
PHACT: Phylogeny-Aware Computing of Tolerance for
Missense Mutations
Nurdan Kuru, Onur Dereli, Emrah Akkoyun, Aylin Bircan, Oznur Tastan, and Ogun Adebali *

1Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul 34956, Turkey

*Corresponding author: E-mail: oadebali@sabanciuniv.edu.

Associate Editor: Michael Rosenberg

Abstract
Evolutionary conservation is a fundamental resource for predicting the substitutability of amino acids and the loss of
function in proteins. The use of multiple sequence alignment alone—without considering the evolutionary relation-
ships among sequences—results in the redundant counting of evolutionarily related alteration events, as if they were
independent. Here, we propose a new method, PHACT, that predicts the pathogenicity of missense mutations dir-
ectly from the phylogenetic tree of proteins. PHACT travels through the nodes of the phylogenetic tree and evaluates
the deleteriousness of a substitution based on the probability differences of ancestral amino acids between neighbor-
ing nodes in the tree. Moreover, PHACT assigns weights to each node in the tree based on their distance to the query
organism. For each potential amino acid substitution, the algorithm generates a score that is used to calculate the
effect of substitution on protein function. To analyze the predictive performance of PHACT, we performed various
experiments over the subsets of two datasets that include 3,023 proteins and 61,662 variants in total. The experi-
ments demonstrated that our method outperformed the widely used pathogenicity prediction tools (i.e., SIFT
and PolyPhen-2) and achieved a better predictive performance than other conventional statistical approaches pre-
sented in dbNSFP. The PHACT source code is available at https://github.com/CompGenomeLab/PHACT.
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Introduction
Advancements in the characterization of single-nucleotide
polymorphisms (SNPs) have significantly facilitated our
understanding of the genomic differences between indivi-
duals (Kwok and Gu 1999). In various hereditary diseases,
SNPs determine the differential susceptibility to the condi-
tion. Single-nucleotide variations in the coding regions
might cause a single amino acid change in the encoded
protein (i.e., missense mutations). Although some mis-
sense mutations are tolerable, in some cases, these amino
acid substitutions may disrupt protein function and lead
to diseases (Castellana and Mazza 2013).

Understanding the deleterious effect of a missense mu-
tation facilitates the diagnosis of Mendelian diseases.
Although the reduction in the cost of genome sequencing
has enabled a massive sequence data generation in clinical
settings, the assessment of the functional impact of var-
iants, experimentally, in a high-throughput fashion re-
mains challenging. Therefore, many computational
techniques have been developed to predict the effects of
missense mutations (Garber et al. 2009; McVicker et al.
2009; Adzhubei et al. 2010; Davydov et al. 2010; Pollard
et al. 2010; Choi et al. 2012; Sim et al. 2012; Carter et al.
2013; Schwarz et al. 2014; Dong et al. 2015; Gulko et al.
2015; Lu et al. 2015; Ioannidis et al. 2016; Ionita-Laza
et al. 2016; Vaser et al. 2016; Feng 2017; Raimondi et al.
2017; Alirezaie et al. 2018; Rogers et al. 2018; Rentzsch

et al. 2019; Malhis et al. 2020). Although these methods
have not attained the desired level of accuracy and are
not recommended for use in clinical studies, clinicians
tend to use them to prioritize and reduce the number of
variants to be analyzed (Eilbeck et al. 2017). Therefore, it
remains critical to advance the methods aimed at patho-
genicity prediction.

The pathogenicity prediction methods for missense mu-
tations can be grouped into two main categories: (1) con-
ventional statistical methods (Siepel et al. 2005; Garber
et al. 2009; McVicker et al. 2009; Davydov et al. 2010;
Pollard et al. 2010; Choi et al. 2012; Sim et al. 2012; Gulko
et al. 2015; Lu et al. 2015; Vaser et al. 2016; Malhis et al.
2020) and (2) machine learning-based methods
(Adzhubei et al. 2010; Carter et al. 2013; Schwarz et al.
2014; Dong et al. 2015; Ioannidis et al. 2016; Ionita-Laza
et al. 2016; Feng 2017; Raimondi et al. 2017; Alirezaie et al.
2018; Rogers et al. 2018; Rentzsch et al. 2019; Jiang et al.
2021; Qi et al. 2021). The predictions of most of the conven-
tional statistical methods rely on the conservation level of
the protein position obtained frommultiple sequence align-
ment (MSA). It is naturally expected that a position that has
been conserved for millions of years through evolution is
unlikely to tolerate a substitution. Thus, a substitution
that disrupts a conserved position increases the risk of
pathogenicity (Sunyaev et al. 2000). Nevertheless, substitut-
ing amino acids in homologous sequences is unlikely to
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reduce the evolutionary fitness and to be deleterious for the
query species (Jordan et al. 2010). Therefore, the conserva-
tion level is crucial to understand the tolerance of a specific
position to amino acid substitutions.

Machine learning-based variant-effect prediction algo-
rithms improve the predictive ability of pathogenicity pre-
diction methods through the inclusion of structural,
functional, and physicochemical features, in addition to
the sequence-conservation-related features (Adzhubei
et al. 2010; Carter et al. 2013; Schwarz et al. 2014; Dong
et al. 2015; Ioannidis et al. 2016; Ionita-Laza et al. 2016;
Feng 2017; Raimondi et al. 2017; Alirezaie et al. 2018;
Rogers et al. 2018; Rentzsch et al. 2019; Jiang et al. 2021;
Qi et al. 2021). Because many of these algorithms use
conservation-related scores as input features, the use of
more accurate conservation-based pathogenicity scoring
methods would improve their predictive performances,
thus highlighting the benefits of developing such methods.

Most evolution-based tools (Siepel et al. 2005; Garber
et al. 2009; McVicker et al. 2009; Davydov et al. 2010;
Pollard et al. 2010; Choi et al. 2012; Sim et al. 2012; Lu
et al. 2015; Vaser et al. 2016; Malhis et al. 2020) rely on
MSA to measure the conservation of a position and pre-
dict the substitutability of an amino acid. This approach
has two main drawbacks: the MSA (1) cannot distinguish
between the independent and dependent amino acid sub-
stitutions at a single position and (2) ignores the evolu-
tionary distance between genes (see supplementary fig.
S1, Supplementary Material online for sample cases). To
circumvent these problems, we introduce PHACT, which
uses both MSA and the corresponding phylogenetic tree.
PHACT employs the reconstructed amino acid probabil-
ities of each tree node to predict amino acid substitution
tolerance. Experiments on two datasets demonstrated
that PHACT accurately predicts the deleterious effect of
missense mutations.

New Approaches
We introduce a novel phylogeny-dependent probabilistic
approach to predict the functional effects of missense mu-
tations. Our approach exploits the phylogenetic tree to
measure the deleteriousness of a given variant. PHACT
considers various factors in the establishment of the deci-
sion of whether a substitution is tolerated at the corre-
sponding position based on the following considerations:

• Conservation scores based solely on MSAs disregard
the evolutionary dependencies among alteration
events that have taken place during evolution.
Multiple amino acid alterations observed might
stem from a single evolutionary event in a common
ancestral state, which might affect multiple descen-
dants’ leaves (sequences). The evaluation of these var-
iations as independent alteration events causes
redundancies and the overcounting of these changes.
Similarly, when using MSA alone, independent evolu-
tionary events do not receive sufficient scoring, which

increases the probability of substitution tolerance.
PHACT traverses the phylogenetic tree to compute
the probability differences for all connected nodes
and ignores the dependent substitutions.

