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1. Summary
The initiation of DNA replication requires two protein kinases: cyclin-dependent

kinase (Cdk) and Cdc7. Although S phase Cdk activity has been intensively

studied, relatively little is known about how Cdc7 regulates progression through

S phase. We have used a Cdc7 inhibitor, PHA-767491, to dissect the role of Cdc7 in

Xenopus egg extracts. We show that hyperphosphorylation of mini-chromosome

maintenance (MCM) proteins by Cdc7 is required for the initiation, but not for the

elongation, of replication forks. Unlike Cdks, we demonstrate that Cdc7 executes

its essential functions by phosphorylating MCM proteins at virtually all replica-

tion origins early in S phase and is not limiting for progression through the

Xenopus replication timing programme. We demonstrate that protein phos-

phatase 1 (PP1) is recruited to chromatin and rapidly reverses Cdc7-mediated

MCM hyperphosphorylation. Checkpoint kinases induced by DNA damage or

replication inhibition promote the association of PP1 with chromatin and increase

the rate of MCM dephosphorylation, thereby counteracting the previously com-

pleted Cdc7 functions and inhibiting replication initiation. This novel

mechanism for regulating Cdc7 function provides an explanation for previous

contradictory results concerning the control of Cdc7 by checkpoint kinases and

has implications for the use of Cdc7 inhibitors as anti-cancer agents.
2. Introduction
In eukaryotic cells, DNA replication occurs through a series of ordered events

beginning with the binding of the origin recognition complex (ORC) to DNA.

Cdc6 and Cdt1 are assembled onto ORC and promote the loading of a double hex-

amer of the mini-chromosome maintenance 2–7 (MCM) complex around origin

DNA. This forms the pre-replicative complex (pre-RC) and licenses the origin for

replication in the subsequent S phase [1–5]. The firing of licensed origins during

S phase is triggered by two S phase promoting kinases, Cdk and Dbf4-dependent

Cdc7 kinase (DDK), which promote assembly of the Cdc45-MCM-GINS (CMG)

replicative helicase [6].
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Cdc7 is an essential serine/threonine kinase conserved

from yeast to humans. It is activated by associating with a

cyclin-like regulatory subunit, Dbf4. In vertebrates, a second

regulator of Cdc7, Drf1, has been identified [7–11]. Cdc7

phosphorylates several components of the replicative

machinery, including multiple subunits of the Mcm2–7 com-

plex [12–16], Cdc45 [17,18] and DNA polymerase a [19].

Of these proteins, Mcm2–7 appears to be the essential

DDK target during DNA replication, and in budding yeast

a mutation in MCM5 can bypass the requirement for Cdc7

and Dbf4 [20]. In Xenopus egg extracts, Cdc7 is recruited

directly to chromatin-bound Mcm2–7 by its regulatory sub-

unit [15,21]. The N-terminus of Mcm2, Mcm4 and Mcm6

appear to be major substrates for DDK kinase activity [6].

The hyperphosphorylation of Mcm4 requires DDK activity

in vivo and is enriched in the CMG complex. An inhibitory

activity present on the Mcm4 N-terminal tail is relieved

upon DDK phosphorylation [22], and DDK activity is no

longer required for viability in cells lacking this inhibitory

region. This suggests that the essential function of DDK is

to relieve the inhibitory activity residing in the N-terminal

tail of Mcm4.

It is currently unclear how DDK activity is regulated

during S phase. In budding yeast, DDK is required late in S

phase for the initiation of late-firing origins [23,24]. In fission

yeast, Cdc7 is a rate-limiting factor for origin firing and

increased levels of Cdc7 and Dbf4 enhance origin firing

[25,26]. The recruitment of Cdc7 and Dbf4 to pericentromeric

replication origins early in the cell cycle allows them to

initiate replication early in S phase [27]. The DDK subunit

Dbf4 is in low abundance in budding yeast and overexpres-

sion of Dbf4 with two CDK substrates, Sld2 and Sld3, plus

their binding partner Dpb11 is sufficient to allow late-firing

origins of replication to initiate early [28,29]. These studies

in yeast suggest that DDK plays a role in promoting initiation

at individual replication origins to drive the replication

timing programme. However, studies in other organisms

are preliminary, and activities that are rate-limiting for S

phase progression in metazoans have not been defined.

When replication is inhibited or DNA is damaged during

S phase, activation of checkpoint kinases helps to promote

completion of S phase by stabilizing replication forks [30]

and regulating the firing of dormant replication origins [31].

In budding yeast, phosphorylation of Dbf4 by the Rad53 check-

point kinase plays a role in restricting origin firing [32,33].

However, the role of DDKs in the checkpoint response in

metazoans is currently controversial. Initial studies suggested

that the topoisomerase II (Topo II) inhibitor etoposide causes

checkpoint-mediated inhibition of DDK complex formation

and kinase activity [34,35]. However, later studies provided

evidence that DDK expression, complex formation, chromatin

association and kinase activity remain intact in cells during S

phase checkpoint responses [9,11,36–38].

In this study, we have addressed aspects of DDK function

in Xenopus egg extracts using PHA-767491 [39,40], a small mol-

ecule inhibitor of Cdc7. We show that Cdc7 phosphorylates

Mcm4 and executes its essential replication function early in

S phase. Unlike the case for Cdk activity, DDK activity is not

limiting for progression through the replication timing pro-

gramme. We demonstrate that protein phosphatase 1 (PP1)

rapidly reverses DDK-mediated Mcm4 hyperphosphorylation.

