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Mucosal microbiotas and their role in stem cell transplantation. Patients with hematological disorders such as leukemia
often undergo allogeneic hematopoietic stem cell transplantation, and thereby receive stem cells from a donor for cura-
tion of disease. This procedure also involves immunosuppressive and antimicrobial treatments that disturb the impor-
tant interactions between the microbiota and the immune system, especially at mucosal sites. After transplantation,
bacterial diversity decreases together with a depletion of Clostridia, and shifts toward predominance of Proteobacteria.
Infectious and inflammatory complications, such as graft-versus-host disease, also interfere with patient recovery. This
review collects and contextualizes current knowledge of the role of mucosal microbiotas at different body sites in stem
cell transplantation, proposes underlying mechanisms, and discusses potential clinical value of bacterial markers for
improved treatment strategies.
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THE MUCOSAL MICROBIOTA

In the intestine, as well as the oral and nasal cavi-
ties, mucosal tissues constitute the first line of
defense against invading pathogens, facilitated by
mutual interactions of commensal microbial com-
munities and the host immune system at the muco-
sal surfaces [1–3]. The intestinal mucosal barrier
consists of a single layer of epithelial cells linked by
tight junctions and is located between a mucus
layer and the lamina propria. Besides nutrient
absorption, the major function of the epithelial cells
is to prevent translocation of potential pathogens
[2]. Within the oral cavity, the environment of the
buccal mucosa is unique as it is directly interacting
with the innate and the adaptive immune system,
similar to the intestinal mucosa [4]. Among the dif-
ferent niches within the nasal cavity, the anterior
nares are most exposed to external influences. The

epithelium lining the anterior nares resembles that
of the skin and is lined with sebaceous glands and
coarse hairs [4].

As part of the innate immune system, antimicro-
bial peptides (AMPs), produced by, for example,
Paneth cells and epithelial cells, shape the commen-
sal microbiota and form an important chemical
barrier toward invading pathogens [5]. The micro-
biota also contributes to AMP-mediated innate
immune function: For instance, the expression of
regenerating islet-derived protein III-gamma
(RegIIIc), an AMP produced by Paneth cells and
intestinal epithelial cells, is dependent on commen-
sal microbial toll-like receptor-mediated stimulation
[6,7].

The adaptive immune system is a key player in
maintaining host-microbial homeostasis, character-
ized by a diverse microbiota, integrity of mucosal
barrier function, and minimal inflammation [2,8].
For instance, mucosal colonizers produce short-
chain fatty acids (SCFA), which mediate IgA
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production by plasma cells. In turn, IgA is an
important regulator of the microbiota, which coats
both commensals and pathogens, promoting tar-
geted effector cell reactions and preventing bacterial
invasion of deeper mucus layers [2,8].

Of no less importance are interrelations of the
microbiota and the cell-mediated part of the adap-
tive immune system. In mice, specific commensals,
such as segmented filamentous bacteria, Akkerman-
sia muciniphila and taxa affiliated with Clostridia
and Bacteroides, can activate T cells, especially the
CD4+ T cell subpopulations of T helper 17 (TH17)
cells and T regulatory (Treg) cells [8,9]. By activat-
ing TH17 cells, the microbiota promotes mucosal
integrity since TH17 cells protect against extracellu-
lar bacterial and fungal pathogens, for example, in
the gut and the oral cavity [10]. However, upon
high cytokine stimulation, TH17 cells can promote
inflammation that requires anti-inflammatory
counter-action by immunosuppressive Treg cells
[2,8]. Expansion of Treg cells underlies commensal
microbial influence, as well. For instance, several
Bacteroides and Clostridia strains originating from
human feces were shown to induce Treg cells in
mice, for example, through SCFA and polysaccha-
ride A production [2,11–13].

ALLOGENEIC HEMATOPOIETIC STEM CELL

TRANSPLANTATION (ALLO-HSCT)

In allogeneic hematopoietic stem cell transplanta-
tion (allo-HSCT), the patient is infused with stem
cells derived from a donor to cure a malignant or
non-malignant hematological disorder, such as
blood cancer [14]. The immunotherapeutic aims of
allo-HSCT are to restore the recipient’s depleted
hematopoietic system and to achieve a graft-versus-
leukemia (GvL) effect of donor-derived cells against
malignant cells in the recipient [14]. To eradicate
the cancer cells and reduce the risk of graft rejec-
tion, recipients undergo a preparative myeloablative
conditioning regimen with high-dose cytotoxic
chemotherapy, sometimes in combination with total
body irradiation (TBI), before stem cell transplan-
tation [14] (Fig. 1). Acute graft-versus-host disease
(aGvHD) is a major complication and one of the
main causes of death following allo-HSCT [15]. In
aGvHD, immunocompetent donor-derived T cells
attack healthy recipient tissue [15].