• Evolutionary information gathered from species lo-
cated on the different nodes of a phylogenetic tree
should not be treated equally in substitutability scor-
ing. Amino acids observed in evolutionarily close spe-
cies are better indicators of neutrality for the query
species. We assign a weight for each node proportion-
ally to their phylogenetic distance to the query
sequence.

• The physicochemical properties of amino acids are
also instrumental in deciding on the neutrality or
pathogenicity of a substitution. Depending on the
property constraints on a position, amino acids with
similar physicochemical properties can replace each
other without affecting the function of the protein
(Kumar et al. 2009). PHACT incorporates the physico-
chemical properties of amino acids into the ancestral
reconstruction step. In turn, ancestral reconstruction
reports the resulting probability distribution of amino
acids per node by considering the observed amino
acids at MSA, as well as their physicochemical proper-
ties, with the help of amino acid replacement matri-
ces. These matrices, such as LG, are designed to
capture the biological and physicochemical proper-
ties of amino acids. We used LG4X, a more advanced
model consisting of four LG-based matrices defined
by considering different substitution rates and site
heterogeneity (Le et al. 2012). With the help of LG
matrices, rather than observations alone, the ex-
pected amino acid substitutions are also included in
probabilities, and thus, in our score computation.

PHACT derives independent evolutionary events and
phylogenetic relationships among species from gene-based
phylogenetic trees. The probability distribution at each in-
ternal node of the phylogenetic tree is obtained using an-
cestral reconstruction. We summarize the workflow of
PHACT in figure 1 and present the pseudocode used for
scoring in Algorithm 1. PHACT takes the MSA of the
gene, the phylogenetic tree, and the probability distribu-
tion of amino acids at each ancestral node as input
(fig. 1A). Starting from the query species, which was
Homo sapiens in this work, we traversed the tree and re-
corded the probability of change for each amino acid, to
determine where the substitutions occurred. We then
used these probabilities to predict the effect of the amino
acid change on the query species according to the phylo-
genetic location of the alteration. The arrows on the phylo-
genetic tree in figure 1B represent the direction of the
probability subtraction process. Here, the rationale for
using probability differences was to identify the point at
which the probability of amino acid substitution increases;
that is, we determined the phylogenetic nodes at which
missense mutations have emerged using the positive prob-
ability differences. Although a positive change in
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probability indicates an alteration, negative probability
changes are observed because of a substitution belonging
to the previously visited part of the tree. The decrease in
probability for a specific amino acid means that the ex-
pectation of encountering this amino acid decreases in
the ensuing travel steps. The negative probability changes
are ignored in score computation, to prevent repetitive
counting of the dependent substitutions (fig. 1C).

It has been previously hypothesized that a variant in a
human gene is more likely to be benign when it is present
in closely related species. In contrast, it is more likely to be
deleterious when it only exists in distant ones (Ionita-Laza
et al. 2016; Malhis et al. 2020). In PHACT, during the tree
traversal process, all positive changes in amino acid prob-
abilities are added via a weighted summation, in which, the
weights are considered to be inversely proportional to the
distance between the corresponding nodes of change and
the query sequence. Although we investigated several
weighting approaches to determine the contribution of
each node to the substitution score, the best performing
weighting scheme was obtained by assigning a weight of
0.5 to the species with the closest evolutionary distance

to the query sequence. The formal definition of weight
at any node n for a phylogenetic tree with L leaves is as fol-
lows:

wn = 1

1+ [dn/min (dl)]
(1)

where dn is the distance between the query sequence and
node n and dl is the (L− 1)-dimensional vector of the dis-
tance between the query sequence (human) and leaves,
with the exception of the leaf of the query species. We em-
ployed various weighting approaches, including the
Gaussian function; however, as explained in detail in the
PHACT—Results section, the approach outlined in equation
(1) performed better than the other functions. The details of
the different weighting approaches can be found in the
Supplementary Material online.

After completing a traversal on the tree, we obtained a
weighted summation of probability differences for each of
the 20 amino acids at the corresponding position. In add-
ition to the individual scores of amino acids, the variability
of a position is also an important factor in terms of the ef-
fects of an alteration. To include the variability of a position

A

C

B

FIG. 1. Workflow of PHACT. (A) Input of the algorithm includes MSA, phylogenetic tree, and probability distribution of amino acids at each
ancestral node. (B) Calculation of all probability differences between consecutive nodes and leaves, starting from query species. The blue
and orange arrows correspond to the reference and alternating amino acids, respectively. Positive probability differences are represented as solid
lines, whereas dashed arrows indicate that the probability difference for the corresponding amino acid is negative or zero. The values of positive
probability differences are also indicated next to the corresponding arrows. (C ) The weighted summation of positive probability differences
yields an individual score per amino acid. The final score is obtained by eliminating the effect of the tree size (total number of nodes) and in-
cluding the diversity of the position, which is obtained by summing the scores for all amino acids, with the exception of the score with the
maximum value. The maximum weight of diversity, λ, is set as 0.1 in the final formula, which gives a tolerance score per amino acid. The weight
of the diversity term increases proportionally with the number of amino acids that contributes to the summation.
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in the score, we rescaled the PHACT score based on the di-
versity of the position. The diversity information per pos-
ition is obtained by summing all amino acid scores that
are obtained in the traveling process through the internal
nodes of the phylogenetic tree, with the exception of the
one with the highest score. The amino acid with the high-
est score most often corresponds to the reference amino
acid, and we eliminate this value in diversity computation
because it generally affords an incorrect signal related to
the variability of the position. The second misleading
source of information about position diversity stems
from the leaves of the phylogenetic tree. As the amino
acid probabilities at leaves are set as 1 or 0, depending
on the observed amino acid, they can dominate the score
and shadow the substitution information obtained from
the internal nodes of the tree. To prevent this, PHACT
uses internal nodes and the leaf of query species exclu-
sively in diversity computation by ignoring the remaining
leaves of the tree. The weight of the diversity term is com-
puted over the number of amino acids that contributes
to the total score. We count the number of amino acids
that have a higher score than a predefined threshold (set
at 0.0001) and increase the weight of the diversity term
by considering this count. The weight of the diversity

term, wdiversity, is defined as follows:

wdiversity = l 1−number of amino acids with score, 0.0001

20

( )

(2)

where λ is the maximum possible weight (set at 0.1 in the de-
sign of PHACT). The increase in the number of amino acids
with an individual score .0.0001 leads to the increase in
the variability of the position and to the assignment of a high-
er weight to the diversity, up to 0.1. The final PHACT score,
which includes both the individual scorings of each amino
acid and the diversity of the position, is shown in Lines 12–
15 of Algorithm 1. The score is classified according to the
tree size, which corresponds to the total number of nodes,
to eliminate the bias associated with obtaining larger toler-
ance values for larger trees. Because we classified the score ac-
cording to the tree size at the end of the procedure, the final
score became a small number that is difficult to interpret. To
overcome this scaling problem, we shifted the alternating
amino acid scores to a [0, 1] interval with the help of the for-
mula given in Line 16 of Algorithm 1 and obtained the “toler-
ance score,” which is mentioned as the “PHACT score”
throughout the manuscript. The final formula of tolerance
for an amino acid x with respect to PHACT is computed as
in equation (3):

tolerance(x) = 1−

log
(1− l)score(x) + l 1− |scorewol , 0.0001|

20

( )
diversity

Tree size (number of nodes)
+ 1

⎛
⎜⎜⎝

⎞
⎟⎟⎠

log (1)

(3)

where

diversity = sum(scorewol)− max (scorewol)

and λ is 0.1, ɛ is the small number used for scaling (set at
10−15), score(x) is obtained at the end of tree traversal for
amino acid x, and scorewol corresponds to the 20-dimensional
vector representing the summation of weighted probability

differences, with the exception of the leaves of the phylogen-
etic tree. |scorewol, 0.0001| corresponds to the number of
components of scorewol having a smaller value than 0.0001.