We also prove that checkpoint kinase activity induced by eto-

poside reduces Mcm4 phosphorylation but does not reduce
the amount of chromatin-associated Cdc7. Finally, we show

that etoposide increases the association of PP1 with chromatin

in a checkpoint-dependent manner. This suggests that check-

point-mediated recruitment of PP1 to chromatin plays a

major part in the response to the inhibition of DNA replication.
3. Results
3.1. PHA-767491 inhibits DNA replication in

Xenopus extracts
We titrated PHA-767491 [39,40] into Xenopus egg extracts

and measured its effect on the replication of demembrana-

ted Xenopus sperm nuclei. About 20–50 mM PHA-767491

fully inhibited DNA synthesis (figure 1a). Nuclear envelope

formation still took place in the presence of PHA-767491,

indicating that the inhibition of DNA synthesis was not due

to non-specific effects (figure 1b). Similar results were obtained

using G1 nuclei from somatic Chinese hamster ovary (CHO)

cells as DNA template (see electronic supplementary material,

figure S1a).

Cdc7-mediated phosphorylation can be observed as a mobi-

lity shift of Mcm4 after SDS–PAGE [9,22,41] (see electronic

supplementary material, figure S1b). Hyperphosphorylation

of chromatin-bound Mcm4 was inhibited when extracts

were treated with 50 mM PHA-767491 but was not affec-

ted when Cdk activity was blocked with 100 nM p27kip1

(figure 1c and the electronic supplementary material,

figure S1c). This is consistent with previous reports showing

that the essential replication function of Cdc7 is executed

before that of Cdks [15,42,43]. PHA-767491 inhibited the associ-

ation of Cdc45 and proliferating cell nuclear antigen (PCNA)

with chromatin, indicating that the initiation of replication

forks was inhibited (figure 1c,d and the electronic supplemen-

tary material, figure S1c). In previous work, 1.4 mM PHA-

767491 was reported to inhibit recombinant Cdc7 kinase by

90% [44]. Consistent with this value, we observed that 3 mM

PHA-767491 was required to substantially inhibit Mcm4 hyper-

phosphorylation in Xenopus extract and this correlated with the

reduction of chromatin-bound Cdc45 and PCNA (see electronic

supplementary material, figure S1d). Because of the complex

nonlinear relationship between the rate of replication initiation

and total DNA synthesis, higher concentrations of PHA-767491

are required to abolish DNA replication in Xenopus egg extract.

Cdc7 is recruited to chromatin by direct interaction with

the Mcm2–7 double hexamer [15,21], which does not occur

when licensing is prevented by treating extracts with geminin

(figure 1d ). In contrast, no significant decrease in Cdc7

chromatin association was seen in extracts treated with PHA-

767491 (figure 1d). In addition, PHA-767491 did not block

the association of Cdc6 with chromatin that occurs when licen-

sing is blocked [45–47] (figure 1d ). Taken together, these

results are consistent with the idea that PHA-767491 inhibits

the initiation of DNA replication by blocking the kinase activity

of Cdc7.

Previous work has demonstrated that in Xenopus egg

extracts, S phase Cdks (Cdk2/cyclin E and Cdk2/cyclin A)

are required throughout S phase for the initiation of replica-

tion but are not required for fork progression [48–50].

When CDK inhibitors such as p27kip1 are added to extracts

in early S phase the rate of DNA synthesis drops off over a

period of 15–20 min as forks terminate within active origin
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Figure 1. PHA-767491 inhibits DNA replication and Mcm4 hyperphosphorylation. (a) Interphase Xenopus egg extract was supplemented with demembranated
sperm nuclei and [a-32P]dATP plus different concentrations of PHA-767491; after 90 min total DNA synthesis was determined. Mean and s.e.m. of 20 independent
experiments is shown. (b) Extracts supplemented with demembranated sperm nuclei plus (ii,iv) or minus (i,iii) 50 mM PHA-767491 were incubated for 40 min;
nuclei were then stained with Hoechst 33258 and visualized with phase contrast (iii,iv) or fluorescence microscopy (i,ii). Scale bar, 10 mm. (c,d) Extracts were
supplemented with demembranated sperm nuclei plus or minus 50 mM PHA-767491, p27kip1 or geminin. After incubation for the indicated times, chromatin
was isolated and immunoblotted for Mcm4, Cdc45, Cdc7, Cdc6 and PCNA. The lower portion of the gel was stained with Coomassie to visualize histones.
(e) Egg extract was supplemented with demembranated sperm nuclei and [a-32P]dATP. After incubation for 40 min, aliquots were optionally supplemented
with 50 mM PHA-767491, p27kip1 or both. At the indicated times, total DNA synthesis was determined. ( f ) Egg extract was first incubated with demembranated
sperm nuclei for 40 min, and the extract was supplemented with 50 mM PHA-767491. At the indicated times, chromatin was isolated and immunoblotted for
Mcm4, Psf2 and PCNA.
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clusters [49] (figure 1e, filled circles). When PHA-767491 was

added to extract in early S phase, it had a similar effect to

p27kip1, suggesting that, like Cdks, Cdc7 is required for

ongoing initiation throughout S phase (figure 1e, squares).

This is consistent with DNA fibre analysis in human cells

suggesting that PHA-767491 does not significantly inhibit

replication fork progression [39].

When we examined the chromatin in these experiments,

we observed that Mcm4 was almost completely dephosphory-

lated within 10 min after PHA-767491 addition to the extract

(figure 1f). This raises the possibility that Cdc7-dependent

MCM phosphorylation is required for both initiation and

elongation of replication forks, and that the decline in replica-

tion rate seen when PHA-767491 is added to extracts in early

S phase is partly due to decreasing fork progression rates as

MCM dephosphorylation occurs. However, two features of

this experiment argue against a role for Cdc7-dependent

MCM phosphorylation in fork elongation. First, if Cdc7 activity

were required for elongation of existing forks, then co-addition

of PHA-767491 with p27kip1 in early S phase should cause

more inhibition of DNA synthesis over that seen with p27kip1

alone; however, this was not the case (figure 1e, triangles).