Infectious complications contribute decisively to
the morbidity and mortality after allo-HSCT [16].
Inherent characteristics of allo-HSCT, including
myeloablation (i.e., suppression of the bone mar-
row’s production of blood cells), immunosuppres-
sion, and subsequent delayed immune

reconstitution, are major risk factors for infections
[16]. Therefore, patients usually receive prophylactic
antimicrobial treatment during conditioning prior
to allo-HSCT (Fig. 1).

The procedure of hematopoietic stem cell trans-
plantation and its accompanying treatments inter-
fere in various ways with crucial host-microbial
interactions at multiple body sites. Within this pro-
cess, disturbance of host-microbiota homeostasis is
introduced in both directions: On the one hand,
immune system components, altered by chemother-
apy and donor-derived stem cells, may induce
changes in the microbial community structure. On
the other hand, the microbiota, altered by extensive
antibiotic treatment, may influence immune param-
eters after HSCT. The hitherto acquired knowledge
about these bi-directional relations will be the topic
of this review.

MICROBIOTA DISRUPTION AFTER ALLO-

HSCT AND THE ROLE OF ANTIBIOTICS

Prior to next-generation sequencing techniques that
lead to increasing knowledge about the host-
associated microbiotas, a standard approach in the
medical treatment involved a ‘gut decontamination’
with the aim of limiting potential gut microbial
effects in HSCT [17,18]. Under the assumption that
an immunocompromised host would give way to
exclusively adverse effects of potentially pathogenic
anaerobic bacteria, high-dose antibiotic regimens
were used, aiming at the depletion of any bacteria
in the gut [18]. Eventually, controlled clinical stud-
ies were not able to document any benefit of ‘gut
decontamination’ [19]. While prophylactic antibiotic
regimens are still a standard of care for HSCT
patients today, recent research indicates that the
gain of preventing infections by antimicrobial pro-
phylaxis might be compromised by adverse clinical
outcomes such as GvHD and treatment-related
mortality that accompany the loss of specific com-
mensal taxa [20–24].

Common for the gut, oral, and nasal microbiota,
is a decrease in bacterial alpha-diversity (hereafter
referred to as ‘diversity’) within the first 3 weeks
post-transplantation [20,25–29] (Figs 1 and 2). Loss
of diversity is most pronounced in patients with
GvHD [28,30–33]. Importantly, both pediatric and
adult allo-HSCT patients have reduced diversity as
well as an altered bacterial composition in the gut
compared with healthy individuals already before
the start of conditioning and transplantation
[25,28]. Similarly, oral bacterial diversity has been
demonstrated to be lower at the day of transplanta-
tion in adult HSCT recipients compared with
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healthy controls [34]. This may be due to the treat-
ment with antibiotics which causes a decrease of
certain groups of commensal mucosal colonizers
[21].

In addition to diversity as an approximate mar-
ker of microbial homeostasis, specific taxa have
been described that increase or decrease in the gut

during the first month after allo-HSCT [20,25–
27,29,31,35–37]. Microbiota members of the phy-
lum Proteobacteria, including Enterobacteriaceae,
as well as Enterococcus spp. and Lactobacillus spp.,
have been found to increase in abundance after
transplantation [20,25,26,28,30,31,38,39] (Fig. 2). In
contrast, taxa affiliated with the order Clostridiales,
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Fig. 1. General concept of allogeneic hematopoietic stem cell transplantation. The patient receives stem cells from a
healthy donor. Several treatment components influence the patient’s immune system and microbiota, especially in the nasal
and oral cavities, and in the gut. The bacterial diversity at mucosal sites decreases during the initial phase at slightly differ-
ent time points after allogeneic hematopoietic stem cell transplantation (allo-HSCT). [Colour figure can be viewed at
wileyonlinelibrary.com]
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Fig. 2. Proposed detrimental mechanisms involving facultative anaerobe bacteria. Antimicrobial treatment contributes to
overgrowth of facultative anaerobes, which is associated with low bacterial diversity and high inflammation. Lack of short-
chain fatty acids (SCFA)-producing bacteria can reinforce growth conditions in favor of facultative anaerobes (due to high
luminal oxygen). [Colour figure can be viewed at wileyonlinelibrary.com]