The tolerance/PHACT score measures the possible
deleterious or neutral effect of a missense mutation.
Substitutions of reference amino acids with amino acids
having a high tolerance score (close to 1) tended to yield

ALGORITHM 1: PHACT—Phylogeny-Aware Computing of Tolerance

Input: MSA M, Phylogenetic tree T(N;L) with N nodes and L leaves, Probability distribution matrix A (N+ L by 20), Leaf of human lhuman, The
amino acid at the leaf of human aahuman, Individual score per amino acid score, Score over internal nodes of the tree per amino acid scorewol

1 Compute the node weights vn , ∀n in N = (1, . . . , N, N+ 1, . . . , N+ L)
2 score= scorewol= 0
3 score(aahuman)= scorewol(aahuman)= 1
4 for aa in 1:20
5 for n in N − {lhuman}
6 Find the connected node �n on the direction of travel
7 Pdiff (aa, n, �n) = A(n, aa)− A(�n, aa)
8 score(aa) = score(aa)+ vnPdiff (aa, n, �n).1{Pdiff (aa,n,�n).0}

9 scorewol(aa) = scorewol(aa)+ vnPdiff (aa, n, �n).1{Pdiff (aa,n,�n).0 & n≤N}

10 end
11 end
12 diversity = sum(scorewol)−max(scorewol)
13 Determine D= {scorewol(aa)| aa in 1:20 and scorewol(aa), 0.0001}
14 The weight of diversity term wdiversity = 0.1∗ 1− |D|

20

( )
15 scoreupd(aa) = (0.9score(aa) + wdiversitydiversity)

Tree size (number of nodes)

16 tolerance(aa) = 1− log (scoreupd(aa)+10−15)
log (10−15)
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a neutral effect. A lower tolerance score corresponded to a
deleterious effect on the protein function. Although the
query sequence was human in our experiments, the algo-
rithm can easily be used for other species.

Results
To assess the predictive performance of our algorithm, we
performed computational experiments on two sets of
data: (1) HCG, which stands for Humsavar, ClinVar,
gnomAD and includes the missense variants in
Humsavar (The UniProt Consortium 2021), ClinVar
(Landrum et al. 2016), and gnomAD (Karczewski et al.
2020); and (2) Grimm datasets (see the Materials and
Methods section for details), which were constructed by
us based on databases that are frequently used in the lit-
erature (Sasidharan Nair and Vihinen 2013; Grimm et al.
2015; Landrum et al. 2016; Karczewski et al. 2020; Liu
et al. 2020; The UniProt Consortium 2021). The resulting
vector of 20 components obtained at the end of PHACT
computation (Algorithm 1) represents a composite of
the individual substitution score for each amino acid.
This vector is used to predict the possible effect of an alter-
ation from the reference amino acid to the changed amino
acid in question. The summed score correlates with the
overall variability of the corresponding position regarding
the query organism. This score is different from the con-
ventional conservation scores, in/for which, the query spe-
cies does not affect this general diversity measurement. In
the PHACT—Results section, we present the performance
measures for PHACT on the HCG dataset by explaining the
contribution of different PHACT components. The second
subsection is dedicated to a benchmark comparison with
SIFT (Sim et al. 2012), PolyPhen-2 (Adzhubei et al. 2010),
LIST-S2 (Malhis et al. 2020), and other statistical tools in-
cluded in the dbNSFP database (Liu et al. 2020). In our ex-
periments, we relied on the area under the receiver
operating characteristic (ROC) curve (AUC), the area un-
der the precision-recall (PR) curve (AUPR), F1 score, ba-
lanced accuracy, and Matthews correlation coefficient
(MCC). In these analyses, positive and negative labels are
used to define measures such that true positives and
true negatives correspond to pathogenic and neutral var-
iants, respectively.

PHACT—Results
We present the resulting ROC and PR curve figures and the
AUC and AUPR values for the 2,836 proteins and 13,420
neutral and 15,728 pathogenic variants obtained from
the HCG dataset. The details of the HCG dataset are pro-
vided in the Materials and Methods section. The ROC and
PR curves are graphical plots that are used to understand
the performance of a binary classifier that assigns the ele-
ments of a set into two groups. The x-axis and y-axis of the
ROC curve indicate the true-positive rate (TPR, the ratio of
the variants that are correctly classified as positive among
all positives) and the false-positive rate (FPR, the ratio of

variants that are mislabeled as positive among all nega-
tives), respectively; moreover, under various thresholds,
the ROC curve illustrates how the variations of TPR and
FPR are related. Similarly, the PR curve is created by plot-
ting precision (ratio of true positives to all variants that are
labeled as positive) against recall (the same as TPR) under
different threshold values. In our analyses, we used the
areas under the ROC and PR curves to compare the perfor-
mances of various missense mutation classifiers, as re-
ported in the literature (Carter et al. 2013; Malhis et al.
2020; Jiang et al. 2021; Qi et al. 2021). Overall, larger
AUC and AUPR values are associated with better
performance.

Distance-Based Node-Weighting Approaches
Figure 2 presents the performance of PHACT for various
weighting approaches. For the best performing approach,
that is, Max05, we assigned a weight of 0.5 to the closest
leaf to the query sequence, which in our experiments
was H. sapiens. The details and explicit mathematical func-
tions of weights are given in the Supplementary Material
online. As shown in figure 2, Max05 achieved AUC and
AUPR values of 0.949 and 0.949, respectively. An alterna-
tive version of Max05 that assigns the 0.5 weight to the
closest node instead of the closest leaf (Max05 [Node])
yielded high AUC (0.935) and AUPR (0.934) values.

As an alternative weighting scheme, we experimented
with the Gaussian functions using various bandwidth para-
meters, such as the mean and median of the distances, for
assigning the importance of each node in the prediction of
the functional consequence of a missense mutation.
However, we observed that the Gaussian function did
not perform well in the detection of the possible effect
of an alteration on our query species. The bell-curved
shape of the function resulted in the assignment of higher
weights to the remote homologs, unless there was a drastic
decrease in evolutionary distance. For example, in the tree
of P10826, 328 out of 999 nodes were within a one-unit dis-
tance (namely, less than or equal to one substitution per
site) to the query sequence (human). The branch length
distances and corresponding weights for this sample pro-
tein are shown in supplementary figure S2,
Supplementary Material online.

Conversely, we observed that the closer homologs to
the query were more important than the distant ones
for neutrality prediction. Because the Gaussian function
does not entirely cover this importance, we mainly utilized
a linearly decreasing approach depending on the distance
to the query. We also checked whether the combination of
Max05 and the Gaussian function with the mean as the
bandwidth parameter affected the accuracy, and com-
bined them using their geometric mean. This approach
was labeled “Mix (Gaussian and Max05),” and the resulting
performance can be found in figure 2A and B. Although a
3.1% increase in AUC and a 2.4% increase in AUPR versus
the Gaussian function (mean) were achieved, this ap-
proach did not perform well as in Max05. We naturally
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expected that the Gaussian function would detect the
neutral variants better thanMax05, as it attributes a higher
score to the amino acids observed in distant species.
However, both the Gaussian function and the new weights
obtained via a combination of the two weights (Mix
[Gaussian andMax05]) failed to outperformMax05, which
demonstrates that Max05 not only is a good predictor of
pathogenic variants, but also performs better than the
Gaussian function in the prediction of neutral variants.