Second, the decline in replication rate seen after addition of

PHA-767491 was associated with a corresponding loss of

chromatin-bound Psf2 (part of the GINS complex) and

PCNA (a processivity factor for replicative polymerases),

consistent with the decline in replication rate being due to

termination of active replisomes (figure 1f ).

We directly addressed whether Cdc7-dependent MCM

phosphorylation is required for fork elongation with the exper-

iment outlined in figure 2a. Sperm nuclei were incubated

in extract in the presence of 100 mM aphidicolin, a competi-

tive inhibitor of replicative DNA polymerases, which allows

forks to initiate but prevents them from moving away from

replication origins. After 60 min, extracts were supplemented

with p27kip1 to prevent any further initiation, and optionally

supplemented with PHA-767491. After a further 15 min incu-

bation, Mcm4 remained fully phosphorylated in the presence

of p27kip1 alone, but had become dephosphorylated in extracts

supplemented with PHA-767491 (figure 2c). Chromatin was

then isolated and transferred to extract containing p27kip1 (to

prevent any further initiation events from occurring), and

optionally supplemented with PHA-767491 to prevent re-

phosphorylation of the dephosphorylated MCMs. Nascent

DNA was labelled with [a-32P]dATP and then separated on

alkali agarose gels to monitor replication fork progression

(figure 2b). Forks containing phosphorylated and unpho-

sphorylated Mcm4 progressed at essentially the same rate:

658+54 nt min21 for the control sample and 698+
33 nt min21 for the PHA-767491 sample (mean+ s.e.m. for

three independent experiments). This suggests that MCM

phosphorylation by Cdc7 is not required for efficient fork

elongation once initiation has occurred. Some smearing of the

nascent strands in the PHA-767491 samples may suggest a

slight decrease of fork stability in the absence of Cdc7 activity.

3.2. PP1 reverses Mcm4 hyperphosphorylation
Figures 1f and 2c demonstrate that Mcm4 is rapidly depho-

sphorylated after Cdc7 activity is inhibited, therefore we

investigated how this happens. Sperm chromatin was incu-

bated in Xenopus extract supplemented with p27kip1 to

allow hyperphosphorylated Mcm4 to accumulate on
chromatin. When PHA-767491 was then added, Mcm4 was

rapidly dephosphorylated (figure 2d ). Okadaic acid is an

inhibitor of protein phosphatases in the PP1 and PP2A classes

with a higher potency towards PP2A, so that submicromolar

concentrations typically inhibit PP2A but not PP1. When high

concentrations (2 mM) of okadaic acid were added along with

PHA-767491, Mcm4 dephosphorylation was abolished; how-

ever, lower concentrations (0.25–1 mM) of okadaic acid were

largely ineffective (figure 2d ). This suggests that PP1 is largely

responsible for the rapid dephosphorylation of Mcm4. Consist-

ent with this idea, PP1 has been shown to physically interact

with Mcm2–7 hexamers bound to chromatin in Xenopus
egg extracts [5]. To test the role of PP1 directly, we optionally

treated extracts with Inhibitor-2 (I-2), a peptide inhibitor of PP1

(figure 2e), or tautomycetin, another PP1-selective inhibitor

(figure 2f ). Both of these inhibitors prevented the dephosphory-

lation of Mcm4, suggesting that PP1 is the main phosphatase

acting on Mcm4 in Xenopus extracts.

In order to demonstrate a functional role for PP1 in depho-

sphorylating MCMs, we titrated PHA-767491 into egg extract

plus or minus I-2. Inhibition of PP1 made DNA synthesis

more resistant to PHA-767491 (figure 3a), consistent with PP1

playing a significant role in reversing Cdc7 action. Despite

this, the balance between PP1 and Cdc7 strongly favours

the phosphorylated state as Mcm4 hyperphosphorylation is

seen soon after Cdc7 is recruited to chromatin (figure 1d ).

Consistent with this conclusion, inhibition of PP1 activity by

pre-incubating extract with I-2 did not cause observable

acceleration of DNA synthesis (figure 3b) or Mcm4 hyperpho-

sphorylation (figure 3c). Instead, we observed that higher

concentrations of I-2 delayed or inhibited DNA synthesis,

suggesting that PP1 displays additional positive roles in DNA

replication (see electronic supplementary material, figure S1e).
This is consistent with other reported functions of PP1 in Xenopus
extracts, which include the reversal of ATM activity [51,52].
3.3. Specificity of PHA-767491
We next determined whether the inhibition of DNA replica-

tion by PHA-767491 was solely due to inhibition of Cdc7

activity. When tested against a panel of 95 protein kinases,

1 mM PHA-767491 inhibited only seven other protein kinases

greater than 90%: DYRK1A, 2 and 3, PRK2, GSK3b, p38d

MAPK and CK1 (see electronic supplementary material,

table S1), broadly in line with previous reports [39,40,44].

None of these kinases have been implicated in the initiation

of DNA replication, and inhibitors of these kinases did not

significantly inhibit DNA replication in egg extracts (data

not shown). The only kinase previously implicated in DNA

replication that is affected by PHA-767491 is Cdk2, which

was inhibited by 72% under these assay conditions.

We designed experiments to test the extent to which PHA-

767491 inhibits DNA replication by inhibiting Cdk2 activity,

exploiting the observation that Cdc7 acts before Cdks to

promote DNA replication [15,42]. We first confirmed that

PHA-767491 inhibits initiation prior to the last Cdk-dependent

step. Sperm nuclei were incubated in extract containing PHA-

767491 and then chromatin was transferred to extract plus or

minus p27kip1 to inhibit Cdks (figure 3d). Replication occurred

only in the absence of p27kip1, demonstrating that the Cdk-

dependent step in replication initiation cannot occur prior to

the step inhibited by PHA-767491.
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containing 20 mM PHA-767491 and I-2 (figure 3e). Replication

then depends on Cdk activity in the second extract, so if S

phase Cdk activity were inhibited by 20 mM PHA-767491,

no DNA replication will take place. Figure 3e shows that pre-

incubated ‘KIP1 chromatin’ replicated to approximately 60%

of control levels in extract treated with PHA-767491. This

suggests that the Cdk-dependent step in DNA replication can

occur in the presence of concentrations of PHA-767491 that

inhibit replication initiation. The failure of pre-incubated

‘KIP1 chromatin’ to completely replicate in extract containing

PHA-767491 is most likely due to some MCM dephosphoryla-

tion occurring even in the presence of I-2; higher I-2

concentrations could not be used because they inhibit DNA

replication (see electronic supplementary material, figure S1e).