© 2022 The Authors. APMIS published by John Wiley & Sons Ltd on behalf of Scandinavian Societies for Medical Microbiology and Pathology 743

MICROBIOTA IN STEM CELL TRANSPLANTATION

www.wileyonlinelibrary.com
www.wileyonlinelibrary.com


in particular Lachnospiraceae and Ruminococ-
caceae, decreased the post-transplantation
[20,25,27,40,41]. The expansion of Enterococcus
spp. and loss of Clostridiales early after allo-HSCT
are especially pronounced in patients with GvHD
[22,31,35–37]. Furthermore, this pattern has been
associated with high treatment-related mortality
and blood stream infections [26,42,43]. Congru-
ently, several genera belonging to the phylum Pro-
teobacteria, namely Escherichia, Klebsiella,
Enterobacter, Pseudomonas, and Stenotrophomonas,
have been found predictive for subsequent blood
stream infections [44].

It has been suggested that the antibiotic treat-
ment in allo-HSCT is promoting this shift in the
gut microbial community structure
[20,21,25,29,39,41,45]. Antimicrobial agents fre-
quently used in prophylactic regimens are target-
ing commensal obligate anaerobe bacteria
[21,41,45]. Piperacillin–tazobactam and meropenem
have been described as particularly detrimental
toward obligate anaerobes including Clostridiales,
Negativicutes, Bacteroidetes, and Fusobacteria
whereas fluoroquinolones, intravenous van-
comycin, and trimethoprim-sulfamethoxazole
seemed to largely spare these taxa [28,45]. A cen-
tral role has been attributed to short-chain fatty
acids (SCFAs), especially butyrate, produced by
Clostridiales members (Fig. 3). Antibiotic-induced
depletion of SCFA-producers entails a switch to
glucose fermentation by enterocytes and increased
oxygen availability in the intestinal lumen [46]
(Fig. 2). This facilitates the expansion of faculta-
tive anaerobes such as Enterobacteriaceae (phy-
lum Proteobacteria) and Enterococcus spp. [47]
(Fig. 2). Within the order of Clostridiales, mainte-
nance of high abundances of the butyrate-
producers Blautia spp. (Lachnospiraceae) and Fae-
calibacterium prausnitzii (Ruminococcaceae) has
been demonstrated to be of particular importance

for positive clinical outcomes in HSCT [48,49]
(Fig. 3).

MICROBIOTA RECONSTITUTION:

TEMPORAL DYNAMICS OF BACTERIAL

COMMUNITY COMPOSITION

While the majority of studies have reported changes
in bacterial diversity and abundances early after
allo-HSCT, few studies so far have investigated
long-term dynamics exceeding the first month post-
transplant [25,29,37]. Recovery of intestinal diver-
sity levels was found to first occur after 3–6 months
post-transplantation in pediatric allogeneic HSCT
patients [25,50] (Fig. 1). The diversity in the nasal
cavity seems to recover within 2 weeks post-
transplant, which is more rapid as compared with
the gut and the oral cavity [25].

In a study that monitored the microbiota for up
to twelve months after allo-HSCT, the bacterial
composition started reconstituting to patterns simi-
lar to what was observed prior to HSCT from
around three months after HSCT [25]. In this con-
text, it is interesting to observe the recent focus on
fecal microbiota transplantation (FMT) as a thera-
peutic approach to re-establish microbial homeosta-
sis after allo-HSCT [51–53]. Interestingly, one study
demonstrated the reconstitution of pre-transplant
bacterial diversity and community structure follow-
ing autologous FMT at Day +49 after allo-HSCT
in adult patients [51]. However, the study also
states that a small increase in gut bacterial diversity
with a compromised functional repertoire of the
microbiota also occurred in the control group
(without FMT) at this time point [51]. Thus, while
FMT might accelerate microbiota reconstitution
and restore commensal functionality in allo-HSCT,
intervention-free abundance trajectories should be
carefully evaluated as well.
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Fig. 3. Proposed beneficial mechanisms involving obligate anaerobe bacteria. Short-chain fatty acids (SCFA)-producing
bacteria, such as Clostridiales, are proposed to hamper acute graft-versus-host disease (aGvHD) and promote patient sur-
vival by limiting inflammation and contributing to immune cell reconstitution after allo-HSCT. [Colour figure can be
viewed at wileyonlinelibrary.com]