We also constructed a new weight, that is, Mix
(Gaussian and Node Count), based on the Gaussian func-
tion, with the mean being used as the bandwidth param-
eter. However, because the Gaussian function did not lead
to good predictions, we used the average of the Gaussian
function and the number of nodes between query species
and each internal node, to determine the weight of the
corresponding node. This combined weight performed
better than the Gaussian function. Nevertheless, Max05
outperformed this combined weight as well, with a 5.7%
total difference in the AUC and AUPR levels (the perform-
ance can be found in fig. 2).

Baseline Comparisons
Our approach was based on an understanding that using
evolutionary information is essential for explaining the
functional consequences of amino acid alterations. We
compared PHACT with some simple approaches to better
grasp the contributions from different information
sources. The set of alternative approaches included the
ones that solely employ either MSA or the physico-
chemical properties of amino acids, to understand the ef-
fects of different information sources. Formal definitions of

these simple approaches are given in the Supplementary
Material online. The details of the resulting performances
are illustrated in figure 3.

Blosum62 Score
The first baseline comparison relied on the substitution
matrices. We computed a score based solely on the
Blosum62 matrix (the details are given in the
Supplementary Material online). The resulting AUC and
AUPR levels were the lowest among all the baseline com-
parisons, at 0.648 and 0.657, respectively.

MSA-Based Diversity
Position diversity provides an insight into the prediction of
pathogenicity of the unobserved amino acid substitutions
(Sim et al. 2012; Malhis et al. 2020). In PHACT, we used di-
versity to adjust the individual amino acid scores by in-
cluding position dynamics. However, we hypothesized
that the exclusive use of MSA is inappropriate to correctly
identify position diversity. Here, the MSA-based diversity
measure relied on the number of different amino acids ob-
served at the position in question. If the position was di-
verse in terms of the observed amino acids in the MSA,
we assigned a higher score to substitutions in that position,
which made them close to neutral. As shown in figure 3, by
yielding 0.779 AUC and 0.790 AUPR levels, this approach
resulted in one of the lowest scores in baseline
comparisons.

Amino Acid Frequency
To establish a baseline, we compared our results with the
most straightforward possible approach, which is

A
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FIG. 2. Comparison of PHACT calculations using various weight functions. (A) ROC curve. AUC values are shown. Sensitivity (specificity) on the
axis refers to the rate of positive (negative) predictions that are truly positive (negative). (B) PR curve. AUPR values are shown. Precision on the
y-axis of the plot refers to the ratio of positive predictions among all predictions that were labeled as positive. Recall is the same as sensitivity. The
best performing weight is Max05, with 0.949 AUC and 0.949 AUPR levels.
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determination of the conservation level based on the fre-
quency of change, that is, the ratio of the total number of
alternative amino acids observed in the MSA position to
the total number of sequences. Figure 3 shows that the ex-
clusive use of this frequency information resulted in one of
the lowest performances among the six approaches, with
0.805 AUC and 0.780 AUPR levels.

Weighted Amino Acid Frequency
In this approach, the distance between the query species
and the remaining species in the alignment is used to com-
pute a frequency score. Here, by eliminating the traveling
through the tree process, we aimed to highlight its contri-
bution by comparing the resulting performance with the
original result of PHACT. Although this approach per-
formed better than the classical frequency approach, it un-
derperformed compared with PHACT, with a 9.3%
decrease in AUC scores and a 14.2% decrease in AUPR
scores.

Frequency and Weighted Frequency by Excluding Gaps
Here, in addition to employing frequency and weighted
frequency approaches, we excluded the number of gaps
in frequency computation; that is, the frequency and
weighted frequency were computed over the total number
of sequences after the sequences with a gap at the corre-
sponding position were eliminated. The average ratio of
gaps was 0.377, with a standard deviation of 0.306 for all
proteins on DS1. Despite an increase in the AUC and
AUPR values with respect to the versions that included
gaps, an important performance difference remained rela-
tive to PHACT. As shown in figure 3, when the gaps were
counted, the frequency and weighted approaches resulted
in AUC values of 0.828 and 0.862 and AUPR values of 0.793
and 0.811, respectively.

Contribution of the Algorithm Steps
PHACT calculation relies on various components, such as
evolutionary relationships between species, ancestral re-
construction, and traversal of the phylogenetic tree, which
consider the probability differences and the weighting ap-
proach described above. To delineate the contribution of
each of these components to the resulting performance,
we employed several alternative versions of score compu-
tation by including one or more steps of PHACT, as pre-
sented in figure 4. We divided these alternative scoring
strategies into two main groups: the intermediate steps
based on the tree traversal process, and the final step
based on the perturbation of the individual score per
amino acid with respect to the diversity of the position.
The details of these approaches are given in the
Supplementary Material online. Figure 4A and B shows
the ROC and PR curves, respectively, for the algorithms
considering the intermediate steps, and figure 4C and D
aims to explain the contribution of the final step to the
predictions.

PHACT After Exclusion of the Leaves
As explained in the New Approaches section, PHACT
starts from a query species and travels through the ances-
tral nodes and leaves of the phylogenetic tree to detect the
location of substitutions and predict their effect on the
query. An alternative approach is to exclude all the leaves
from score computation and utilize only the internal
nodes. We did not pursue this approach in the finalized
version of PHACT for two reasons. First, although the an-
cestral reconstruction tools, such as RaxML-NG (Kozlov
et al. 2019), compute the probability of each amino acid
at ancestral nodes using the observed amino acids at the
leaves (Yang 2006), ignoring the probability difference at
the leaves of the phylogenetic tree can result in missing
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FIG. 3. Baseline comparisons. The performance differences between PHACT (Max05) and simple approaches are presented. (A) ROC curve. AUC
values are shown. (B) PR curve. AUPR values are shown.
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some substitutions that occurred in the species that exist
today. Second, we observed that the inclusion of the leaves
yielded better performance in predicting neutral and
pathogenic mutations over different datasets and proteins.
The same trend is also observed in figure 4A and B. PHACT
performed 0.2% better at both the AUC and AUPR levels
than the approach in which the leaves were excluded.

PHACT Without Weighting
In this approach, we removed the weighting step of PHACT
and assumed that substitutions are equally important re-
gardless of the distance to the query species. Eliminating
the weighting approach yielded an 8.4% lower AUC level
and a 6.3% lower AUPR level compared with PHACT
(“Equal-Weight” in fig. 4A and B). This result indicates
that tree traversal is an essential component of this process.

Inclusion of Negative Probability Differences
PHACT uses the positive probability differences and disre-
gards negative ones to factor in the substitution depend-
ence, as mentioned in the New Approaches section.
Instead, here we probed the performance change after in-
corporating all of the differences into PHACT. We ob-
served a substantial decrease in the AUC and AUPR
levels when both positive and negative differences were
considered (“All Differences [Max05]” in fig. 4A and B),
which highlighted the benefit of the inclusion of positive
differences exclusively.

Inclusion of All Ancestral Reconstruction Probabilities
In this approach, we employed all of the full probabilities
obtained from ancestral reconstruction, rather than the
probability differences between nodes, to calculate the
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FIG. 4. Effects of the different components of PHACT on the performance of the algorithm. (A) and (B): ROC and PR curves for the methods
related to the intermediate steps of PHACT. (C ) and (D): ROC and PR curves for the final steps of PHACT.
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tolerance score for each amino acid. The major conceptual
problem of this approach is the overcounting of dependent
substitutions. We presented the performances achieved by
using all of the probabilities with equal weights and the
Max05 weight as two versions (“All Probabilities” and “All
Probabilities [Max05]” in fig. 4A and B). We did not consider
this version further because both approaches yielded a per-
formance lower than that of PHACT. Moreover, the scores
were highly correlated with the observed frequencies of
amino acids in the MSA; thus, this was incompatible with
our aim of accounting for the dependence and independ-
ence of substitutions.