3.4. Time of action of Cdc7
We next used PHA-767491 to investigate the execution point

of Cdc7 in S phase. We first established that unlike Mcm4 that

is bound to DNA, soluble Mcm4 was not hyperphosphory-

lated and its mobility on SDS–PAGE was not significantly

changed when extracts were treated with PHA-767491 (see

electronic supplementary material, figure S2a). Once origins

have been licensed by loading Mcm2–7, chromatin is then

assembled into interphase nuclei [53]. Although Cdc7 can be

recruited to licensed chromatin prior to nuclear assembly

[15], this occurs more efficiently after nuclear assembly has

taken place [42]. Using wheat germ agglutinin (WGA) to

disrupt nuclear pore function [54], we demonstrated that

increasing concentrations of WGA progressively inhibited

both Mcm4 hyperphosphorylation and Cdc7 chromatin associ-

ation (see electronic supplementary material, figure S2b) at

concentrations that inhibited both DNA synthesis (see electro-

nic supplementary material, figure S2c) and nuclear assembly

(see electronic supplementary material, figure S2d). This

indicates that the nuclear import of Cdc7 enhances, though

is not essential for, Cdc7 binding and phosphorylation of

chromatin-bound Mcm2–7.

When sperm nuclei replicate in Xenopus egg extracts, origins

initiate over a period of 20–30 min [49,55,56]. In order to deter-

mine whether Cdc7 acts on all origins early in S phase, or

whether it acts on late-firing origins only later in S phase, we

used a hybrid system where mammalian somatic nuclei from

cells synchronized in G1 are incubated in Xenopus extracts

[57,58]. These nuclei replicate in Xenopus extract according to

the same timing programme observed in vivo, though com-

pressed into a shorter interval of approximately 120 min

compared with the approximately 8 h measured in vivo. This

provides a longer S phase compared with sperm nuclei,

making it easier to distinguish different stages of S phase.

When nuclei from G1 CHO cells were added to Xenopus
extract, chromatin-bound Mcm4 became maximally hyperpho-

sphorylated within 20–40 min (figure 4a), slightly slower than

was observed using Xenopus sperm nuclei (see electronic sup-

plementary material, figure S1b). However, on both templates,

maximal Mcm4 hyperphosphorylation occurred in early S

phase, suggesting that by this time Cdc7 has acted on both

early and late origins. Addition of the PP1 inhibitor I-2 did

not accelerate either Mcm4 hyperphosphorylation (figure 4a)

or the rate of DNA synthesis (figure 4b), consistent with our

observations on sperm nuclei (figure 3b,c). To show that Cdc7

executes its essential function at all replication origins early in

S phase, we added PHA-767491 to extracts at different times
after addition of CHO nuclei (figure 4c,d). I-2 was present in

all experiments to prevent dephosphorylation of Mcm2–7.

Figure 4d shows that when PHA-767491 was added at

30 min, before S phase had started, replication subsequently

occurred to approximately 60% of control levels. When PHA-

767491 was added at 50 min, in very early S phase, subsequent

DNA synthesis occurred to approximately 90% of control

levels. This suggests that the essential function of Cdc7 at

both early- and late-firing origins is completed very early in S

phase and correlates with the time of Mcm4 hyperphosphoryla-

tion, even though dephosphorylation of Mcm4 by PP1 can

occur subsequently.

These results are in contrast to experiments indicating that

even late in S phase, inhibition of Cdk activity prevents

further initiation [49,58]. To verify this difference between

Cdk and Cdc7 execution points, we compared PHA-767491

with a Cdk inhibitor, roscovitine, in extracts where MCM

dephosphorylation was prevented by the addition of I-2.

When PHA-767491 or roscovitine was added at the same

time as the CHO nuclei, DNA replication was completely

inhibited (figure 4e, open symbols). When PHA-767491 was

added at 35 min, replication proceeded to 63% of control

levels (figure 4e, filled squares), consistent with the results

shown in figure 4d. By contrast, when roscovitine was

added at 35 min, replication was largely inhibited (to 16%

of control levels; figure 4e, filled triangles) because Cdks

only act at origins less than 5 min before they initiate [49].

The more pronounced effect of roscovitine on the replication

of CHO nuclei when compared with sperm chromatin (com-

pare figures 1e and 4e) is because of the more extended timing

programme of the CHO nuclei [58] meaning that initiation

events occur over a much longer period of time. These results

indicate that in Xenopus egg extracts Cdc7 executes its func-

tion before Cdk, and suggest that once Cdc7 has completed

its essential function it is no longer the rate-limiting factor

in driving the replication timing programme. However, contin-

ued Cdc7 activity may still be required later in S phase because

of the PP1-mediated dephosphorylation of Mcm4. Differences

between the activity of roscovitine and PHA-767491 in this

experiment also provide further evidence that, at the con-

centration used, PHA-767491 does not substantially inhibit S

phase Cdk function.