744 © 2022 The Authors. APMIS published by John Wiley & Sons Ltd on behalf of Scandinavian Societies for Medical Microbiology and Pathology

INGHAM AND PAMP

www.wileyonlinelibrary.com


ASSOCIATIONS BETWEEN GUT

MICROBIOTA AND HOST IMMUNE

RECONSTITUTION AFTER HSCT

The reconstitution of the immune system and
microbiota after allo-HSCT likely depends on each
other. Abundances of specific taxa in the gut are
associated with counts of distinct immune cell types
after HSCT [20,25,29,54]. For instance, intestinal
Faecalibacterium and Ruminococcus were found to
be associated with neutrophil and monocyte recon-
stitution post-engraftment [54]. Moreover, NK and
B-cell counts in month +1 and thereafter correlated
with high counts of obligate anaerobes, including
Ruminococcaceae and Lachnospiraceae [20,25]
(Fig. 3). Patients with these characteristics showed
milder aGvHD and higher survival [20] (Fig. 3).
Consistently, these positive outcomes are associated
with microbial homeostasis and high bacterial
diversity, which in turn are linked to a high abun-
dance of Ruminococcaceae and Lachnospiraceae
[30,35] (Fig. 3). The production of SCFAs, in par-
ticular butyrate, by members of these bacterial fam-
ilies could limit inflammation and thereby prevent
aGvHD to a certain extent, and this might entail a
direct or indirect effect on NK and B-cell reconsti-
tution (Fig. 3). In agreement, a study observed
decreased fecal butyrate levels 14 days after allo-
HSCT in patients with subsequent GvHD (grade I
or higher) compared with patients without GvHD
[23]. Moreover, SCFAs have been shown to facili-
tate the differentiation of human naive B cells to
plasma cells in culture, attributing a possible direct
effect of SCFAs on B-cell proliferation [55] (Fig. 3).

In line with this, a number of studies have attrib-
uted immune cell regulatory effects to butyrate, sug-
gesting histone deacetylase inhibition as a universal
mechanism [56–58]. Interestingly, histone deacety-
lase inhibition also has a mitigating effect on
aGVHD after HSCT, in agreement with the obser-
vation of low aGvHD severity in the presence of
microbial butyrate-producers [20,59]. Vice versa,
the absence of aGvHD and inflammation might
also benefit the retention of low oxygen levels in
the gut, favoring the growth of obligate anaerobe
bacteria [47] (Fig. 3).

Besides the involvement of SCFAs in shaping
intestinal microbial growth conditions, direct
immunomodulatory effects have been described.
Butyrate is a histone deacetylase inhibitor (HDACi)
and, when taken up by intestinal epithelial cells
(IECs), promotes acetylation of histone H4 [60,61].
Histone acetylation generally facilitates chromatin
relaxation and thereby transcription [61,62].
Reduced H4 acetylation in IECs after allogeneic
HSCT has been related to decreased butyrate levels

within these cells, but not in the intestinal lumen in
mice [60]. It was suggested that decreased butyrate
production due to depleted butyrate-producing bac-
teria after allo-HSCT would not significantly affect
intestinal butyrate levels because of a concurrent
decrease in expression of butyrate transporter
sodium-coupled monocarboxylate transporter 1
(SLC5A8) and G protein-coupled receptor 43
(GPR43), leading to reduced uptake [60]. Con-
versely, a human study found reduced butyrate and
propionate levels in feces after allo-HSCT in pedi-
atric patients [23]. No change in SLC5A8 and
GPR43 expression was found in this study [23].
These contradicting findings warrant caution when
deriving conclusions for the human HSCT setting
from mouse models. Importantly, these and other
studies indicate a crucial role of commensal-derived
butyrate in protection from acute and chronic
GvHD [23,57,60,63]. Several mechanisms have been
suggested. In mice, butyrate-induced histone acety-
lation in IECs has been shown to upregulate
expression of genes involved in junctional function
and downregulate pro-apoptotic genes [60]. This
suggests a direct protection against alloreactive T
cells [60] (Fig. 3). Another mechanism might
involve the induction of Treg cells mediated by
butyrate and propionate, facilitating an anti-
inflammatory milieu that protects from GvHD
[57,64] (Fig. 3).