PHACT Score Without the Diversity Term
As discussed in the New Approaches section, the PHACT
score consists of two parts: individual amino acid scores
and diversity of the position in MSA. Although individual
scores represent the acceptability of each amino acid, the
conservation level and variability of the corresponding
position are also essential for predicting the effect of ami-
no acid alterations. To analyze the effect of the diversity
term further, we investigated the performance of individ-
ual scores exclusively, without considering the variability of
the position. The score alone resulted in a 1.9% lower AUC
level and a 2.2% lower AUPR level compared with PHACT
(“Only Score” in fig. 4C and D).

Only PHACT Diversity Score
Similar to the PHACT score without diversity, the diversity
information without considering the individual score of
amino acids was also deficient for variant-effect prediction.
To demonstrate this further, we presented the resulting
performance of the algorithm that relied exclusively on
the diversity of the position. The AUC and AUPR levels de-
creased by 1.2% and 1%, respectively (“Only Diversity” in
fig. 4C and D). We noted that this diversity score was
also computed using the tree traveling process and weight-
ing approach of PHACT. The MSA-based diversity score
was not as successful as the PHACT diversity term, with
a 15.8% lower AUC and a 14.9% lower AUPR level, respect-
ively (“Diversity” in fig. 3 vs. “Only Diversity” in fig. 4).
Moreover, SIFT, which is another popular tool that em-
ploys position variability by considering the number of ob-
served amino acids in the MSA, could not outperform
PHACT in the ROC and PR curve comparisons, and other
important metrics, such as MCC, F1 score, and balanced
accuracy (the details can be found in the Comparisons
with Benchmark Tools section). These results demon-
strated the success of the diversity term, which is obtained
from the individual PHACT scores of amino acids.

Equal Importance of Score and Diversity
This approach was based on the assignment of equal
weight to the individual score per amino acid and the vari-
ability of the position. Although attributing equal import-
ance to the score and diversity did not outperform
PHACT, it yielded a similar performance (“Equal
Importance” in fig. 4C and D). We also observed a 1%

higher AUC and a 0.9% higher AUPR compared with the
diversity score of PHACT (“Only Diversity” in fig. 4), thus
illustrating the importance of the individual score of ami-
no acids in variant-effect prediction.

Higher Importance of Diversity
In the final alternative approach, we examined the varia-
tions in the AUC and AUPR levels when a higher weight
was assigned to diversity rather than to individual amino
acid scores. The parameter λ in equation (3) was set as
0.9. Decreasing the importance of the individual amino
acids scores resulted in a lower performance, with 0.941
AUC and 0.942 AUPR levels, compared with PHACT
(“Higher Diversity” in fig. 4C and D).

Comparisons with Benchmark Tools
We compared PHACT with SIFT (Sim et al. 2012),
PolyPhen-2 (Adzhubei et al. 2010), and several other stat-
istical methods included in dbNSFP. SIFT utilizes MSA and
defines the probability of an amino acid substitution based
on the position diversity, in addition to the observed ami-
no acids at the position in question. The scoring scheme of
SIFT relies on the determination of the acceptable substi-
tutions with the help of the physicochemical properties of
the observed amino acids at a position of interest. The se-
cond benchmark tool, PolyPhen-2 (Adzhubei et al. 2010),
computes a naive Bayes posterior probability for variants
using various sequences and structural features. We ob-
tained the precomputed scores for the benchmark algo-
rithms from dbNSFP v4.1 (Liu et al. 2020). To avoid
circularity and training biases, which result in overly opti-
mistic predictive performances (Grimm et al. 2015), we
eliminated the proteins that were used for training or par-
ameter optimization of the predictive models from the
test datasets. The quality and depth of MSAs highly af-
fected the biological conclusions inferred from the
conservation-basedmethods. Therefore, we also presented
the SIFT scores computed using PHACT alignment.
Although we constructed a bias-free dataset for
PolyPhen-2 by eliminating its training set from our dataset,
it is not feasible to build a bias-free dataset for all algo-
rithms presented in dbNSFP. Most of the machine learning
algorithms in dbNSFP are ensemble methods that use ei-
ther the conservation-based features or the prediction
scores obtained by other machine learning algorithms
(Adzhubei et al. 2010; Carter et al. 2013; Schwarz et al.
2014; Dong et al. 2015; Ioannidis et al. 2016; Ionita-Laza
et al. 2016; Feng 2017; Raimondi et al. 2017; Alirezaie
et al. 2018; Rogers et al. 2018; Rentzsch et al. 2019). The
training sets of these machine learning algorithms general-
ly include variants annotated in UniProt (The UniProt
Consortium 2021), ClinVar (Landrum et al. 2016), and
VariBench (Sasidharan Nair and Vihinen 2013), which
mainly overlap with our datasets. In addition, some of
these algorithms utilize the allele frequency information
obtained from various databases, such as those of
gnomAD (Karczewski et al. 2020), ExAC (Lek et al. 2016),
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and the 1000 Genomes Project (The 1000 Genomes
Project Consortium 2015). The neutral variants included
in our datasets were labeled based on the allele frequency
information; thus, the training sets of these machine learn-
ing algorithms overlapped with our datasets to a large ex-
tent. Therefore, it was not possible to obtain a fair
comparison with the machine learning algorithms in
dbNSFP using the proteins for which we had already built
the phylogenetic trees. As a result, we did not include
these algorithms, with the exception of PolyPhen-2, in
our benchmark comparisons. PolyPhen-2 is one of the
most frequently used tools; therefore, comparing PHACT
with it is of interest. Among the conventional statistical
methods presented in dbNSFP, in addition to SIFT,
LIST-S2 (Malhis et al. 2020) is also a notable pathogenicity
scoring tool, particularly because it uses taxonomy dis-
tances for estimating the pathogenicity of missense muta-
tions. To eliminate the problem of obtaining overly
optimistic results for benchmarking as much as possible,
we constructed subdatasets that did not include the pro-
teins in the training set of PolyPhen-2 (Adzhubei et al.
2010) and the optimization set of LIST-S2. Table 1 sum-
marizes the datasets used here.

PHACT Discriminates Pathogenic and Neutral
Missense Variants
We built phylogenetic trees for 3,380 proteins and con-
structed our datasets using these proteins. Dataset 1
(DS1) and Dataset 2 (DS2) contained variants for proteins
that could be mapped to the HCG and Grimm datasets,
respectively. Each dataset was also mapped to dbNSFP,
to obtain the scores of benchmark algorithms. We ob-
tained the DS3 and DS4 datasets by discarding the proteins
in the training set of PolyPhen-2 from DS1 and DS2, re-
spectively. Similarly, DS5 and DS6 were constructed by
eliminating the optimization set of LIST-S2 from DS1
and DS2, respectively. The datasets used in our study are
available in the Supplementary Material online.

Figure 5 shows the AUC and AUPR values obtained by
PHACT, SIFT, and SIFT using PHACT alignment, and
PolyPhen-2 algorithms on the DS3 and DS4 datasets. We
observed that PHACT achieved higher AUC and AUPR va-
lues on both datasets than the SIFT and PolyPhen-2 algo-
rithms. Compared with the other algorithms, PHACT
yielded higher TPRs for any FPR on both datasets (fig. 5A
and C); moreover, it attained a higher precision for all or

almost all TPRs on these datasets, respectively (fig. 5B
and D). These results indicate that PHACT comfortably
outperformed SIFT and PolyPhen-2 in predicting neutral
and pathogenic variants. The comparison of PHACT with
PolyPhen-2 and other statistical pathogenicity prediction
tools included in dbNSFP on the DS4 dataset is provided
in supplementary figure S3, Supplementary Material on-
line. The success of PHACT can be explained by the utiliza-
tion of a phylogenetic tree for scoring. The integration of
evolutionary relatedness of the sequences enables
PHACT to attribute less importance to the variations ob-
served in distant species. Furthermore, the inclusion of two
additional factors that are ignored in SIFT and PolyPhen-2
allowed PHACT to distinguish the neutral and pathogenic
variants more accurately; these factors are the effect of (1)
whether a substitution is observed at different time points
independently and (2) whether a substitution at one an-
cestral species is the cause of multiple alterations.