In order to study the role of Cdc7 in the replication timing

programme progression, we analysed the different replication

patterns observed as CHO nuclei progress through S phase

in vitro [57,58]. G1 CHO nuclei were incubated in extract

where PP1 had been inhibited with I-2 and then PHA-767491

or roscovitine was added at 35 min. Extracts were pulsed with

Cy-3 dUTP at 60 or 90 min to allow the visualization of actively

replicating factories/clusters [58]. In the absence of PHA-767491

or roscovitine, most nuclei isolated at 60 min showed a type III/

IV replication pattern typical of mid–late S phase (figure 4f ).

When roscovitine was added at 35 min, the replication profile

was significantly slowed relative to control ( p , 0.0001 by

Mann–Whitney test at both 60 and 90 min), indicating that con-

tinued Cdk activity during S phase is required for progression

through the replication timing programme [58]. In contrast,

when PHA-767491 was added at 35 min, the overall replication

pattern profile was not significantly different from the controls

( p � 0.1 by Mann–Whitney test at both 60 and 90 min), indicat-

ing that continued Cdc7 activity is not required for progression

of nuclei through the replication timing programme if Mcm2–7

dephosphorylation is prevented.
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3.5. Effect of etoposide on Cdc7 function
There is some controversy over the potential regulation of Cdc7

by checkpoint kinases. A previous study has implicated Cdc7 in

the intra-S checkpoint response to etoposide in Xenopus extracts

[34]. However, subsequent work indicated that etoposide does
not inhibit Cdc7 kinase activity in either Xenopus egg extracts

or in human cells [9,11,36–38]. Consistent with the report of

Costanzo et al. [34], we observed that when 300 mM etoposide

was added to Xenopus extract along with sperm chromatin,

Mcm4 hyperphosphorylation was inhibited (figure 5a–c),

the amount of Cdc7 associated with chromatin decreased
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(figure 5c,d) and DNA replication was inhibited (figure 5e and

the electronic supplementary material, figure S3a). When caf-

feine was added to abolish ATM and ATR checkpoint kinase

activity, Mcm4 hyperphosphorylation (figure 5a–c) and DNA

synthesis (figure 5e) were restored to control levels in etopo-

side-treated extract. However, consistent with Costanzo et al.
[34], caffeine did not restore normal levels of Cdc7 on chromatin

(figure 5c,d). This suggests that etoposide has two distinct

effects on Cdc7 activity: a checkpoint-dependent inhibition of
Mcm4 phosphorylation and a checkpoint-independent inhi-

bition of Cdc7 chromatin association. Inhibition of checkpoint

kinases can restore Mcm4 hyperphosphorylation even though

levels of chromatin-associated Cdc7 remain low, indicating

that the etoposide-induced dephosphorylation of Mcm4 is at

least in part mediated by caffeine-sensitive checkpoint kinases.

To understand the checkpoint-independent effect of

etoposide, we investigated its known target, Topo II, and

its associated functions. Etoposide causes the accumulation
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of covalently linked protein–DNA complexes between Topo

II and DNA. Topo II is rapidly loaded onto sperm chromatin

as it undergoes decondensation in Xenopus egg extract [59].

Nuclei assembled in the presence of etoposide (figure 5f,
‘ETO at 0 min’) were significantly smaller than control

nuclei. However, when etoposide was added after chromatin

had decondensed, nuclei subsequently attained normal sizes

(figure 5f, ‘ETO at 30 min’) and trapped less Topo II on DNA,

allowed more Cdc7 to bind to chromatin and allowed normal

levels of Mcm4 hyperphosphorylation (figure 5g). This is
consistent with previous results indicating that proper

nuclear assembly enhances Cdc7 chromatin recruitment [42]

(electronic supplementary material, figure S2).

Etoposide can potentially induce extensive double-strand

breaks when replication forks encounter covalently linked

Topo II on DNA. We therefore examined whether etoposide

requires ongoing DNA replication to inhibit Mcm4 hyperpho-

sphorylation. Figure 6a,b shows that etoposide still inhibited

Mcm4 hyperphosphorylation in extract supplemented with

p27kip1 to block the initiation of DNA replication. Furthermore,
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creation of DNA double-strand breaks by adding a restriction

enzyme to egg extract did not inhibit Mcm4 hyperphosphory-

lation (see electronic supplementary material, figure S3b,c).

Taken together, these results suggest that the major effect of

etoposide on Cdc7 does not require ongoing DNA synthesis.

We then asked how caffeine could rescue the etoposide-

induced inhibition of Mcm4 phosphorylation without restor-

ing normal levels of chromatin-bound Cdc7. Because caffeine

is a relatively non-specific inhibitor of ATM/ATR family

kinases, we used more specific inhibitors, KU55993 and

NU7441, to bypass the effect of the ATM and DNA-PK

kinases, respectively. Figure 6c,d shows that KU55993 and

NU7441 were each able to partially restore Mcm4 hyperpho-

sphorylation. The total amount of DNA synthesized was also

partially rescued by KU55993 and NU7441, but recruitment

of Cdc7 was not affected (see electronic supplementary

material, figure S3d,e). This suggests that both ATM and

DNA-PK play a role in etoposide-induced inhibition of

Mcm4 hyperphosphorylation.

If checkpoint kinases do not inhibit Cdc7 chromatin loading

(figure 5c,d), then they could instead promote Mcm4 depho-

sphorylation. Figure 6e,f shows that pre-treatment of extracts

with the PP1 inhibitor I-2 completely prevented the etopo-

side-induced inhibition of Mcm4 hyperphosphorylation.

Etoposide-induced inhibition of Mcm4 hyperphosphorylation

is therefore sensitive to PP1 activity levels. Interestingly, I-2

treatment did not rescue the etoposide-induced inhibition

of DNA replication (see electronic supplementary material,

figure S3f ), consistent with previous observations that ATM

can reduce DNA replication initiation in Xenopus egg extracts

by inhibiting Cdk2 [60].