In addition to a potential protection against
GvHD, propionate produced by Lachnospiraceae
has also been proposed to protect against adverse
effects of radiation, which has been observed in
mice [65]. Mice treated with propionate exhibited
elevated bone marrow cellularity and alleviated
radiation-induced loss of several progenitor cell
types, including granulocyte-macrophage progeni-
tors, common myeloid progenitors, and
megakaryocyte-erythroid progenitors [65]. In addi-
tion, greater colon mucus layer thickness and crypt
length were observed in the propionate-treated
group compared with controls, indicating a better
functioning protective gut mucosal barrier [65].

In addition to SCFAs, another microbial
metabolite, namely the intercellular signal molecule
indole and its derivative 3-indoxyl sulfate (3-IS),
has been attributed a role in allo-HSCT and GvHD
[31,42,66,67]. Low 3-IS levels in urine early after
allo-HSCT have been associated with low abun-
dances of intestinal Lachnospiraceae and
Ruminococcacea and a high mortality in adult allo-
HSCT patients [42]. Indole and/or its derivatives
can promote tight junction integrity, hamper the
growth of Gram-negative enterobacteria, and
induce anti-inflammatory cytokines [67–69]. There-
fore, a protective effect against GvHD has been
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proposed for 3-IS [42] (Fig. 3). Consistently, low 3-
IS levels are particularly pronounced in allo-HSCT
patients with GvHD [31,66].

Another proposed mechanism contributing to
microbial community changes after allo-HSCT
involves the reduced Paneth cell numbers and
accompanying decrease in human alpha defensin
production during GvHD [70,71]. Paneth cell-
derived AMPs contribute to gut microbial home-
ostasis, and the lack thereof during GvHD facili-
tates overgrowth and domination of opportunistic
pathogens, such as Escherichia coli in mice [70,71].
Consistently, a human study showed that adult
allo-HSCT patients with severe gastrointestinal
GvHD exhibited low Paneth cell numbers, low
Paneth cell-derived AMP expression, and low uri-
nary 3-IS, the latter pointing to low bacterial diver-
sity [72].

BEYOND THE GUT—THE ROLE OF THE

ORAL AND NASAL MICROBIOTA IN

ALLOGENEIC HSCT

The gut is clearly the microbial niche most studied
in allo-HSCT patients, but other body sites, such as
the oral cavity, have also been examined in a few
studies [25,29,34,73]. For instance, in adult patients,
the presence of Staphylococcus haemolyticus and
Ralstonia pickettii in the oral cavity on the day of
transplantation was associated with a higher mor-
tality risk [34]. Lesions of oral mucositis, which is a
common oral complication in patients undergoing
allo-HSCT, have been found to be colonized with
Fusobacterium nucleatum [74]. Oral microbiota pro-
files of pediatric patients could be discriminated at
different time points prior to and post-allo-HSCT
by the abundances of distinct Actinomycetaceae,
Streptococcaceae, and Prevotellaceae [25]. For
example, distinct Prevotellaceae exhibited reduced
abundances after allo-HSCT in pediatric patients,
as compared with before allo-HSCT [25]. Prevotella
spp. have also been described to decrease in adult
patients after allo-HSCT [73]. High pre-transplant
abundances of a certain oral Prevotella melanino-
genica taxon predicted subsequent moderate to sev-
ere aGvHD [25]. Prevotella might play a universal
role in regulating inflammation in allo-HSCT.
However, 16S rRNA gene profiling might not pro-
vide a taxonomic resolution high enough to deter-
mine which particular members of the
Prevotellaceae family are responsible for pro-
inflammatory signaling and which might point to
microbial homeostasis, but suggest ambiguous
influences potentially depending on the particular
species, if not the strain.