Figure 6 shows the AUC and AUPR values of the PHACT
and LIST-S2 algorithms on the DS5 and DS6 datasets. On
the DS5 dataset, PHACT and LIST-S2 exhibited a similar
performance regarding AUC and AUPR values. We ob-
served a 0.2% improved performance with PHACT in
ROC and a 0.2% improved performance with LIST-S2 in
the PR curve comparison. Conversely, on the DS6 dataset,
PHACT outperformed LIST-S2 by 1.4% at the AUC level
and by 1% at the AUPR level. These results indicate that
PHACT affords a slightly better or comparable perform-
ance against LIST-S2 for distinguishing the neutral variants
from the pathogenic variants.

In table 2, we compared the performance of PHACT,
SIFT, PolyPhen-2, and LIST-S2 with other known metrics,
such as the F1 score, balanced accuracy, and MCC. The
F1 score and balanced accuracy are well-known assess-
ment metrics for binary classification problems. We also
report MCC, which is a more reliable performance meas-
ure than the F1 score and accuracy for unbalanced data-
sets that considers true positives, false negatives, true
negatives, and false positives proportionally to the class
sizes (Chicco and Jurman 2020). The computation of all
of these performance metrics requires the definition of a
cutoff value that discriminates neutral from pathogenic
variants. The cutoff value for PHACT scores was deter-
mined over DS1 because it includes more proteins and var-
iants by maximizing the geometric mean of sensitivity and
specificity. The substitutions with scores below and
above this threshold (0.679) were assumed to be

Table 1. Summary of the Subdatasets Constructed Here From the HCG and Grimm Datasets to Evaluate the Discriminative Ability of PHACT and
Benchmark Algorithms.

Subdataset Main Dataset Subset of Eliminated Proteins Number of Proteins Number of Neutral Variants Number of Pathogenic Variants

DS1 HCG — — 2,836 13,420 15,728
DS2 Grimm — — 2,325 13,401 30,412
DS3 HCG DS1 PolyPhen-2 training set 645 2,234 1,401
DS4 Grimm DS2 PolyPhen-2 training set 450 1,414 557
DS5 HCG DS1 LIST-S2 optimization set 1,155 5,014 7,165
DS6 Grimm DS2 LIST-S2 optimization set 1,023 5,859 11,871
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pathogenic and neutral, respectively. The cutoff value is set
at 0.05 for SIFT, 0.493 for PolyPhen-2, and 0.85 for LIST-S2,
as reported in related studies (Adzhubei et al. 2010; Sim
et al. 2012; Malhis et al. 2020). The resulting performance
metrics are given in table 2. These results illustrate the fact
that PHACT outperformed the tools in comparison with
significant differences over almost all metrics including
MCC, F1 score, and balanced accuracy.

The cutoff value for PHACT was determined over the
largest dataset, DS1, which also includes DS3 and DS5.
To avoid a potential bias of the cutoff value of PHACT,
which was derived from the dataset used to assess com-
parative performances, we present the results based on
the best performing cutoff values derived from the dataset

in the comparison of all algorithms. The resulting perform-
ance measures are shown in table 3. PHACT achieved the
best performance regarding MCC, F1 score, and balanced
accuracy. Moreover, PHACT performed better than
LIST-S2 regarding MCC and balanced accuracy, and exhib-
ited a similar performance for the F1 score. These results
underscore the advantage of using phylogenetic informa-
tion. Although we computed a cutoff value for all tools
by maximizing the geometric mean of sensitivity and spe-
cificity for table 3, a known alternative approach is to pick
the threshold by maximizing the F1 score, the harmonic
mean of sensitivity and specificity (Lipton et al. 2014).
Therefore, we also calculated the performance metrics
when the cutoff value that maximized the F1 score was
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DS4 Dataset: 450 Proteins, 1414 Neutral 557 Pathogenic Variants
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FIG. 5. Discriminative performance comparisons of PHACT, SIFT, and SIFT with PHACT’s MSA and PolyPhen-2 (PPH2_HVAR) algorithms.
(A) and (B): ROC and PR curves for the DS3 dataset (HCG dataset excluding the PolyPhen-2 training set). (C ) and (D): ROC and PR curves
for the DS4 dataset (Grimm dataset excluding the PolyPhen-2 training set).
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selected (supplementary table 1, Supplementary Material
online). Additionally, true positive, false negative, true
negative, and false positive values used for calculating
the performance metrics in tables 2 and 3 are reported
in supplementary table 2, Supplementary Material online.

Figure 7 and supplementary figures S3 and S4,
Supplementary Material online compare the discriminative
performance of PHACT with those of the other statistical
pathogenicity prediction tools included in dbNSFP over
the DS5, DS4, and DS6 datasets, respectively. On DS5,
PHACT outperformed 18 conservation-based pathogen-
icity scoring methods by attaining higher AUC and
AUPR values and exhibited an equal performance
with LIST-S2 (fig. 7). On DS4 and DS6, PHACT performed
better than all the conservation-based pathogenicity

scoring methods, with higher AUC and AUPR levels
(supplementary figs. S3 and S4, Supplementary Material
online). LIST-S2 yielded comparable results against
PHACT on DS5 in terms of the F1 score. However,
PHACT outperformed LIST-S2 on DS6 in terms of the F1
score, MCC, and balanced accuracy, and showed a slightly
better performance in terms of MCC and balanced accur-
acy on the DS5 dataset (tables 2 and 3). We also compared
the ROC and PR curve performances of the two ap-
proaches when LIST-S2 scores were computed using
PHACT MSA on both DS1 and a subset of DS1, when
the variants in the optimization set of LIST-S2 were elimi-
nated (supplementary fig. S5, Supplementary Material on-
line). The results indicated that PHACT outperformed
LIST-S2 with 1.4% higher AUC and AUPR levels on DS1.
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DS6 Dataset: 1023 Proteins, 5859 Neutral 11871 Pathogenic Variants
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FIG. 6. Discriminative performance comparisons of PHACT, SIFT, and SIFT with PHACT’s MSA and LIST-S2 algorithms. (A) and (B): ROC and PR
curves for the DS5 dataset (HCG dataset excluding the LIST-S2 optimization set). (C ) and (D): ROC and PR curves for the DS6 dataset (Grimm
dataset excluding the LIST-S2 optimization set).
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It should be noted that LIST-S2 also utilizes a taxonomy
tree as an evolutionary relationship of species, which likely
accounts for the high performance of LIST-S2 (see more
details of LIST-S2 in Discussion). These results emphasize
the importance of the incorporation of evolutionary rela-
tionships between species and the effect of different muta-
tional patterns into the final model. We significantly
improved the AUC and AUPR values by traversing the
phylogenetic tree and weighting approaches over fre-
quency (fig. 3). The observation of a better or comparable
performance against the known conservation-based tools
supports our idea of expanding the analysis, rather than
making predictions based on MSA alone.