It was previously reported that etoposide treatment of

Xenopus egg extracts does not decrease Cdc7 kinase activity

[38], consistent with the idea that checkpoint kinases inhibit

Cdc7 function by increasing the rate of MCM dephosphoryla-

tion. We tested this idea by incubating chromatin in extracts

optionally supplemented with etoposide or etoposide plus

caffeine. At 60 min, PHA-767491 was added to the extracts,

and chromatin was isolated at different times thereafter to

assess the rate of Mcm4 dephosphorylation (figure 6g,h).

On addition of PHA-767491 to control extract, Mcm4 dis-

played a modest decrease in phosphorylation over a period

of 3 min. In etoposide-treated extract, however, Mcm4 was

almost completely dephosphorylated within the same

period of time. This etoposide-induced dephosphorylation

was partially blocked by co-addition of caffeine. These results

are consistent with the idea that etoposide reduces Mcm4

phosphorylation at least in part by inducing a checkpoint-

dependent increase in the rate of Mcm4 dephosphorylation.
3.6. Checkpoint-dependent recruitment of PP1
to chromatin

We have previously demonstrated that PP1 is the major Mcm4

phosphatase that opposes Cdc7 function (figure 2b–d). We

therefore tested the idea that the checkpoint-dependent

increase in Mcm4 dephosphorylation was mediated by

increased recruitment of PP1 to chromatin. Figure 7a shows

that etoposide strongly enhances the chromatin recruitment

of two PP1 isoforms, PP1a and PP1g. The recruitment of

PP1a and PP1g was abolished when checkpoint kinases were

inhibited by caffeine, indicating that checkpoint kinases
promote PP1 association with chromatin. Taken together,

these results suggest that checkpoint kinase activity induced

by etoposide reduces Cdc7 function by enhancing the activity

of PP1 against chromatin-bound Mcm2–7.

We next examined whether the recruitment of PP1g to chro-

matin was enhanced by other agents that activate checkpoint

kinases. Chromatin was isolated from extract supplemented

with aphidicolin, an inhibitor of replicative DNA polymerases

which typically activates ATR, or from extract supplemented

with the restriction enzyme EcoRV, which creates double-

strand DNA breaks and activates ATM. Figure 7b demonstrates

that both these agents enhanced the recruitment of PP1g to

chromatin to a level at least as high as is seen with etoposide.

Figure 7c shows that the enhanced recruitment of PP1g to

chromatin induced by aphidicolin and EcoRV was largely abol-

ished by co-addition of caffeine, suggesting that it is dependent

on the activity of checkpoint kinases.

Despite the enhanced recruitment of PP1g induced by

aphidicolin and EcoRV, there was no observable decrease

in Mcm4 hyperphosphorylation (figure 7b) comparable with

that seen with etoposide. We therefore wanted to know

what is unique about etoposide. We considered the possi-

bility that etoposide is able to induce observable Mcm4

dephosphorylation, because unlike the other treatments that

activate ATM and ATR, it also causes a reduction in the

quantity of chromatin-bound Cdc7 in an AMT/ATR-

independent manner (figure 5b,c). Because Cdc7 activity

appears to be in large excess in the Xenopus system (as evi-

denced by the rapid and quantitative hyperphosphorylation

of Mcm4 very early in S phase), significant Mcm4 depho-

sphorylation may require both the checkpoint-dependent

increase in Mcm4 dephosphorylation and the checkpoint-

independent reduction in chromatin-associated Cdc7 kinase

activity. To test this idea, we partially inhibited Cdc7 activity

with a very low concentration of PHA-767491 (0.75 mM)

which only induced partial Mcm4 dephosphorylation

(figure 7d,e, ‘low PHA’). A combination of 0.75 mM

PHA-767491 with aphidicolin caused almost complete

dephosphorylation of Mcm4 (figure 7d,e, ‘APH þ low

PHA’). This Mcm4 dephosphorylation was reversed with caf-

feine, consistent with it being mediated by the checkpoint-

enhanced recruitment of PP1g to chromatin (figure 7d,e,

‘APH þ low PHA þ caffeine’).
4. Discussion
Using the small molecule inhibitor, PHA-767491, we demon-

strate that in Xenopus egg extracts, Cdc7 executes its essential

functions early in S phase, prior to the Cdk-dependent step

in replication initiation. We show that Cdc7 is not the rate-

limiting factor in driving the replication timing programme

in egg extracts once Cdc7 has executed its essential function

early in S phase. We also prove that PP1 rapidly reverses

the Cdc7-dependent hyperphosphorylation of Mcm4, and

that checkpoint-mediated enhancement of PP1 activity

functionally opposes Cdc7.

4.1. Cdc7 is not rate-limiting for DNA replication in
egg extracts

We have used PHA-767491 to define precisely when Cdc7

acts in the sequence of events leading to replication initiation
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in Xenopus egg extracts (figure 8). On addition of sperm

nuclei to egg extract, chromatin rapidly decondenses and

origins become licensed with Mcm2–7 double hexamers

[1,5,61]. Decondensed chromatin is then surrounded by a func-

tional nuclear envelope, which is stimulated by licensed origins

that promote the assembly of the nuclear pore precursor

ELYS [53] (figure 8a). Cdc7 then binds and phosphory-

lates Mcm2–7, leading to hyperphosphorylation of Mcm4.

Although nuclear envelope assembly is not strictly required

for this, it stimulates both Cdc7 recruitment to chromatin

and Mcm4 hyperphosphorylation. Once Cdc7-dependent
phosphorylation of the Mcm2–7 complex has occurred, S

phase Cdk activity can then promote initiation by phosphory-

lating its substrates [15,42,43].

The precise duplication of the eukaryotic genome takes place

according to a reproducible replication timing programme.