Interestingly, host-microbial associations of the
oral and nasal microbiota reflect host-gut microbial
associations to a large extent [25]. Associations
were shared between body sites in the sense that
the same sets of specific immune cell types or
immune markers exhibited correlations with the
microbiota at two or three body sites. For instance,
CD4+ T cell and TH17 cell counts in pediatric allo-
geneic HSCT patients were associated with a group
of Ruminococcaceae and Lachnospiraceae in the
gut, as well as with a group of Veillonellaceae in
the nasal cavity, and a diverse group of taxa includ-
ing Flavobacteriaceae in the oral cavity [25]. This
could indicate a pro-inflammatory immunomodula-
tory involvement of the microbiota at multiple
body sites. This might serve as an example for
microbiota in different niches and their shared cor-
relations with immune markers in HSCT. However,
in some cases, these associations were strongly
dependent on the patients’ clinical baseline parame-
ters [25].

PREDICTION OF AGVHD FROM PRE-

TRANSPLANT LACTOBACILLUS SP. AND

OTHER GUT, ORAL, AND NASAL

MICROBIAL TAXA

A number of studies have related the pre-transplant
microbial community structure to clinical outcomes
after HSCT [20,25,29,33,37,75,76]. For instance, an
increase in Lactobacillaceae prior to aGvHD onset
was observed in patients who were still alive after
5 years on average [20]. High abundances of a
specific Lactobacillus sp. taxon before allo-HSCT
and up to the time of transplantation predicted the
development of moderate to severe aGvHD [25].
Lactobacillaceae expansion might be a part of a
protective effect in reaction to microbial community
disruption and inflammation. The concurrent high
levels of the antimicrobial peptide human beta
defensin 2 (hBD2) might point to both, a high bur-
den of inflammation and a high number of oppor-
tunistic pathogen infections in the patients in
question [20]. It has been suggested that specific
probiotic Lactobacillus spp. can induce the secretion
of hBD2 in immune cells [77,78]. Microbial com-
munity disruption after allo-HSCT has been associ-
ated with an increase in Enterococcaceae in a
number of studies [17,31,35]. It has been suggested
that a concurrent increase in Lactobacillaceae limits
Enterococcaceae expansion [35]. This could be
interpreted as a protective reaction to facilitate the
re-establishment of microbial homeostasis. Consis-
tently, temporal trajectories of certain closely phy-
logenetically related Lactobacillaceae taxa have
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been identified, showing an increase immediately
after HSCT that reflects the trajectory of Entero-
coccaceae [25]. In summary, the immunomodula-
tory characteristics attributed to Lactobacillaceae
and its abundance patterns suggest this family as a
potential marker of a state of inflammation and
loss of microbial homeostasis prior to and at the
time of allo-HSCT, which might influence the
development of aGvHD (Fig. 2).

Additional gut taxa have been identified that
might have a predictive value in aGvHD, including
a distinct Parabacteroides spp. taxon and a taxon
affiliated with the Lachnospiraceae family [25]. Fur-
thermore, it has been demonstrated that pre-
transplant abundances of oral and nasal microbiota
members could predict subsequent aGvHD [25].

With regard to mortality, high abundances of
Firmicutes, Enterococcus, Bacilli, as well as Strepto-
coccus sp. DN812 and Veillonella parvula one to
three weeks after transplantation were predictive
for increased mortality after HSCT [28]. In con-
trast, high abundance of Clostridia, Streptococ-
caceae, and Lactobacillaceae predicted reduced
mortality during this period [28].

CONCLUSION

A crucial role for mucosal microbiotas in stem cell
transplantation is supported by a significant body
of research. Disturbance and reconstitution of the
microbiota and the immune system follow concur-
rent timelines and depend on each other. This holds
true for the oral and nasal microbiota, as well as
for the gut microbiota. To retain bacteria associ-
ated with rapid immune system recovery, cost and
benefit of antimicrobial treatment prior to and after
HSCT have to be carefully weighed, and
commensal-sparing antimicrobial agents should be
favored. Importantly, clinical outcomes after allo-
HSCT, such as GvHD and mortality, are pre-
dictable from pre-transplant bacterial abundances.
This knowledge can aid the development of person-
alized treatment strategies, such as intensified pro-
phylactic immunosuppression for patients at
increased risk for GvHD. Future studies will have
to assess the microbiota in relation to the metabo-
lome of mucosal sites as well as other factors in
allo-HSCT patients to facilitate an understanding
of the underlying mechanisms.
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