In the final analyses, we compared the performance of
tools in terms of the execution time over 50 proteins
(see supplementary table 3, Supplementary Material on-
line for details). We measured the time for the score com-
putation step of the tools alone; the time required for
obtaining MSA, phylogenetic tree, and the training process
of PolyPhen-2 were ignored because they are all one-time
processes. For a fair comparison, we computed PHACT,
SIFT, PolyPhen-2, and LIST-S2 scores using the same
MSAs used by PHACT and ran all these algorithms on
the same computing system. The average execution times
for PHACT, SIFT, PolyPhen-2, and LIST-S2 were 0.006,
0.0002, 0.166, and 0.0004 sec. per position, respectively,
with a standard deviation of 0.005, 0.00006, 0.142, and
0.0003, respectively. We noted that the alignment format
of LIST-S2 includes extra information, such as the number
of common and different amino acids between proteins
and the query sequence; because we provided the align-
ment file, these computations were not included in the re-
ported time for LIST-S2. These results indicate that all of
these tools can be run within seconds. Although the
PHACT algorithm involves traveling through the nodes

of the given phylogenetic tree, the computation time of
the tools was within a comparable time scale.

Discussion
In this study, we propose a novel phylogenetic tree-based
missense mutation scoring approach, PHACT, to discrim-
inate the pathogenic and neutral missense variants. We
tested PHACT on two datasets composed of Humsavar
(The UniProt Consortium 2021), ClinVar (Landrum et al.
2016), gnomAD (Karczewski et al. 2020), and Grimm circu-
larity datasets (Grimm et al. 2015). Our comparative ana-
lyses showed that PHACT afforded a better predictive
performance compared with SIFT (Sim et al. 2012) and
PolyPhen-2 (Adzhubei et al. 2010), which are tools that
are widely adopted to prioritize variants in clinical studies.
This improvement is noteworthy because PHACT, which is
a phylogenetic tree-based evolutionary conservation scor-
ing method, outperformed a conservation-based method
that was developed using evolutionary relatedness calcu-
lated directly from MSA (i.e., SIFT; Sim et al. 2012), as
well as a machine learning algorithm that uses structural
and physicochemical features in addition to the conserva-
tional measures (i.e., PolyPhen-2; Adzhubei et al. 2010).

Additional comparisons with SIFT (Sim et al. 2012),
PolyPhen-2 (Adzhubei et al. 2010), and LIST-S2 (Malhis
et al. 2020) based on the F1 score, MCC, and balanced ac-
curacy showed that PHACT can achieve better predictive
performances than the benchmark algorithms over differ-
ent datasets (tables 2 and 3, supplementary table 1
Supplementary Material online). PHACT outperformed
SIFT and PolyPhen-2 because those algorithms utilize
MSA and cannot fully consider the evolutionary relation-
ship between species. As depicted in figure 3, the use of
MSA alone is not a suitable measure for pathogenicity pre-
diction, even when the distance between species is consid-
ered (“Weighted Frequency” and “Weighted Freq. [Gaps

Table 2. Comparison of Various Metrics Against SIFT, PolyPhen-2, and
LIST-S2.

Subdataset Algorithm MCC F1 Score Balanced Accuracy

DS3 PHACT 0.760 0.856 0.887
SIFT (PHACT’s MSA) 0.596 0.761 0.805
SIFT 0.596 0.761 0.804
PPH2 0.630 0.782 0.823

DS4 PHACT 0.459 0.628 0.754
SIFT (PHACT‘s MSA) 0.350 0.556 0.689
SIFT 0.365 0.570 0.702
PPH2 0.415 0.601 0.728

DS5 PHACT 0.761 0.899 0.883
SIFT (PHACT’s MSA) 0.628 0.843 0.816
SIFT 0.664 0.870 0.819
LIST-S2 0.754 0.896 0.879

DS6 PHACT 0.515 0.821 0.768
SIFT (PHACT MSA) 0.435 0.772 0.730
SIFT 0.485 0.835 0.739
LIST-S2 0.481 0.809 0.750

NOTE.—The cutoff values for SIFT, PolyPhen-2, and LIST-S2 were set as 0.05, 0.493,
and 0.85, respectively. The cutoff for PHACT was computed over DS1 as 0.679. The
highest score is indicated in bold font in the table.

Table 3. Comparison of Various Metrics Against SIFT, PolyPhen-2, and
LIST-S2.

Subdataset Algorithm MCC F1 Score Balanced Accuracy

DS3 PHACT 0.778 0.866 0.893
SIFT (PHACT’s MSA) 0.600 0.763 0.807
SIFT 0.648 0.789 0.829
PPH2 0.636 0.783 0.824

DS4 PHACT 0.489 0.647 0.766
SIFT (PHACT‘s MSA) 0.355 0.562 0.694
SIFT 0.428 0.606 0.730
PPH2 0.419 0.603 0.730

DS5 PHACT 0.760 0.898 0.883
SIFT (PHACT’s MSA) 0.633 0.842 0.820
SIFT 0.690 0.865 0.849
LIST-S2 0.757 0.898 0.880

DS6 PHACT 0.515 0.817 0.769
SIFT (PHACT MSA) 0.435 0.778 0.729
SIFT 0.499 0.813 0.760
LIST-S2 0.479 0.803 0.751

NOTE.—The cutoff values for all algorithms were determined over the correspond-
ing dataset. The highest score is indicated in bold font in the table.
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Excluded]” in fig. 3). We observed that both SIFT and
PolyPhen-2 tended to mislabel (1) the neutral variants
that are observed at a species close to the query sequence
but are rare in terms of frequency and (2) the pathogenic
variants that are detected at multiple species because of a
single mutation in their ancestral species. The sample posi-
tions that were mislabeled by SIFT and PolyPhen-2 are gi-
ven in supplementary figure S1, Supplementary Material
online. Conversely, we observed a similar performance
for LIST-S2 and PHACT over various subsets. Similar to
PHACT, LIST-S2 also considers the distance between spe-
cies and the vulnerability of the position to the substitu-
tions. We believe that a similar performance observed
between these two approaches resulted from these simi-
larities, as the distance between species and the diversity
of the position are two important factors that are predict-
ive of the consequences of substitutions. However, LIST-S2
relies on BLASTP (Camacho et al. 2009) pairwise

alignments, which mainly align the sequences with respect
to the query sequence and are not suitable for constructing
phylogenetic trees; in turn, LIST-S2 also utilizes a taxonomy
tree to compute the number of edges between species.
Although taxonomy trees represent the classification of spe-
cies, they explain only the general groups that are obtained
using the similarities of species. Based on the data presented
in this study, we suggest that phylogenetic trees are a more
reliable input for pathogenicity prediction tools because
they are constructed by considering the unique evolution-
ary history of the genes in question.

The success of PHACT against the existing statistical
pathogenicity prediction methods is also presented in fig-
ure 7 and supplementary figures S3 and S4, Supplementary
Material online. Unlike PHACT, these methods compute
the evolutionary conservation directly from MSA. Here,
we illustrated the success of our approach, which exploits
the information stemming from the phylogenetic tree
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FIG. 7. AUC and AUPR comparisons of PHACT against the statistical pathogenicity prediction algorithms presented in dbNSFP (LIST-S2, Malhis
et al. 2020; phyloP, Pollard et al. 2010; SIFT, Sim et al. 2012; PROVEAN, Choi et al. 2012; SiPhy, Garber et al. 2009; SIFT4G, Vaser et al. 2016; GERP,
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through the higher predictive performances attained in
analyses.