Origins are organized in spatially distinct clusters that fire coor-

dinately. Although there is significant cell-to-cell variation in

origin usage within clusters, the stage of S phase when specific

clusters replicate is reproducibly consistent between different

cells [62,63]. An attractive hypothesis is that Cdc7 preferentially

associates with Mcm2–7 at early-replicating origins in early S
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phase, and only when these early firing origins have replicated

would Cdc7 be displaced to activate later firing origins. This

mechanism can explain the early initiation of pericentromeric

replication origins in Saccharomyces cerevisiae [27]. However,

our data suggest that this is not how the replication timing pro-

gramme is driven in Xenopus egg extracts. We demonstrate that

early in S phase Cdc7 executes its function on both early- and

late-firing origins (figure 8b). This is consistent with the quan-

titative phosphorylation of Mcm2–7 in Xenopus egg extracts,

which occurs even though only a fraction of these origins nor-

mally initiate in S phase [64–66]. We also prove that if MCM

dephosphorylation is prevented, then the early activity of

Cdc7 is sufficient to allow approximately normal progression

through the replication timing programme. This is in contrast

to Cdk activity, which is required throughout S phase for

new initiation events to occur and for progression through

the replication timing programme [49,50,56,58]. The require-

ment for Cdk activity to drive the replication timing

programme in Xenopus egg extracts is consistent with the

idea that Cdk substrates for initiation are rate-limiting, and

are preferentially recruited to early-replicating origins (as indi-

cated in the left-hand origin of figure 8b).

We suggest that the rapid phosphorylation of all replica-

tion origins by Cdc7 in Xenopus egg extracts is an adaptation

to drive the extremely short S phases that occur in the early

embryo prior to the mid-blastula transition. However, as

the embryonic cell cycles become longer at the mid-blastula

transition, the increasing nuclear to cytoplasmic ratio means
that DDK activity also becomes limiting for replication

initiation [67].

4.2. Cdc7 function is opposed by PP1
We demonstrate that the Cdc7-dependent phosphorylation of

Mcm4 is rapidly reversed by PP1. This is consistent with a pre-

vious study which indicated that PP1 associated with Mcm2–7

complexes on chromatin assembled in Xenopus egg extracts [5].

Although Cdc7 phosphorylates all licensed origins early in S

phase in Xenopus egg extracts, continued kinase activity

would be required for normal S phase progression because of

rapid reversal by dephosphorylation. Control of Cdc7 function

by regulation of PP1 activity represents a new mechanism for

regulation of DNA replication. This role for PP1 is likely con-

served throughout eukaryotes, as mutation of the S. cerevisiae
PP1 homologue Glc7 increases Mcm4 phosphorylation

(S. Hiraga & A. Donaldson 2013, personal communication).

4.3. Cdc7 in the intra-S checkpoint response
Cdc7 has been implicated as a downstream target of the intra-S

checkpoint in Xenopus [34]. However, subsequent studies in

Xenopus extracts and human cells have shown that Cdc7 remains

active in response to replicative stress and may be important in

recovery functions [9,11,36–38]. Our demonstration that Cdc7

function is rapidly reversed by PP1 suggests that Cdc7 activity

will be required for activation of dormant origins in response

to replication fork inhibition [31], consistent with its proposed

role in recovery from replicative stresses.

In addition, we demonstrate that etoposide, aphidicolin

and double-strand DNA breaks promote the association of

PP1 with chromatin in a checkpoint-dependent manner and

that this leads to Mcm4 dephosphorylation. This Mcm4

dephosphorylation could be reversed by inhibiting PP1, pro-

viding further evidence that Cdc7 function is strongly

restrained by PP1. Unlike the other replication inhibitors we

examined, etoposide was unique in being able to strongly inhi-

bit Mcm4 phosphorylation. This was probably owing to the

fact that in addition to causing checkpoint-dependent associ-

ation of PP1 with chromatin, etoposide also inhibited Cdc7

binding to chromatin in a checkpoint-independent manner.

This conclusion is consistent with a previous report indicating

that etoposide does not inhibit Cdc7 kinases activity [38].

Taken together, our results suggest that Cdc7 function is

restrained by checkpoint kinases promoting PP1 chromatin

association, thereby reversing Cdc7-mediated MCM phos-

phorylation (figure 8b). This model provides a resolution

to the rather contradictory literature concerning checkpoint

regulation of Cdc7 activity in metazoans [9,11,34–38]. By

demonstrating a major role for PP1 in the regulation of Cdc7

activity, our work also has implications for the best use of

DDK inhibitors as anti-cancer agents [39,40,68,69], in particular

suggesting that modulation of PP1 activity could enhance their

therapeutic efficacy.
5. Material and methods
5.1. Xenopus egg extract and DNA templates
Metaphase-arrested Xenopus laevis egg extract and demembra-

nated Xenopus sperm nuclei were prepared as described [70].
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Extracts were supplemented with 250 mg ml21 cycloheximide,

25 mM phosphocreatine and 15 mg ml21 creatine phosphoki-

nase and incubated with 0.3 mM CaCl2 for 15 min to release

from metaphase arrest. For DNA synthesis reactions, sperm

nuclei were incubated at 6–10 ng DNA ml21 or CHO nuclei

at 60 ng DNA ml21 in extract. When CHO nuclei were used,

extracts were further supplemented with 150 mg ml21 geminin

[58]. DNA synthesis was assayed by measuring incorporation

of [a-32P]dATP into acid-insoluble material followed by scintil-

lation counting, assuming an endogenous dATP pool of 50 mM

[70,71]. All incubations were carried out at 238C.

CHO nuclei were prepared as described [58]. Briefly,

asynchronous cells were treated with 50 ng ml21 nocodazole

(Sigma-Aldrich) for 4 h and mitotic cells shaken off, and

replated for 4 h in fresh medium to obtain post-origin decision

(ODP) point G1 cells. Cells were harvested, washed and per-

meabilized with 50 mg ml21 digitonin (Sigma). The resultant

nuclei were counted and added to egg extract.

