead into consideration when saving to file. Both the warping and the downsampling
operations can be reversed to reconstruct the line signal (C). The corresponding locations of the downsampled points (red circles in (B)) overlay the (A)
original and (C) reconstructed line signals for visual reference. The dashed frames in (A) and (B) are shown in closeup form in Fig 4.

doi:10.1371/journal.pone.0158201.g003
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Fig 4. Closeup of Fig 3A and 3B. (A) A particular subsection of row 838 of the fractal clock image (dashed frame in Fig 3A), which contains a mixture
of feature-sparse and feature-dense regions, is shown in expanded form. (B) The same subsection, after warping by the warp kernel (dashed frame in
Fig 3B). The subsection in (B) matches the length of the original line subsection (A) to show the redistribution of the feature density caused by the
warped stretch transform. The corresponding locations of the downsampled points (red circles in (B)) overlay the original line signal (B) for visual
reference.

doi:10.1371/journal.pone.0158201.g004
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(A)

Fig 5. Comparison of compression performance with the fractal clock image. The original inputimage (A-B) and the 4X uniformly downsampled
case (C-E), as compared with the reconstructed image after 5.25X warped stretch compression (F-H). The downsampling rate for the uniform case
was increased (hence the image quality improvement) such that the resultant file sizes for both warped and uniform compression become equal (to
compensate for the warp kernel overhead). After reconstruction, the warped case (G-H) achieved a PSNR of 37.7 dB, which was 6.32 dB better than
the uniform downsampling case (D-E).

doi:10.1371/journal.pone.0158201.9005

Fig 7 shows the rate distortion plot for warped stretch compression as compared to com-
pression with uniform downsampling for the fractal clock and the portrait images. Warped
stretch compression was found to be superior to uniform downsampling from a compression
ratio of 1.5X, up to 9X for the fractal clock and up to 20X for the portrait image. The range is
extended for the colour image due to the lower overhead from the sharing of the warp kernel
between colour channels. At a compression ratio of 4X, we find that warped stretch compres-
sion is better by more than 6 dB in PSNR for the grayscale clock and more than 4 dB for the
color portrait. The lower PSNR difference for the colour image relative to the grayscale image
can be attributed to the imperfect entropy redistribution in the red and green channels via
using the warp kernel of the blue channel; the blue channel alone achieves a maximum PSNR
improvement of 5.85 dB at 4X compression, as compared to 2.55 dB for the red channel, and
3.68 dB for the green channel at the same compression ratio.
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Fig 6. Comparison of compression performance with the colour portraitimage. (A) The 8X uniformly downsampled image and (B)
the 10.2X warp stretch-compressed image are shown with (C) the original image and (D E) their respective reconstructions, while (F-H)
are, in turn, their respective close-up portions. Further zoom-ins on the rims of the glasses are shown in (I-K), highlighting the failure of
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uniform downsampling to capture this sharp feature. The downsampling rate for the uniform case was adjusted such that the resultant file
sizes for both warped and uniform compression become equal; however, since all three colour channels share the same warp kernel, the
overhead burden is reduced by a third in this scenario. After reconstruction, the warped case (E,H,K) achieved a PSNR of 39.1 dB, which
was 3.11 dB better than the uniform downsampling case (D,G,).

doi:10.1371/journal.pone.0158201.g006
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Fig 7. Empirical rate distortion plot for fractal clock and portrait images. The PSNR of warped stretch compression (solid) is compared with uniform
downsampling (dotted) over a range of compression ratios for (A) the grayscale fractal clock image and (B) the colour portraitimage. At a compression
ratio of 4X, warped stretch outperforms in PSNR by 6.32 dB in the clock, and by 4.10 dB in the portrait. Beyond the compression ratios of 9X and 20X
respectively, the overhead from the warp kernel completely compromises the performance.

doi:10.1371/journal.pone.0158201.9007

To explain the rate-distortion behaviour, we consider how the same warp kernel is used for
different compression ratios. As the compression ratio is increased, the post-warp uniform
downsampling rate decreases, and the Nyquist condition is no longer satisfied. This is the main
source of information loss in any compression scheme which involves downsampling.

Conclusion

We have formulated a new type of digital image compression inspired by the recently demon-
strated analog optical image compression enabled by warped stretch transform [36]. Our
optics-inspired method warps the input image based on the distribution of its features, causing
context-aware redistribution of the local entropy. Compared to the Fourier domain implemen-
tation of warped stretch image compression (DAST) reported earlier, this direct warping elimi-
nates the need for phase retrieval in reconstruction. In this work, we limited the treatment to
one-dimensional lines and simplify the analysis. We have shown more than 6 dB improvement
in PSNR at a 4X compression ratio compared to the case of uniform downsampling. Future
works would extend this to a full two-dimensional warped stretch transformation, and would
investigate the combination of it with JPEG compression.
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