Although PHACT yielded a higher accuracy than the ex-
isting conservation-based methods, it can be further im-
proved by considering other evolutionary events, such as
epistasis and coevolution. Here, PHACT computed a score
per substitution assuming the independence of the se-
quence positions. However, it is known that the coevolving
positions in a clade can be tolerated when they change to-
gether. This type of relationship between positions could
fundamentally affect the resulting prediction. Although a
few tools (EVmutation, Hopf et al. 2017; GEMME, Laine
et al. 2019; and DeepSequence, Riesselman et al. 2018) exist
that incorporate the coevolution between residues, where-
as predicting the functional consequences of missense mu-
tations, they utilize the frequency and conservation level of
amino acids to determine the coevolving positions by ig-
noring the evolutionary history. As a future direction, we
aim to incorporate the coevolution of positions into
PHACT. The second future research avenue pertains to
the consideration of paralog information to determine
the weights of ancestral nodes. Gene duplication is one
of the major mechanisms in the implementation of new
functions (Long et al. 2003). After gene duplication, one
of the two paralogs might accumulate more mutations
and diverge from the other one (Ohno 1970). Adding
the functionally diverged sequences to the MSA and the
tree would render amino acid substitutions that are in-
tolerable in the functionally diverged lineages tolerable.
In the current version of our algorithm, we do not consider
this discrimination, but cover the divergence of one copy
by assigning a lower weight to that node with the help
of our weight function. In future studies, we aim to include
the duplication process in PHACT and decrease the im-
portance of the second copy by detecting the one that
conserves the ancestral function.

Based on the evidence that the inclusion of
conservation-based features in machine learning algo-
rithms for pathogenicity prediction improves their pre-
dictive performance (Adzhubei et al. 2010; Carter et al.
2013; Schwarz et al. 2014; Dong et al. 2015; Ioannidis
et al. 2016; Ionita-Laza et al. 2016; Feng 2017; Raimondi
et al. 2017; Alirezaie et al. 2018; Rogers et al. 2018;
Rentzsch et al. 2019), we plan to develop a supervised ma-
chine learning algorithm based on both PHACT scores and
features derived from the phylogenetic tree in the future.
By doing so, we aim to increase the discriminative ability of
our approach for the pathogenic and neutral missense var-
iants. Finally, we plan to develop a web server on which
users can access the prediction scores and phylogenetic
tree information for a given protein.

Materials and Methods
Datasets
The reference human protein sequences used in the pre-
sent study were obtained from the UniProtKB/Swiss-Prot

Knowledgebase database (The UniProt Consortium
2021) which was released in April 2019 (Release
2019_04). Two different datasets, including missense var-
iants, were constructed to assess the performance of our
algorithm.

Disease-related variants of the first dataset were ob-
tained from the UniProtKB/Swiss-Prot Knowledgebase
(The UniProt Consortium 2021) and ClinVar database
(Landrum et al. 2016). The former is a high-quality, manu-
ally annotated and reviewed protein sequence database. All
missense variants annotated in the human UniProtKB/
Swiss-Prot entries are listed in the Humsavar dataset
(https://www.uniprot.org/downloads). We used the
Humsavar dataset released in February 2022 to extract
the variants reportedly associated with diseases (i.e., patho-
genic variants). ClinVar is a freely available archive of inter-
pretations of the clinical significance of variants in reported
conditions (https://www.ncbi.nlm.nih.gov/clinvar/). We
downloaded the ClinVar database released in February
2022 to obtain the disease-associated variants. In the pre-
sent study, we selected ClinVar’s germline missense var-
iants with clinical significance as pathogenic or likely to
be pathogenic. ClinVar provides a review status for each en-
try indicating the trustworthiness of assertions. The review
status values range from 0 to 4 (i.e., 0: lowest level; 4: highest
level). We excluded the entries scoring 0 to obtain a more
reliable dataset. Due to the complex underlying mechan-
isms of cancer-related diseases, in the present study, we
did not consider the pathogenic variants associated with
the cancer types listed on the National Cancer Institute’s
website (https://www.cancer.gov/types). We generated
the neutral variants of the first dataset by extracting the
missense mutations that had alternate allele frequencies
above 0.01 from the Genome Aggregation Database
(gnomAD v3.1) (Karczewski et al. 2020). We merged the
pathogenic variants selected from the Humsavar and
ClinVar datasets and extracted the neutral variants from
the gnomAD database to form our first dataset (referred
to as the HCG dataset). We excluded the variants that
had conflicting clinical significance (i.e., the ones labeled
as pathogenic in one dataset, but labeled as neutral in an-
other dataset) from the HCG dataset. Before the elimin-
ation of variants, we matched variants from each dataset
with their corresponding chromosome coordinates to
map each of them to our reference protein sequence data-
base. Tomatch the variants, we benefited from the homo_-
sapiens_variation.txt.gz file from theUniProtKB/Swiss-Prot
Knowledgebase database, which lists variants identified on
protein isoforms. Through this approach, we could include
the variants identified on protein isoforms in the ClinVar
and gnomAD datasets into our variant dataset, using the
corresponding amino acid positions of these variants in
our reference amino acid sequences.

To further test our algorithm, we aggregated five public-
ly available datasets presented in the Grimm circularity da-
taset (Grimm et al. 2015) that we obtained fromVariBench
(Sasidharan Nair and Vihinen 2013). We obtained all the
corresponding variants for the given chromosome
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coordinates and amino acid substitutions in the Grimm
dataset. We included the ones that matched the reference
protein sequence database of our study and eliminated the
variants with conflicting class labels from the combined
dataset (named as the Grimm dataset).

In this study, we used dbNSFP v4.1 (Liu et al. 2020) to
obtain the precomputed ranked scores of benchmark al-
gorithms. Building a phylogenetic tree is a time-consuming
process. To include as many proteins as possible in our re-
search, we built phylogenetic trees starting with proteins
containing the highest number of variants in the HCG da-
taset. We performed our analyses on 3,023 proteins in-
cluded in the HCG and Grimm datasets (see
Supplementary Material online for the list of proteins
used in this study).

BLAST and MSA
The homologs of each query sequence were searched
through the PSI–BLAST (Altschul et al. 1997) against a
nonredundant database of 14,010,480 proteins obtained
from the reference proteomes in the UniProtKB/
Swiss-Prot Knowledgebase (The UniProt Consortium
2021). We performed two PSI–BLAST iterations with
5,000 maximum target sequences. Due to computational
limitations of building the phylogenetic trees, we limited
the hits to 1,000 sequences with a minimum identity of
30% and E-value of 0.00001. The sequences were aligned
using MAFFT FFTNS (Katoh and Standley 2013), and the
MSA was trimmed with the trimAl tool gappyout method
(Capella-Gutierrez et al. 2009).

Maximum-Likelihood Phylogenetic Tree
The resulting MSA was used to generate a maximum-
likelihood phylogenetic tree through the RaxML-NG tool
(Kozlov et al. 2019) via the LG4X model, leaving the re-
maining parameters at default settings.

Ancestral Reconstruction
Positions with a “gap” character in the query sequence
were removed from the original MSA (without trimming).
The resulting MSA was used to perform ancestral se-
quence reconstructions using the RaxML-NG tool
(Kozlov et al. 2019) via the LG4X model, maintaining the
remaining parameters at default settings.

Workflow Engine and High-Performance Computing
Large-scale data analysis involving the chained execution
of many command-line applications requires a workflow
engine that helps to automate human-readable pipeline
runs and ensure reproducibility. This study effectively
used a workflow management system tool, referred to as
Snakemake Field (Koster and Rahmann 2012), which of-
fers high-performance computing cluster-level scalability,
to perform reproducible and scalable data analysis. In total,
330K CPU hours were consumed for 3,380 proteins, and al-
most 2 TB of data were created during the long-term
analyses.

Supplementary Material
Supplementary data are available atMolecular Biology and
Evolution online.
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