5.2. Chromatin isolation from egg extract
Chromatin isolation for immunoblotting was carried out as

described [70]. Briefly, extract was diluted with ice-cold Nuclear

Isolation Buffer (NIB) (50 mM KCl, 50 mM HEPES–KOH pH

7.6, 5 mM MgCl2, 0.5 mM spermidine, 0.15 mM spermine,

2 mM DTT) containing phosphatase inhibitors, under-laid

with NIB þ 20% sucrose (w/v) and centrifuged in a swinging

bucket rotor at 2100g for 5 min at 48C. Following a cushion

wash, chromatin was compacted by spinning at 13 000g
for 2 min in a fixed angle rotor. The resulting pellet was

resuspended in SDS loading buffer.

To isolate intact nuclei for transfer experiments, Triton X-100

was omitted from all buffers. Extracts were diluted as before,

under-laid with a double cushion of NIB þ 20% sucrose and

NIB þ 30% glycerol (v:v in NIB) and centrifuged in a swinging

bucket rotor. Following a cushion wash, nuclei were resus-

pended in the glycerol cushion and added to the second

extract at a final concentration of 10 ng DNA ml21. For detection

of PP1 subunits, extracts were diluted with 100 volumes ice-cold

NIB and under-laid with 250 ml NIB þ 30% sucrose (w/v).

5.3. Immunoblotting
For immunoblotting, samples were separated on 4–12%

Bis–Tris gradient SDS–PAGE gels (Invitrogen). Proteins

were transferred onto polyvinylidene difluoride (PVDF) mem-

branes (GE Healthcare, RPN303F) using a wet transfer system,

blocked in PBS with 0.2% Tween-20 and 5% non-fat milk. After

incubation with primary and secondary antibodies, mem-

branes were developed using enhanced chemiluminescence

detection (SuperSignal West Pico Chemiluminescent; Thermo

Scientific, 34087). The lower portion of each gel was typically

cut and treated with Coomassie stain to visualize histones.

Band intensities were quantified using GELEVAL (FrogDance

Software). For quantification of Mcm4 hyperphosphorylation,

Mcm4 bands were divided vertically into two equal halves,

and the upper, hyperphosphorylated intensity was expressed

as a percentage of the total Mcm4 intensity.

5.4. Recombinant proteins, reagents and antibodies
Geminin was produced as previously described [72]. Full

length p27kip1 was expressed from a pGEX-p27kip1 plasmid
(a gift of J. Walter, Harvard Medical School) and purified

from Rosetta(DE3)pLysS cells (Novagen) using glutathione–

sepharose. PHA-767491 [39] and I-2 were produced by the

Division of Signal Transduction Therapy, University of

Dundee. Roscovitine was from Calbiochem, caffeine from

ICN Biochem, NU7441 from Axon Medchem and KU55933

from Tocris. Antibodies against PCNA, PP1a and PP1g were

from Santa Cruz Biotechnology. Mcm4, Cdc6 and Cdc45 anti-

bodies were as previously described [5,46,73]. The Cdc7

antibody was raised in sheep against a bacterially expressed

immunogen consisting of the C-terminal 99 amino acids of

Xenopus Cdc7. The antisera were affinity purified prior to use

(see electronic supplementary material, figure S4).

5.5. Fork rate analysis
For alkaline agarose gel analysis of fork rate, chromatin tem-

plates were incubated at 15 ng ml21 in interphase egg extract

supplemented with p27kip1 and [a-32P]dATP. Reactions were

stopped with 10 volumes of stop N (20 mM Tris–HCl, pH 8,

200 mM NaCl, 5 mM EDTA, 0.5% SDS) containing 2 mg ml21

RNase A. DNA was extracted with phenol : chloroform :

isoamyl-alcohol (25 : 24 : 1) using Phase Lock Gel tubes (Eppen-

dorf), ethanol-precipitated and resuspended in alkaline loading

buffer (25 mM NaOH, 3 mM EDTA, 1.25% Ficoll, 0.0125% bro-

mocresol green). Agarose gels were poured in 50 mM NaCl,

1 mM EDTA and then equilibrated in 50 mM NaOH, 1 mM

EDTA for 1 h. Gels were run at 2 V cm21 for 12 h and then

fixed in 7% trichloroacetic acid (w/v), 1.4% (w/v) sodium pyr-

ophosphate for 20 min. Gels were dried between sheets of 3MM

paper (Whatman) and exposed to X-ray film. As DNA size stan-

dards, 25–50 ng of a-phage HindIII markers (New England

Biolabs) end-labelled with [a-32P]dATP were run in parallel.

Fork rate was estimated by determining the position of the

of nascent strand peak intensity using GELEVAL (FrogDance

Software), and then fitted by linear regression.

5.6. Replication pattern labelling and analysis
Somatic nuclei replication patterns were assessed as

described [58]. Briefly, CHO nuclei replicating in egg extract

were pulse-labelled with 25 mM Cy3-dUTP (GE Healthcare)

for 2.5 min. Nuclei were isolated and fixed in 4% paraformal-

dehyde and spun down onto poly-L-lysine coverslips. Total

DNA was stained with Hoechst 33258 and coverslips were

mounted with Vectashield mounting medium and sealed.

Images were acquired using a cooled camera (CoolSNAP

HQ; Photometrics) on a restoration microscope (DeltaVision

Spectris; Applied Precision) built around a stand (Eclipse

TE200; Nikon) with a 100� 1.4 NA Plan Apo lens (Nikon).

Images were taken every 0.25 mm, and 22 optical sections

were recorded for every nucleus. Three-dimensional datasets

were deconvoluted using the constrained iterative algorithm

software (SOFTWORX; Applied Precision), and images were

analysed in the Open Microscopy Environment (www.open-

microscopy.org). Timing patterns for 20 nuclei at each data

point were classified as described [58] in three independent

experiments.
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